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Abstract: Model fitting and risk estimation are an important everyday aspect of a successful financial institution. 
Consequently, in this paper, we discuss risk quantification of the South African Industrial Index (also known as J520) using 
22 standard light- and heavy-tailed statistical distributions. Given the importance of the J520 index (since it has the highest 
market capitalization in the Johannesburg Stock Exchange), investors may have a very keen interest in fully understanding 
the loss and gain returns characteristics and underlying statistical distribution’s properties, including tail properties. Thus, 
an in-depth goodness-of-fit evaluation is conducted by assessing six different tests (i.e. Kolmogorov-Smirnov, Anderson-
Darling, Cramer von Mises, negative log-likelihood, Akaike information criterion, Bayesian information criterion) as well 
as two risk measures (i.e., value-at-risk and tail value-at-risk) are computed and interpreted within the context of J520 
index. It is observed that the best distribution to fit to loss returns are the inverse Burr or transformed beta while for the 
gain returns it is either transformed gamma, inverse Burr or generalized beta distributions. The latter distributions strike a 
better balance with respect to excellent goodness-of-fit and risk measures that are very close to the corresponding ones for 
the empirical distribution. Given our findings, it may not be advisable for investors to hold very long positions in the J520 
index since loss returns have much higher leptokurtic and heavy-tailed as compared to the lighter-tailed gain returns. 
Therefore, the growth shares observed over the long term indicate that a more prudent strategy would be to consider 
shorting the index. By doing so, investors could better align their strategies with the highly likely potential for substantial 
drawdowns inherent in this market. 

Keywords: Goodness-of-fit, Heavy-tailed, Industrial index, Tail value-at-risk (TVaR), Value-at-risk (VaR). 

1 Introduction 

Over the years, researchers and professionals have devoted significant efforts to exploring the complexities of financial 
markets. These intricate and dynamic systems have been subjected to thorough analysis, considering a range of factors 
including economic, political, and psychological influences. While much research has focused on forecasting and simulations, 
we recognize the need to delve deeper than predictive models to fully understand financial markets, see Chernobai et al. [1] 
and Sweeting [2]. A pivotal aspect of this endeavor involves scrutinizing the underlying probability distributions that govern 
the behavior of financial assets’ returns. Traditionally, the normal distribution has served as the main model for characterizing 
returns on financial instruments, see for instance [3] and [4]. However, mounting empirical evidence challenges this age-old 
view. Security returns often exhibit deviations from the normal distribution, manifesting heavy tails, leptokurtic and skewness. 
This observation has profound implications for portfolio optimization, risk management, and the validation of market 
efficiency hypotheses. 

1.1 Literature Review 

Table 1 provides a summative overview for a better understanding of different publications that will be used as part of the 
literature review for this research work. The twenty-two distributions that are the focus of this study can be studied in detail 
in the Appendix of the book by Klugman et al. [5]. For a brief outline of these distribution’s properties and an indication of 
which articles summarised in Table 1 discuss specific distributions that are provided on Table A1 in the Appendix. The 
objective of [5] is to provide a foundation in modelling data using well-known statistical distributions and thereafter 
compare them with the corresponding empirical distribution. In response to the observed discrepancies (between the fitted 
model and the actual data or empirical distribution), researchers have diligently investigated alternative distributional 
models that better align with empirical data. 

Alternative complex model fitting, such as composite models which are defined as a combination of two or more standard 
distributions, at a calculated threshold value(s), see Cooray and Ananda [22]. Composite models are very common in 
actuarial applications due to their flexibility and generally better modelling of small, moderate and extreme claims 
simultaneously. Subsequent contributions, including those by [8, 9, 11, 14 to 21] introduced variations such as mixture 
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models (convex combinations of two or more distributions on the same domain) and adjustments to standard distributions. 
In the next paragraphs, the single-distribution fitting articles are discussed in more detail; however, for more details on the 
composite and mixture distributions (with more emphasis on the Danish fire claims data) we refer the reader to [23]. 

Table 1: Summative summary of different publications that discuss single, composite and mixture distributions fitted on 
real and simulated financial data 
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1* Chikobvu and Ndlovu [6] Bitcoin/USD 
ZAR/USD 3 Single  P   P P  P P 

2* Marambakuyana and Shongwe [7] SA taxi claims 
Danish fire claims 19 Single P P P P P P  P P 

3 Marambakuyana and Shongwe [8] SA taxi claims 
Danish fire claims 512 Composite 

& Mixture    P P P  P P 

4 van Dorp and Shittu [9] Danish fire claims 
French interruption loss 6 Composite P  P     P P 

5* Shongwe et al. [10] SA Financial Index (J580) 4 Single P P P P P P  P P 

6 Tomarchio et al. [11] Swedish motorcycle losses 
French motor line losses 23 Mixture     P P  P P 

7* Chikobvu and Jakata [12] J580 4 Single     P P  P P 
8* Maphalla et al. [13] SA taxi claims 6 Single P P      P P 
9 Alkhairy et al. [14] Unemployment insurance 5 Mixture P P P  P P P P P 
10 Zhao et al. [15] Vehicle insurance loss 8 Mixture    P P P P P P 
11 Ahmad et al. [16] Earthquake insurance loss 7 Mixture  P   P P P P P 

12 Tung et al. [17] Vehicle insurance loss 
Earthquake insurance loss 6 Mixture P P P  P P    

13 Grün and Miljkovic [18] Danish fire claims 256 Composite P P   P P P P P 
14 Miljkovic and Grün [19] Danish fire claims 33 Mixture    P P P  P P 
15 Abu Bakar et al. [20] Danish fire claims 8 Composite    P P P  P P 
16 Nadarajah and Abu Bakar [21] Danish fire claims 17 Composite      P    

Note: The ‘*’ on the first column denotes the articles we are using as primary references. 
Acronyms:  KS – Kolmogorov Smirnov, AD – Anderson Darling, CvM – Cramer von Mises, NLL – Negative log likelihood, BIC – Bayesian 
Information Criterion, AIC – Akaike Information Criterion, VaR – Value at Risk, TVaR – Tail VaR, ES – Expected Shortfall, CVaR – Conditional VaR, 
SA – South Africa, ZAR – South African Rand, USD – United States Dollar.  

Chikobvu and Ndlovu [6] fitted 3 light- and heavy-tailed distributions to 2 exchange rates’ returns (i.e. the Bitcoin (BTC) 
and U.S. Dollar (USD) denoted as BTC/USD as well as South African Rand (ZAR) and USD denoted as ZAR/USD). 
Firstly, Chikobvu and Ndlovu (2024) split the data into loss and gains returns for each BTC/USD and ZAR/USD. 
Secondly, these loss and gain returns were separately observed to be leptokurtic and positively skewed. Thirdly, the Hill’s 
plots as well as the generalised QQ and PP plots were analysed so that the tails of the returns can be classified as being 
light- or heavy-tailed. Fourthly, the ZAR/USD gains and losses returns were both classified to follow a Weibull 
distribution. However, the BTC/USD gains follow the Burr distribution, while the losses follow the exponential distribution 
(i.e. BTC/ZAR gains are therefore more volatile giving the potential for large gains when compared to their losses). Finally, 
the BTC/USD was classified as riskier (or volatile) than the ZAR/USD and that the upside risk (likelihood of potential 
gains) is greater than the downside risk (the prospects of potential losses) for both BTC/USD (more pronounced here) and 
ZAR/USD (less pronounced). 

Maphalla et al. [13] fitted six common parametric loss distributions (i.e. Pareto, gamma, Burr, log-normal, Weibull and 
exponential) to the South African taxi claims dataset. They quantified the goodness-of-fit using the KS and AD tests, with 
the parameter estimates calculated using MLE. The lognormal distribution seemed to have a better goodness of fit than the 
others. Only the VaR was computed as a risk measure, this was compared with the corresponding VaR of the generalized 
extreme value distribution. Next, [7] extended on the work by [13] by fitting 13 additional distributions to the taxi claims 
data and used six different goodness-of-fit tests to find the best fit for the data. In addition, [7] analysed a dataset called 
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Danish fire loss data using the six goodness-of-fit tests and thereafter computed the risk measures of the 19 theoretical 
distributions and compared their values to the empirical risk estimates to assess the fit of the model. Overall, in this study, 
the transformed beta family offered the best fit for the taxi claims data; while for the Danish fire loss data, out of all those 
in the class of transformed beta family, the Burr distribution performs the best. 

Chikobvu and Jakata [12] fitted 4 distributions (exponential, Weibull, gamma and Burr) into the J580 (South African 
Financial Index) and studied the downside / upside of investing in it. They showed that using the AIC and BIC, the loss and 
gain returns of the J580 index can be modelled using Burr and exponential distributions, respectively. They further 
calculated the risk measures for the loss returns (using the Burr distribution only) and for the gain returns (using the 
exponential distribution only). Given that the J580 dataset’s expected losses have a higher likelihood of extreme events 
occurring as they are recommended to be modelled by the much heavier-tailed Burr distribution; however, the J580 
dataset’s expected gains have a light-tailed pattern as it is recommended to be modelled by the exponential distribution.   

Next, Shongwe et al. [10] re-assessed the results in Chikobvu and Jakata [12] where several different deductions were 
observed, namely: 

• While [12] computed the descriptive statistics for loss and gain returns combined, [10] argued that this was not a 
correct approach since the actual analysis is done separately for loss and gain returns, thus presenting a combined 
descriptive is incorrect. In addition, the combined returns presented in [12] were shown to be also incorrect and [10] 
computed the correct ones. Separately, loss and gain returns data were shown to be leptokurtic with losses having a 
heavier tail than the lighter-tailed gain returns. 

• Results for the goodness-of-fit and parameter estimates were identical in both papers. In addition to AIC and BIC that 
were computed by [12], then [10] computed four additional goodness-of-fit tests (i.e. KS, AD, CvM and NLL). Given, 
the additional goodness-of-fit information, [10] deduced that the Burr distribution seems to be ideal for loss returns; 
however, the Weibull (instead of exponential) seemed ideal for gain returns.  

• While [12] computed the VaR and ES for loss returns under the Burr distribution only and gain returns under the 
exponential distribution only, [10] computed the VaR and ES for loss and gains for all four distributions in each case. 
In [10], the Burr had the VaR and ES much closer to those of the empirical distribution under loss returns whereas the 
Weibull had the VaR and ES much closer to those of the empirical distribution under gains returns. 

1.2 Research Problem 

In recent years, researchers have diligently explored various modelling approaches to understand the intricate characteristics of 
financial data. Some studies (e.g. [10, 12]) have focused on fitting standard models to financial data, specifically the South 
African Financial Index (J580). Similarly, [7, 13] have investigated the fitting standard distributions to South African taxi 
claims and Danish fire claims datasets. The existing academic research landscape predominantly focuses on insurance data and 
publicly available financial datasets. While these datasets exhibit similar heavy-tailed features, there remains a critical gap: the 
lack of comprehensive risk assessment for other indices beyond insurance and finance. Considering the significant impact and 
importance of various indexes, it becomes imperative to extend risk calculations to these domains. By addressing this gap, 
researchers can enhance risk management strategies and provide valuable insights for decision-makers across diverse sectors.  

In our study, we shift our focus to the South African Industrial Index (J520) data comprises of all Johannesburg Stock 
Exchange (JSE)-listed companies that do not fall into the financial (banking, investment, and security) or resource (oil, gas, 
and mining) indices. These companies are categorized into the following sub-category indices: Construction and Materials 
(J235), Aerospace and Defence (J271), General Industrials (J272), Electronic and Electrical Equipment (J273), Industrial 
Engineering (J275), Commercial Vehicles and Trucks Industrial Transportation (J277), and Support Services (J279); see 
Jakata and Chikobvu [24]. The dataset can also be accessed from SA Shares, Yahoo Finance websites or in [25]. The J520 
data consist of 2 columns, i.e. sorted monthly dates (first column) and average monthly index (second column). This dataset 
has been used by other authors, i.e. [24, 26 to 29]; however, they used it in the context of extreme value theory, we intend to 
analyze it in the context of standard statistical distributions. By doing so, we contribute to the ongoing discourse on model 
selection and risk quantification, aiming to enhance decision-making processes for investors and practitioners. 

1.3 Objective of the Paper 

The main objective is to present the methodology (i.e., goodness-of-fit and risk estimation) and fit 22 different standard 
distributions that capture the intricate features of the leptokurtic, positively skewed and (to a certain degree) heavy-tailed 
returns of the J520 dataset so that we can deduce the best distribution for the losses and gains separately.  

This information will provide historical information about the index on how it tends to perform so that investors can make 
rational decisions. Note that most investors are often driven by loss aversion, a psychological phenomenon that prioritizes the 
avoidance of losses over the pursuit of gains, see [30]. Given the importance of the J520 index (since it has the highest 
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market capitalization in JSE), investors may have a very keen interest in fully understanding the loss and gain returns 
characteristics and underlying statistical distribution’s properties, including tail properties in order to understand potential 
losses. 

1.4 Research Questions 

This research work intends to provide answers to the following questions: 

• Which of the 22 standard distributions performs the best in terms of the goodness-of-fit and risk measures for the J520 
loss and gain returns? 

• What are the overall implications of the riskiness of investing in the J520 index for the considered period? 

The rest of the paper is structured as follows: In Section 2, the theoretical methodology is discussed. In Section 3, the 
empirical analysis is conducted, and the corresponding concluding remarks are done in Section 4. 

2 Methodology 
2.1 Goodness-of-fit 

The first three commonly used goodness-of-fit tests to assess the accuracy of a fitted model on a specific dataset or 
simulated data are the KS, CvM and AD. According to [1]: 

• The KS statistic computes the maximum absolute vertical differences between the empirical cumulative distribution 
function (cdf) and the theoretical cdf.  

• The CvM statistic considers the integral of the squared differences between the empirical cdf and the theoretical cdf 
rather than just considering differences between points. 

• The AD statistic places emphasis on the tails of the distribution, i.e., where  or  are small.  

Stated differently, KS statistic captures the differences between the middle of the data and the proposed model 
(recommended to assess middle part of the distribution) while the AD statistic prioritizes the tail component (recommended 
to assess tail part of the distribution). The latter test statistics are computed as follows [1]: 

 

(1) 

 

(2) 

 

(3) 

where  is the number of observations,  is the empirical cdf,  is the theoretical (fitted) cdf and  is the 
theoretical pdf. The theoretical distributions to be considered in this work are listed in Table A1 in the Appendix. 

The second set of goodness-of-fit tests are usually called information criterions, and these are the negative log-likelihood 
(NLL), Akaike information criterion (AIC) and Bayesian information criterion (BIC). Assume that  denote the 
maximized log-likelihood function of a model, then the NLL, AIC and BIC are defined as [5]: 

 

(4) 
 

(5) 
 

(6) 

respectively, where  is the number of parameters or degrees of freedom and  is the number of observations. The metrics, 
NLL, AIC, and BIC, incorporate the model parameters in their evaluations, with the AIC and BIC imposing a greater penalty 
on models characterized by increased complexity (i.e., a greater number of parameters). A desirable model fit is indicated 
by lower test scores; therefore, given identical datasets, the distribution exhibiting the lowest value for separately Equations 
(1) to (6) is deemed the most appropriate fit. 

2.2 Actuarial risk measures 

Decision-making regarding risks is very complex and risk measures are essential for actuaries, investors, and financial 
institutions to make informed decisions about investments and risk management strategies. Two main risk measures are 
considered, i.e., VaR and TVaR. Let  and  denote the cdf and inverse cdf of a continuous random variable , 
respectively. Then, the VaR of  at a 100 % security level denoted by , is the 100 % quantile of  such that  
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 (7) 

which can be thought of as the lower bound for the capital required to avoid insolvency. Next, TVaR of  at a 100 % 
security level denoted by , 

 
(8) 

which can be thought of as the expected value of total loss, given that it exceeds VaR. TVaR is also known as Expected 
Shortfall (ES), Average Value at Risk (AVaR), Conditional-Tail-Expectation (CTE), Tail Conditional Expectation (TCE), 
and Conditional Value at Risk (CVaR). The use of the term ES is popular in Europe, while CTE and TCE are more popular 
in North America (see Klugman et al. [5]). 

In this research work, the fit of the theoretical model is also assessed by comparing the empirical risk estimates to the 
theoretical risk estimates. The cdf of the empirical distribution is computed by  

 
(9) 

where # denotes the number of observations , and  is the total number of observations in the sample. This is done by 
computing the percentage deviation as follows:  

 
(10) 

 
(11) 

where the theoretical implies any of the 22 standard distributions that are in Table A1. It is important to note that: 

• Underestimating the risk measures may result in under-reserving - which may lead to insolvency, i.e., not enough 
capital to cover unexpected losses.  

• Overestimating the risk measures may result in over-reserving - which may negatively affect the profitability due to 
fewer funds available for investment purposes. 

3 Analysis 
3.1 Descriptive statistics 

Let  be the monthly J520 index for the period June 1995 to January 2018; hence, the corresponding monthly returns ( ) 
are computed by 

 
(12) 

since some of the returns are positive (i.e. denote as gains) and others are negative (i.e. denote as losses). The gains and 
losses are separately analysed in this study and for ease in analysis, each of the losses (negative returns) are redefined as 
positive by introducing absolute values thereof:  and thus are positive.  

In Table 2, the total of 271 returns consists of 160 (approximately 59%) gain returns and 111 (approximately 41%) loss 
returns. According to the boxplots in Figure 1, the 2nd quartile is closer to the 1st quartile, this suggests that the data is 
skewed to the right for both losses and gains, however, the difference in the values for the 1st quartile and 2nd quartile is 
much smaller for the losses than gains, further suggesting that the losses are more skewed to the right than the gains. The 
standard deviation (0.04605) and variance (0.00212) for losses show more variability around the mean whereas the 
standard deviation (0.03338) and variance (0.00111) for gains show less variability around the mean. The coefficient of 
variation is low for both losses and gains; thus, we do not have a greater level of dispersion around the mean. The 
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distribution of both losses and gains is positively skewed, indicating a right-skewed distribution. However, the losses 
(3.05364) exhibit a higher degree of skewness compared to the gains (0.77519). The mean-median ratio for both losses and 
gains being greater than 1 and the median-mean being less than 1, indicating that the mean is larger than the median, 
providing more evidence of positive skewness.  

Additionally, the histograms in Figure 1 visually demonstrate that the losses have heavier tails, extending up to 0.35, 
compared to the gains, which end at 0.15. Looking closely at the kurtosis, both values are positive, but it can be observed 
that the losses have a much higher kurtosis compared to gains which means that it has a higher peak than the gains, but both 
are leptokurtic, this is also visible in Figure 1, where we have the frequency of the histogram for losses being 80 and that of 
gains being 40. The higher the kurtosis the more extreme values tend to appear, the boxplot of losses in Figure 1 indicates 
this when compared to that of gains. 

Table 2: Descriptives of the losses and gains returns for J520 data 
Descriptive (Absolute) Losses Gains 

No. of observations 111 160 
Minimum 0.00006 0.00025 
1st quartile 0.01051 0.01818 
Median/2nd quartile 0.02979 0.03819 
Mean/average 0.04123 0.04446 
3rd quartile 0.05426 0.06609 
Maximum 0.32847 0.14027 
Standard deviation 0.04605 0.03338 
Variance 0.00212 0.00111 
Coefficient of variation 1.11707 0.75067 
Skewness 3.05364 0.77519 
Kurtosis 16.78625 3.00489 
Mean-median ratio 1.38396 1.16426 
Median-mean ratio 0.72257 0.85892 

 

 

 
Fig. 1: Histogram and boxplot for the loss and gain returns of the J520 data 
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Beirlant et al. [31] and Nerantzaki and Papalexiou [32] stated that researchers often visually inspect the mean excess plot 
(also termed as mean residual life plot in extreme value analysis) to determine the heaviness of the tail of the dataset. The 
mean excess function, denoted by , plotted against various threshold levels yields the mean excess 
plot [1]. Note that  is the mean of all differences between the data values and the threshold value, given that data 
values exceed the threshold, where  denotes a threshold variable. An ultimately increasing (decreasing) mean excess plot 
suggests that the underlying distribution is heavy- (light-) tailed, respectively. The mean excess plot for losses in Figure 
2(a) initially appears linear on the left tail, indicating a lighter-tailed distribution such as the exponential. However, the 
right tail section exhibits a heavier-tailed distribution, possibly corresponding to the lognormal, Weibull, or Pareto 
distributions. As for the gains in Figure 2(b), the mean excess plot depicts a decreasing trend suggesting that a distribution 
may be similar to, say, the gamma (with  1), Weibull, or uniform distribution. 

 
(a) Loss returns                                                (b) Gain returns 

Fig. 2: Mean excess plots for the losses and gains returns of the J520 data 

3.2 Goodness-of-fit for losses and gains 

3.2.1 Losses  

Table 3 present the goodness-of-fit metrics for the KS, CvM, and AD statistics, which were computed for 22 standard 
probability distributions applied to the J520 loss returns. While all test values warrant consideration, the optimal 
distribution would ideally demonstrate a strong fit across the majority or all assessments. Notably, the KS, AD, and CvM 
tests (Equations (1) to (3)) typically converge upon similar distributions since they calculate differences in values. 
Additionally, the NLL, AIC, and BIC metrics (Equations (4) to (6)) account for the model parameters, thereby offering an 
alternative perspective that assists in avoiding overfitting through the principle of parsimony. Subsequently, it is important 
to evaluate each test value while interpreting their respective strengths and limitations. 

Table 3: Goodness-of-fit metrics for the 22 standard distributions fitted on J520 loss returns 

Distributions KS CvM AD NLL AIC BIC 
Exponential 0.0574 0.0589 0.4948 -242.94 -483.89 -481.18 
Gamma 0.0768 0.0853 0.4830 -243.53 -483.07 -477.65 
Weibull 0.0789 0.0900 0.5094 -243.45 -482.9 -477.48 
Pareto 0.0762 0.0835 0.5194 -243.40 -482.78 -477.36 
Inverse Burr 0.0528 0.0275 0.1648 -245.64 -485.28 -477.15 
Beta 0.0712 0.0784 0.4753 -243.13 -482.26 -476.84 
Generalized Pareto 0.0815 0.0959 0.5199 -243.63 -481.25 -473.12 
Transformed beta 0.0424 0.0183 0.1176 -245.94 -483.87 -473.04 
Transformed gamma 0.0748 0.0809 0.4655 -243.54 -481.09 -472.96 
Burr 0.0803 0.0925 0.5213 -243.49 -480.98 -472.85 
Generalized beta 0.0748 0.0809 0.4656 -243.54 -479.08 -468.24 
Paralogistic 0.0936 0.1875 1.5192 -236.90 -469.81 -464.39 
Loglogistic 0.0992 0.2359 1.8423 -234.30 -464.61 -459.19 
Inverse paralogistic 0.1056 0.3115 2.2339 -231.99 -459.99 -454.57 
Inverse Pareto 0.1317 0.4760 3.099 -229.22 -454.43 -449.01 
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Lognormal 0.1459 0.5420 3.0207 -228.34 -452.67 -447.26 
*ITG 0.1683 0.9257 5.0337 -217.41 -428.82 -420.69 
Inverse Weibull 0.2069 1.4935 8.5801 -195.30 -386.60 -381.18 
Inverse Gamma 0.2921 3.4723 17.4223 -161.96 -319.92 -314.50 
Inverse Gaussian 0.4279 8.0978 39.4478 -155.58 -307.16 -301.74 
Uniform 0.6535 19.8999 

 

-123.60 -243.19 -237.77 
Inverse Exponential 0.5578 14.3839 87.9795 -80.49 -158.98 -156.27 

*ITG: Inverse transformed gamma.  
The grey highlighted cells denote the top 5 for that test.  
The green highlighted cells denote the worst 5 for that test. 

Firstly, from Table 3, the inverse Burr is the most consistent distribution among all the goodness-of-fit tests, having the 
second lowest (best) values in the KS (0.0528), CvM (0.0275), AD (0.1648) and NLL (-245.64) test statistics. Staying in 
the top 5 with AIC (-485.28) and BIC (-477.15) values, the inverse Burr performs the best across most metrics. Secondly, 
the transformed beta performs the best for the KS (0.0424), CvM (0.0183), AD (0.1176), NLL (-245.94) tests and second 
best for the AIC (-483.87); however, it is only seventh best by the BIC (-473.04) test statistic. Thirdly, the exponential is 
the best performing distribution in the AIC (-483.89) and BIC (-481.18) values (has more advantage on the information 
criterion as it has a single variable) but is the third best performing in KS (0.0574) and CvM (0.0589). Note that the 
exponential is not among the top 5 best performing distributions with respect to the AD (0.4948) and NLL (-242.94) test 
statistics, perhaps indicating deviation in the tail component. Finally, the transformed gamma and generalized beta both 
have similar KS, CvM, AD and NLL test values. However, the transformed gamma distribution has a stronger AIC and 
BIC values providing the better fit between the two.  

Among the middle-performing distributions for loss returns, several models demonstrate adequate, though not exceptional, 
performance across the various goodness-of-fit metrics. These distributions (e.g. gamma and Pareto), while not as robust as 
the top performers like the inverse Burr and transformed beta, still manage to capture some of the underlying dynamics of 
the loss data. For instance, the beta and Weibull distributions show moderately low KS values (0.0712 and 0.0789, 
respectively) and perform reasonably well across NLL and AIC measures. Their performance is solid but not exemplary, as 
their ability to align with the empirical data falls short when compared to the best-fitting models. The generalized beta and 
transformed gamma distributions also fit within this middle category, exhibiting satisfactory results. They register decent 
KS values and similar CvM values, indicating that they can model the data without overfitting. However, these models do 
not provide the exceptional fit needed for accurate risk assessment or predictive modeling. Overall, these distributions may 
serve as viable alternatives in contexts where the top-performing models are not suitable, but these are not the most reliable 
choices for highly accurate modeling in practical situations, perhaps by businesses. 

The inverse Weibull, inverse gamma, inverse Gaussian, uniform and inverse exponential distributions perform the worst 
with respect to most of the considered goodness-of-fit tests. 

3.2.2 Gains 

Table 4 present the goodness-of-fit metrics for the KS, CvM, and AD statistics, which were computed for 22 standard 
probability distributions applied to the J520 gain returns, see the footnote of Table 3 for the colour highlight description. 

Table 4: Goodness-of-fit metrics for the 22 standard distributions fitted on J520 gain returns 
Distribution KS CvM AD NLL AIC BIC 
Transformed gamma 0.0391 0.0285 0.2018 -347.70 -689.40 -680.17 
Inverse Burr 0.0347 0.0289 0.2020 -346.49 -686.99 -677.76 
Generalized beta 0.0391 0.0285 0.2018 -347.70 -687.40 -675.10 
Transformed beta 0.0390 0.0285 0.2017 -347.70 -687.40 -675.10 
Weibull 0.0610 0.1581 1.1543 -341.90 -679.80 -673.65 
Beta 0.0737 0.2430 1.4079 -341.07 -678.14 -671.99 
Exponential 0.1134 0.5393 2.6649 -338.09 -674.18 -671.10 
Gamma 0.0776 0.2777 1.6049 -339.91 -675.81 -669.66 
Burr 0.0610 0.1582 1.1548 -341.90 -677.79 -668.57 
Pareto 0.1134 0.5391 2.6638 -338.09 -672.18 -666.03 
Paralogistic 0.0703 0.2664 2.8234 -327.69 -651.38 -645.22 
Loglogistic 0.0957 0.3868 3.6396 -320.76 -637.51 -631.36 
Uniform 0.2977 6.6343 ∞ -314.56 -625.11 -618.96 
Inverse Paralogistic 0.1260 0.6171 4.7448 -314.17 -624.34 -618.19 
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Lognormal 0.1461 1.0081 5.8696 -312.52 -621.05 -614.90 
Inverse Pareto 0.1754 1.1335 7.2016 -304.62 -605.24 -599.10 
Inverse Weibull 0.2138 2.3205 12.9403 -267.54 -531.08 -524.93 
Generalized Pareto 0.2556 3.2321 16.2132 -260.68 -515.37 -506.14 
Inverse Gaussian 0.3491 6.6237 30.8672 -255.51 -505.02 -495.80 
Inverse Gamma 0.2785 4.0194 19.9375 -240.67 -477.33 -471.18 
Inverse exponential 0.4325 10.8015 54.1290 -202.93 -403.87 -400.80 
ITG 1.00000 53.33333 ∞ 35198.29 70402.58 70411.8 

From Table 4, the transformed gamma seems the most suitable distribution with the lowest CvM (0.0285), AD (0.2018), 
KS (0.0391), NLL (-347.7) test statistics indicating it is approximately tied (with generalized beta and transformed beta) for 
the best performing distribution. The AIC (-689.4) and BIC (-680.17) are the lowest for the transformed gamma 
distribution. The inverse Burr remains among the most competitive distributions with the second strongest values in the 
AIC (-686.99) and BIC (-677.76), due to the fewer parameters compared to the other top 5 distributions. The KS (0.0391), 
CvM (0.0289), AD (0.202) and NLL (-346.49) test statistics are slightly lower than the top 3 that have very similar values. 
The generalized beta and transformed beta have extremely similar values in all test statistics; with the CvM (0.0285), NLL 
(-347.70), AIC (-687.40) and BIC (-675.10) being the same when rounding, however differing slightly at the decimals. The 
generalized beta has slightly different worse performing KS (0.0391) and AD (0.2018) as compared to the transformed 
beta’s KS (0.0390) and AD (0.2017), ultimately being negligible with such little difference at the fourth decimal. Weibull 
shows the worst noticeable performance among the top 5 best distributions. The KS (0.061), CvM (0.1581), AD (1.1543) 
and NLL (-341.9) test statistics are fifth best performing, tied with worse performing Burr distribution. The Weibull 
outperforming Burr in the AIC (-679.8) and BIC (-673.65) test statistics, with the Burr being relatively not as good. 

In the context of gain returns, the middle-performing distributions, such as the paralogistic, Burr, beta and gamma 
distributions, demonstrate reasonable but not outstanding goodness-of-fit. With relatively low KS values, these 
distributions perform adequately enough in capturing the general shape of the gain return data. However, their higher CvM 
and AD values indicate a degree of misalignment with the empirical data. These models may be useful for preliminary 
analysis but are not the best choices for highly precise risk estimation or predictive modeling; thus, making them less ideal 
compared to top performers. Finally, the generalized Pareto, inverse Gaussian, inverse gamma, inverse exponential and 
inverse transformed gamma distributions are among the top 5 worst performing distributions with respect to most of the test 
statistics. 

3.3 Risk measures for Losses and gains 

3.3.1 Losses 

Table 5 present the VaR and TVaR metrics, which were estimated at confidence intervals of 95% (  = 0.05), 99% (  = 
0.01), and 99.5% (  = 0.005) for the J520 loss returns across 22 standard distributions. The distributions are arranged in the 
same sequence as those displayed in the corresponding goodness-of-fit in Table 3. Here, the empirical distribution is used 
as a reference ‘model’, while the deviations (shown in brackets) from the theoretical VaR and TVaR values are computed 
using Equations (10) and (11) for comparison purposes. In the context of loss returns, certain distributions stand out for 
their close approximation to empirical values, while others exhibit significant deviations. 

Table 5: Risk measures for the 22 standard distributions fitted on the J520 loss returns and the % deviation from the 
empirical distribution’s risk measure 

Distribution       
Empirical 0.1099 0.2011 0.2603 0.1831 0.2665 0.3285 
Exponential 0.1235 (12.4%) 0.1899 (-5.6%) 0.2184 (-16.1%) 0.1647 (-10.1%) 0.2311 (-13.3%) 0.2596 (-21.0%) 
Gamma 0.1291 (17.5%) 0.2023 (0.6%) 0.2340 (-10.1%) 0.1746 (-4.6%) 0.2481 (-6.9%) 0.2798 (-14.8%) 
Weibull 0.1298 (18.1%) 0.2061 (2.5%) 0.2397 (-7.9%) 0.1774 (-3.1%) 0.2549 (-4.4%) 0.2889 (-12.1%) 
Pareto 0.1281 (16.6%) 0.2102 (4.5%) 0.2489 (-4.4%) 0.1800 (-1.7%) 0.2690 (0.9%) 0.3109 (-5.4%) 
Inverse Burr 0.1164 (5.9%) 0.2058 (2.3%) 0.2602 (-0.04%) 0.1790 (-2.2%) 0.3098 (16.2%) 0.3907 (18.9%) 
Beta 0.1287 (17.1%) 0.1951 (-3%) 0.2223 (-14.6%) 0.1696 (-7.4%) 0.2333 (-12.5%) 0.2594 (-21%) 
Generalized Pareto 0.1301 (18.4%) 0.2100 (4.4%) 0.2462 (-5.4%) 0.1802 (-1.6%) 0.2638 (-1%) 0.3017 (-8.2%) 
Transformed beta 0.1163 (5.8%) 0.2322 (15.5%) 0.3125 (20.1%) 0.2038 (11.3%) 0.4064 (52.5%) 0.5470 (66.5%) 
Transformed gamma 0.1285 (16.9%) 0.2000 (-0.5%) 0.2308 (-11.3%) 0.1729 (-5.6%) 0.2444 (-8.3%) 0.2750 (-16.3%) 
Burr 0.1299 (18.2%) 0.2102 (4.5%) 0.2467 (-5.4%) 0.1802 (-1.6%) 0.2645 (-0.8%) 0.3027 (-7.9%) 
Generalized beta 0.1285 (16.9%) 0.2000 (-0.5%) 0.2307 (-11.4%) 0.1729 (-5.6%) 0.2442 (-8.4%) 0.2749 (-16.3%) 
Paralogistic 0.1792 (63.1%) 0.4857 (141.5%) 0.7346 (182.2%) 0.4536 (147.7%) 1.1826 (343.8%) 1.7775 (441.1%) 
Loglogistic 0.2356 (114.4%) 0.8236 (309.6%) 1.3985 (437.3%) 1.0058 (449.3%) 3.428 (1186.6%) 5.804 (1666.8%) 
Inverse Paralogistic 0.3042 (176.8%) 1.2695 (531.3%) 2.3248 (793.1%) 2.371 (1195.3%) 9.609 (3505.6%) 17.53 (5237.3%) 
Inverse Pareto 0.4463 (306.1%) 2.3190 (1053.6%) 4.661 (1690.9%) ∞ ∞ ∞ 
Lognormal 0.2333 (112.3%) 0.6297 (213.1%) 0.9058 (248%) 0.5224 (185.3%) 1.1808 (343.1%) 1.6161 (392%) 
*ITG 0.3888 (253%) 1.6768 (733.8%) 2.965 (1039.1%) 1.8733 (923.1%) 6.399 (2301.4%) 10.60 (3129.1%) 
Inverse Weibull 3.315 (2916%) 82.881 (41114%) 327.43(125692%) Divergent Divergent Divergent 
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Inverse Gamma 13.11 (11838%) 1989.3 (989094%) 17294 (7×106%) Divergent Divergent Divergent 
Inverse Gaussian 0.1749 (59.1%) 0.6960 (246.1%) 1.0501 (303.4%) 0.5237(186%) 1.2835 (381.6%) 1.7229 (424.5%) 
Uniform 0.3121 (184%) 0.3252 (61.7%) 0.3268 (25.5%) 0.3203 (74.9%) 0.3268 (22.6%) 0.3277 (-0.2%) 
Inverse exponential 0.0499 (-54.6%) 0.2548 (26.7%) 0.5109 (-42%) ∞ ∞ ∞ 

*ITG: Inverse transformed gamma  
The grey highlighted cells denote the top best for that risk measure.  
The green highlighted cells denote the worst ones for that risk measure (due to at least one of the measures at 1-  level being greater or equal to 1). 

To illustrate how to explain VaR and TVaR values simultaneously at a specific (1- )×100% level, then from Table 5, 
consider the Pareto distribution at a 95% confidence level with VaR = 0.1281 and TVaR = 0.1800: This means that the loss 
returns are not expected to go beyond 12.81% at a 95% confidence level which is 16.6% higher than the empirical 
distribution one. However, if it goes beyond 12.81%, it will average 18.00% at a 95% confidence level which is 1.7% lower 
than the empirical distribution. The Pareto distribution performs well across all quantiles, but it contains slight 
underestimations in the extreme tail.  

Similarly, the inverse Burr tends to have a good performance for the risk measures, with the distribution fitted well for 
VaR, it usually tends to overestimate tail risks in TVaR. Next, the Weibull distribution seems to be adequate in fitting VaR 
but less optimal at the extreme tail in the estimation of TVaR. While the Burr distribution fits well in VaR, with a slight 
underestimation of extreme tail risks in TVaR, the generalized Pareto distribution fits well for both VaR and TVaR, but 
slightly underestimates the tail risks at the extreme tail positions. These latter distributions, including the paralogistic and 
exponential distributions show similar trends, with moderate deviations in VaR and TVaR values, indicating good overall 
performance (capturing middle quantiles) but underestimates extreme tails risks.  

In particular, the grey shaded risk measures denote those whose values are not too far from the empirical distribution and 
the unshaded ones being comparatively acceptable too. However, the green shaded ones denote those that have irrationally 
high value(s) of VaR and TVaR for at least one of the risks at different significance levels. This is because at least one of 
the VaR or TVaR is greater or equal to 1; thus, must be ignored as it is both impractical and impossible to keep more than a 
100% of cash on reserves. Stated differently, maintaining reserves exceeding 100% of cash is both impractical and 
impossible; therefore, any VaR or TVaR greater than 1 (or approaching infinity / divergent) must be disregarded. 

3.3.2 Gains 

Table 6 presents the VaR and TVaR metrics for the J520 loss returns across 22 standard distributions which are arranged in 
the same sequence as those displayed in the corresponding goodness-of-fit in Table 4. Using the same analogue as in Table 
5, it follows that the grey shaded risk measures (i.e., transformed gamma, inverse Burr, generalized beta, transformed beta, 
as well as in part the Weibull and Burr) denote those whose values are not too far from the empirical distribution and the 
unshaded ones (i.e., beta, exponential, gamma and Pareto) being comparatively acceptable too. However, the green shaded 
ones denote those that have irrationally high value(s) of VaR and TVaR for at least one of the risks at different significance 
levels. 

 

Table 6: Risk measures for the 22 standard distributions fitted on the J520 gains returns and the % deviation from the 
empirical distribution’s risk measure 

Distribution       
Empirical 0.1098 0.1368 0.1387 0.1249 0.1393 0.1403 
Transformed gamma 0.1074 (-2.2%) 0.1348 (-1.5%) 0.1445 (4.2%) 0.1242 (-0.6%) 0.1477 (6%) 0.1562 (11.3%) 
Inverse Burr 0.1067 (-2.8%) 0.1461 (6.8%) 0.1657 (19.5%) 0.1323 (5.9%) 0.1781 (27.9%) 0.2017 (43.8%) 
Generalized beta 0.1074 (-2.2%) 0.1348 (-1.5%) 0.1444 (4.1%) 0.1241 (-0.6%) 0.1477 (6%) 0.1562 (11.3%) 
Transformed beta 0.1074 (-2.2%) 0.1348 (-1.5%) 0.1445 (4.2%) 0.1242 (-0.6%) 0.1477 (6%) 0.1563 (11.4%) 
Weibull 0.1168 (6.4%) 0.1669 (22%) 0.1875 (35.2%) 0.1478 (18.3%) 0.1960 (40.7%) 0.2160 (54%) 
Beta 0.1220 (11.1%) 0.1772 (29.5%) 0.1997 (44%) 0.1560 (24.9%) 0.2088 (49.9%) 0.2304 (64.2%) 
Exponential 0.1332 (21.3%) 0.2048 (49.7%) 0.2356 (69.9%) 0.1777 (42.3%) 0.2492 (78.9%) 0.2800 (99.6%) 
Gamma 0.1245 (13.4%) 0.1859 (35.9%) 0.2122 (53%) 0.1626 (30.2%) 0.2237 (60.6%) 0.2498 (78%) 
Burr 0.1168 (6.4%) 0.1669 (22.0%) 0.1875 (35.2%) 0.1478 (18.3%) 0.1960 (40.7%) 0.2160 (54%) 
Pareto 0.1332 (21.3%) 0.2048 (49.7%) 0.2356 (69.9%) 0.1777 (42.3%) 0.2492 (78.9%) 0.2801 (99.6%) 
Paralogistic 0.1571 (43.1%) 0.3311 (142%) 0.4491 (223.8%) 0.2870 (129.8%) 0.5830 (318.5%) 0.7855(459.9%) 
Loglogistic 0.2170 (97.6%) 0.6207 (353.7%) 0.9682 (598.1%) 0.6119 (389.9%) 1.7168 (1132.4%) 2.6715(1804%) 
Uniform 0.1333 (21.4%) 0.1389 (1.5%) 0.1396 (0.6%) 0.1368 (9.5%) 0.1396 (0.2%) 0.1399 (-0.3%) 
Inverse Paralogistic 0.3018 (174.9%) 1.0905 (697.1%) 1.8796 (1255.2%) 1.4152 (1033.1%) 4.9943 (3485%) 8.5835 (6018%) 
Lognormal 0.2106 (91.8%) 0.4861 (255.3%) 0.6603 (376.1%) 0.4018 (221.7%) 0.8074 (479.6%) 1.0548 (651.8%) 
Inverse Pareto 0.5461 (397.4%) 2.8274 (1966.8%) 5.6790 (3994.4%) ∞ ∞ ∞ 
Inverse Weibull 1.702 (1450.2%) 23.6829 (17212%) 72.8547 (52426%) Divergent Divergent Divergent 
Generalized Pareto 1.0363 (843.8%) 14.6131 (10582%) 45.6117 (32785%) Divergent Divergent Divergent 
Inverse Gaussian 0.1893 (72.4%) 0.4828 (252.9%) 0.6451 (365.1%) 0.3775 (202.2%) 0.7363 (428.6%) 0.9194 (555.3%) 
Inverse gamma 2.197 (1901.1%) 59.7619 (43585%) 247.777 (178542%) Divergent Divergent Divergent 
Inverse exponential 0.1472 (34.1%) 0.7512 (449.1%) 1.5061 (985.9%) ∞ ∞ ∞ 
ITG 68.5003 (62286%) 124.988 (91285%) 157.8033 (113673%) 106.7109 (85337%) 183.2893(131479%) 227.5574 (162093%) 
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3.4 Discussion 

To mathematically evaluate the performances, we gave each distribution a rank, ordered from first (for best performance) to 
twenty second (for worst performance). The average ranking was calculated by averaging each distribution ranking across all 
tests; thus, it provided a general sense of how well the model performed across different tests. For the loss returns the inverse Burr 
and transformed beta ranked best for goodness-of-fit metrics, with the inverse Burr ranking comfortably better when risk metrics 
were considered. The Pareto and gamma distributions were ranked among the top 5 distributions, due to top performance in the 
risk metrics. The gain returns have three top performing distributions, namely transformed gamma, generalized beta and 
transformed beta, with very little difference in ranking total. For the less extreme gain returns, transformed gamma, generalized 
beta and transformed beta provided estimations very close to the empirical data, with the fewer parameters, transformed gamma, 
being ultimately preferred, due to the principle of parsimony. 

It is important that we analyze the descriptive statistics for losses and gains separately. These statistics indicate whether 
gains or losses have been more prevalent during the index's lifetime, specifically examining the outliers and extreme values 
identified by the leptokurtic and skewness measures. Our findings indicate that losses tend to exhibit more extreme values 
and outliers, suggesting that the index is more likely to experience decreasing values on a month-to-month basis.  

Both distributions, the inverse Burr and transformed gamma which proved to be the best fits for loss and gain returns, 
respectively, have remarkable tail properties, thus carrying important information about the risk profile of the J520 index. 
The heavy-tailed nature of inverse Burr distribution of loss returns signals a high probability of extreme losses, hence a risk 
profile characterized by substantial downside potential. This means that an investment in the J520 index is more exposed to 
sudden market downturns, which can be further adversely impacted by economic shocks or liquidity constraints. 
Additionally, this tendency towards extreme decreases in index prices implies that investors face a higher probability of 
incurring losses, including substantial losses, rather than making profits.  

Heavy-tailed distributions may be considered as rooted in some fundamental market risk drivers, such as volatility in 
macroeconomic conditions, fluctuations in demand within various industries, and sector-specific risks related to the wide 
varieties of industries represented in the J520 index (see the sub-category indices in Section 1.1). We present results on the 
tail properties that remarkably capture these events of extreme loss and underline the necessity for investors, especially 
long position holders, to exercise increased caution. The tail properties here reflect a market environment in which 
systematic risks and large-scale drawdowns are more likely to occur; portfolio managers may benefit from strategies that 
mitigate extreme downside risk. 

Heavy-tailed distributions indicate a higher probability of extreme losses and investors can use the best-fitting distribution 
to model downside risk more accurately. VaR can be calculated based on these distributions and can provide investors with 
insights into the maximum potential losses at specified confidence levels. This can guide the sizing of short positions to 
ensure they stay within risk tolerance. The insights on the tail properties of the inverse Burr distribution can be used to 
construct a risk management strategy for investors through tighter stop-loss thresholds and more frequent portfolio 
rebalancing to hedge against such extreme downside risks. For instance, using the heavier-tailed inverse Burr distribution 
when informing hedge ratios allows for a better accounting of potential losses and therefore improvement in risk coverage. 
The same properties also suggest caution in holding long positions in the J520 index, advocating instead for strategic 
shorting or hedging. By using known distributions and seeking the closest fitting distribution, traders could try and predict 
future prices by continuing the modeled distribution. Deviations from the model could be early warning indications when to 
exit or reverse the current position being held. 

Heavy-tailed distributions are sensitive to outliers and possible market anomalies, and while they are useful for capturing 
extreme losses, these unusual data points can sometimes lead to overestimations of risk. Acknowledging this limitation 
would provide a balanced view and could prompt future researchers to explore techniques for outlier mitigation, such as 
robust statistical methods or volatility filtering.  

New research might be devoted to composite and mixture models (models that combine two or more distributions). This 
might allow a much more subtle investigation of J520, possibly yielding enhanced risk management strategies directed at 
the various return distribution segments of the index. These models can capture both the usual and extreme markets’ 
stochastic periodicity better than single distributions. The losses, as evaluated through the mean excess plot (see Figure 2), 
exhibit characteristics indicative of multiple distributions, thus the composite and mixture models may be better suited for 
this data pattern. From Figure 2, it follows that the smaller losses demonstrate less complexity and greater linearity, thereby 
allowing for easier predictability in their occurrence within the index (investors can anticipate these small losses with 
relative ease). However, the larger losses display more complex characteristics, making them more challenging for 
investors to predict. Consequently, more sophisticated models, such as composite or mixture models, should be explored to 
provide more insights into the index characteristics. 
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4 Conclusion 

Our study adds to the growing field of financial index and extreme value analysis, providing insight into an index with the 
highest market capitalization on the JSE for South African listed companies. While [6, 7, 10, 12, and 13] fitted 3, 19, 4, 4, 
and 6 standard distributions to different datasets, respectively, in this study, a model fitting analysis is conducted to a larger 
class of 22 standard distributions that were separately fitted to loss and gain returns. Some of these distributions (especially 
the flexible 3 or 4 parameters; not the less flexible 1 or 2 parameters) were observed to be able to capture the tail / extreme 
occurrences of the index over the long-term, to provide valuable insight investors could use. We considered the large 
number of extreme losses occurrences and concluded too short stock over the long-term would be the most profitable 
course of action. The large class of distributions provided more insight into the flexible nature of the empirical and 
financial data since we noticed that 3- to 4-parameter distributions tend to model the data closely, given the flexible nature. 
Lesser parameter distributions tend to underestimate the complex nature of the heavy-tailed losses. Overall, for loss returns, 
the inverse Burr distribution provided the best estimation of expected losses (goodness-of-fit), reserve cash required (risk 
measures), and managed to account for the extremes of the J520 loss returns. However, for gain returns, the transformed gamma 
distribution, with 3 parameters, outperforms the competitors (as it has fewer parameters than the other two similarly performing 
competitors which have 4 parameters), thus preferred due to principle of parsimony. 

For future research, mixed and composite models could fit the J520 by fitting different head and tail components as the 
mean-excess plot for losses seem to suggest two separate distributions may be ideal rather than a single one in the whole 
interval. Also, given that [6] only fitted 3 standard distributions to the BTC/USD and ZAR/USD returns, this work can be 
extended to fit the 22 distributions discussed here for a thorough characterization of the returns data. The flexibility of 
standard distributions could also be adjusted by way of Z-family [16], Arcsine-family [17] or Arctan-family [14] of 
distributions to name a few. This could provide a better fit to the complex nature of loss/gain returns. 

Appendix 
In this section, we provide additional information that was omitted in the main portions of the paper. Firstly, the basic 
properties of the 22 considered distributions and indications of which article discuss them are provided in Table A1 (given 
on the last page before References). It is observed that most of the articles seem to prefer to fit the Burr and Weibull 
distributions; however, the uniform and generalized beta were not fitted by any of the studies in the literature review. 

Secondly, in Tables A2 and A3, the parameter estimates using the maximum likelihood estimation are presented for the 22 
standard distributions for the loss and gain returns. The parameter estimates that are highlighted are not significant since the 
corresponding standard error(s) are greater than the parameters themselves. Certain values are denoted as NA (not any), 
these occur when the variance-covariance matrix is divergent or tends to occur when using the Maximum Likelihood 
Estimation method. To understand whether the parameter is for the location, shape or scale, see Table A1 for that 
information. 

Finally, to illustrate the importance of understanding the key difference between light- to heavy-tailed distributions as well 
as which of these is more flexible, consider the sensitivity analysis presented in Figures A1 to A4. The exponential 
distribution in Figure A1 is more rigid and less flexible since it has a single parameter. That is, the larger the scale 
parameter ( ), the relatively heavier-tailed the distribution becomes.  

 
Fig A1: Sensitivity analysis of the one-parameter exponential distribution 
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Fig A2: Sensitivity analysis of the two-parameter gamma distribution 

Considering the gamma distribution which has an additional parameter to the exponential distribution, this means flexibility 
is increased, see Figure A2. With a fixed scale parameter ( ), the larger the shape parameter ( ), the heavier the tail 
becomes; however, if the shape parameter is fixed, then the heavier the tail is when the scale parameter is increased.  

The three-parameter inverse Burr provides more flexibility as it gains an increase in strength in modelling different kinds of 
data patterns. For a fixed shape parameter ( ) and scale parameter ( ), the larger the shape parameter (𝜏), the heavier the 
tail. Secondly, for a fixed 𝜏 and scale parameter, the smaller the , the heavier the tail. Thirdly, for a fixed  and , the 
larger the scale parameter, the heavier the tail.  

 
Fig A3: Sensitivity analysis of the three-parameter Inverse Burr distribution 
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Fig A4: Sensitivity analysis of the four-parameter transformed beta distribution 

In Figure A4, the four-parameter transformed beta has the largest flexibility enabling it to model complex structures in data. 
For a fixed ,  and scale ( ), the smaller the , the heavier the tail. Secondly, for a fixed , 𝜏 and scale, the smaller 𝛾, the 
heavier the tail is. Thirdly, for a fixed ,  and scale, the larger the 𝜏, the heavier the tail. Lastly, for a fixed ,  and , the 
larger the scale, the heavier the tail. 

Table A1: Outline of the twenty-two distributions’ properties and the summary of some of the articles that have fitted these 
distributions 

                                                                                                   Article number from Table 1 using the first column numbering 
Distribution PDF Parameters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Burr 
 

Shape = 
, scale 

=  
P P P P P  P P P P P P P P P P 

Exponential 
 

Scale =  P P P  P  P P     P   P 

Gamma 
 

Shape = , 
scale =   P P  P P P P     P P  P 

Generalized 
Pareto 

 

Shape =  
& , scale = 
 

 P P          P  P P 

Inverse Burr 
 

Shape = 
, scale 

=  
 P P          P P P P 

Inverse 
Exponential  

Scale =   P P          P   P 

Inverse Gamma 
 

Shape = , 
scale =   P P          P   P 

Inverse Gaussian 
 

Location = 
, scale =   P    P       P P   

Inverse 
Paralogistic 

 

Shape = , 
scale =   P P          P  P P 

Inverse Pareto 
 

Shape = , 
scale =   P P          P  P P 

Inverse 
Transformed 
Gamma  

Shape = 
scale 

=  
 P P             P 
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Inverse Weibull 
 

Shape = , 
scale =   P P          P    

Loglogistic 
 

Shape = 
scale =   P P P         P  P P 

Lognormal 
 

Location = 
, scale =   P    P  P     P P  P 

Paralogistic 
 

Shape = , 
scale =   P P P         P  P P 

Pareto 
 

Shape = 
scale =   P P     P     P  P  

Transformed 
Beta  

Shape = 
scale 

=  
 P P             P 

Transformed 
Gamma 

 

Shape = 
scale 

=  
 P P             P 

Weibull 
 

Shape = , 
scale =  P P P  P  P  P P P P P P P P 

Generalized Beta 
 

Shape = 
, 

scale =  
                

Beta 
 

Shape = 
, scale 

=  
   P     P  P P     

Uniform 
 

Location = 
, scale = b                 

Other - -      P   P P P P  P  P 

Table A2: The parameter estimates using MLE for each of the 22 fitted distributions for the J520 loss returns 
  Parameter 1 Parameter 2 Parameter 3 Parameter 4 

Distribution 

   
   

N
o.

 o
f  

 
 p

ar
am

et
er

s 

Estimate Std 
error Estimate Std 

error Estimate Std 
error Estimate Std 

error 

Burr 3  0.7592 3.3145 =28.6937 108.20 =0.9525 0.1085 - - 

Exponential 1 24.2566 2.3023 - - - - - - 

Gamma 2 0.0467 0.0072 =0.8827 0.1030 - - - - 
Generalized 
Pareto 3  0.9765 2.5175 =23.6119 56.85 =0.9099 0.1252 - - 

Inverse Burr 3 14.0646 2.1026 =0.2505 0.0662 =3.0070 0.5838 - - 
Inverse 
exponential 1 0.0026 0.0002 - - - - - - 

Inverse gamma 2 1236.48 246.31 =0.3205 0.0342 - - - - 

Inverse Gaussian 2 0.0027 0.0003 =0.0412 0.0152 - - - - 
Inverse 
paralogistic 2 47.9124 6.9027 =1.1535 0.0643 - - - - 

Inverse Pareto 2 0.0208 0.0056 =1.1286 0.1947 - - - - 
ITG 3 128.57 93.683 =7.5440 0.8401 =0.2237 0.0110 - - 
Inverse Weibull 2 0.0094 0.0018 =0.5063 0.0301 - - - - 

Loglogistic 2 39.5878 4.8959 =1.3187 0.1061 - - - - 

Lognormal 2 1.4573 0.0978 =-3.8526 0.1383 - - - - 

Paralogistic 2 29.4934 3.9062 =1.3096 0.0842 - - - - 

Pareto 2 0.4915 0.6241 =12.9314 15.29 - - - - 
Transformed beta 4 0.0581 0.0126 =0.4141 0.4805 =5.6328 5.3869 =0.1290 0.1294 
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Transformed 
gamma 3 20.2058 9.18586 =0.8410 0.3231 =1.0327 0.2516 - - 

Weibull 2 0.0399 0.00427 =0.9299 0.0686 - - - - 
Generalized beta  4 57.8142 NA =0.8423 N/A =1460.10 N/A =1.0314 NA 
Beta 3 - - =0.8493 0.0989 =19.6541 3.0081 - - 
Uniform 2 0.0001 NA =0.3285 N/A - - - - 

Table A3: The parameter estimates using MLE for each of the 22 fitted distributions for the J520 gain returns 
  Parameter 1 Parameter 2 Parameter 3 Parameter 4 

Distribution 
N

o.
 o

f  
pa

ra
m

et
er

s  
Estimate Std 

error Estimate Std 
error Estimate Std 

error Estimate Std 
error 

Burr 3 96.1784 52.1537 =9756.96 3234.38 =1.2049 0.0771 - - 

Exponential 1 22.4897 1.7780 - - - - - - 

Gamma 2 27.3520 3.3679 =1.2160 0.1217 - - - - 

Generalized Pareto 3  245212.8 9021.96 =5977315 2529.29 =1.1284 0.0723 - - 

Inverse Burr 3 10.8994 0.9924 =0.1443 0.0421 =5.6538 1.3393 - - 
Inverse 
Exponential 1 0.0076 0.0006 - - - - - - 

Inverse Gamma 2 272.221 39.8334 =0.4874 0.0449 - - - - 

Inverse Gaussian 2 109.991 12.2980 =0.0445 0.0078 - - - - 
Inverse 
Paralogistic 2 40.1947 4.1513 =1.2814 0.0597 - - - - 

Inverse Pareto 2 0.0198 0.0046 =1.4418 0.2271 - - - - 
ITG 3 1726.03 NA =9.0696 0.2347 =0.4826 0.0003 - - 

Inverse Weibull 2 71.2308 9.7030 =0.6191 0.0316 - - - - 

Loglogistic 2 30.0447 2.5918 =1.5705 0.1059 - - - - 

Lognormal 2 1.2277 0.0686 =-3.5774 0.0971 - - - - 

Paralogistic 2 20.3749 1.7912 =1.5397 0.0853 - - - - 

Pareto 2 17080409 NA =384106952 2652.71 - - - - 
Transformed beta 4 1.0724 NA =1088.42 NA =2.9101 NA =0.2906 NA 
Transformed 
gamma 3 10.3083 1.1654 =0.2908 0.0988 =2.9073 0.7692 - - 

Weibull 2 0.0470 0.0032 =1.2059 0.0785 - - - - 
Generalized beta  4 2.2208 1.1857 =0.2907 0.0974 =9000.94 NA =2.9083 0.7578 
Beta 3 - - =1.1862 0.1185 =25.6398 3.1306 - - 
Uniform 2 0.0003 NA =0.1403 NA - - - - 

Data Availability Statement: All the data are publicly available on the following links: 

https://figshare.com/articles/dataset/Modelling_Extremes_of_the_Johannesburg_Stock_Exchange_Industrial_Index_J520_
using_the_Generalised_Pareto_Distribution_/6935810/1 
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