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Abstract: We present a probabilistic interpretation of the L-fractional integration. This integral is the inverse of the known L-fractional

derivative. We prove that the fractional integral can be expressed as an expected value of a random variable, which describes dilation

or scaling and is related to the beta distribution. The proposed explanation gives the possibility of a generalization of non-integer-order

integration and differentiation, by using continuous probability densities. In fact, the general Prabhakar integral operator can be given

a probabilistic interpretation as well, in terms of an average, and thus obtain the Riemann-Liouville and L integrals as particular cases.
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1 Introduction

Fractional calculus is a relevant area of research and applications. See, for example, the classical monograph [1] or [2,3,
4]. To cite just an example, the classical fractional Riemann-Liouville operator was considered by Hardy and Littlewood
[5] or Riesz [6].

The L-fractional derivative of an absolutely continuous function x : [0,T ]→R, x ∈ AC[0,T ], is [7,8]

LDα x(t) =
CDα x(t)

CDαt
, (1)

where t ∈ [0,T ] is the time, α ∈ (0,1) is the fractional order of differentiation, and

CDα x(t) =
1

Γ (1−α)

∫ t

0

x′(τ)

(t − τ)α
dτ (2)

is the Caputo fractional derivative of x with first-order derivative x′, being Γ the gamma function. For a motivation of
L-fractional models, we refer the reader to [9].

We will give an explicit definition of the L-fractional integral as an inverse of the L-fractional derivative. We will show
that the L-fractional integral can be interpreted as an expected value of a random variable, related to scaling and having
a beta distribution. We will present extensions concerning the Prabhakar fractional integral as well [10,11], that include
existing fractional operators. Thus, our work provides a relation between fractional integral operators and probability
theory. Essentially, we will see that, in general, a fractional integral is related to an expectation with respect to a random
variable Ξ of density ρ(ξ ), i.e., Ξ ∼ ρ(ξ )dξ , having support in (0,1).
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2 L-fractional integral

Let α ∈ (0,1), T > 0, and x∈ L1(0,T ) (i.e., Lebesgue integrable). We recall that the classical Riemann-Liouville fractional
integral is defined as

Iα x(t) =
1

Γ (α)

∫ t

0
(t − s)α−1x(s)ds. (3)

The operator Iα : L1(0,T ) → L1(0,T ) is linear and bounded with norm ‖Iα‖ ≤ T α/Γ (α + 1). Moreover, it is injective
and therefore it has a left inverse. For the Caputo fractional derivative (??), defined for x ∈ AC[0,T ], we know that

[Iα ◦CDα ]x(t) = x(t)+ c, c =−x(0),

for all t ∈ [0,T ]. Also, if x ∈ AC[0,T ], then Iα x ∈ AC[0,T ] (see property (6) of Proposition 3.2 in [12]) and

[CDα ◦ Iα ]x(t) = x(t),

for almost every t ∈ [0,T ]. This means that CDα is a left inverse of Iα , or, in other words, Iα is a right inverse of CDα .
In general, a fractional integral is of the form Iα x(t) = 1

Γ (α)

∫ t
0 k(t,s)x(s)ds, with k the kernel of the integral operator.

Different kernels give different fractional integrals.
We now consider the L-fractional integral case of order α ∈ (0,1), as a right inverse of LDα . It should be true that

[LDα ◦ LIα ]x(t) = x(t).

To define LIα , set LIα x = y, or LDα y(t) = x(t). Then,

CDα y(t) =
t1−α

Γ (2−α)
x(t) := x̂(t).

Therefore,
Iα ◦CDα y(t) = Iα x̂(t),

or

y(t) = y(0)+
1

Γ (α)

∫ t

0

(t − s)α−1

Γ (2−α)
s1−α x(s)ds.

This gives us the definition of the L-fractional integral,

LIα x(t) =
1

Γ (α)

∫ t

0

(t − s)α−1

Γ (2−α)
s1−α x(s)ds. (4)

The kernel is identified as

LIα x(t) =
1

Γ (α)

∫ t

0
kL(t,s)x(s)ds, kL(t,s) =

(t − s)α−1

Γ (2−α)
s1−α .

This expression defines a linear and bounded operator from L1(0,T ) into itself. The kernel of the L-fractional integral has
some properties of a density function [13], as will be seen. Observe that

[LIα ◦ LDα ]x(t) = Iα

(

t1−α

Γ (2−α)
· LDα x(t)

)

= [Iα ◦CDα ]x(t) = x(t)+ c.

For (??), notice that

CDα tβ =
Γ (β + 1)

Γ (β −α + 1)
tβ−α ,

for β > 0. In particular, CDα t = t1−α/Γ (2−α), hence the L-fractional derivative (1) can be rewritten as

LDα x(t) =
Γ (2−α)

t1−α
CDα x(t).

For power β = 0, CDα 1 = 0, so that LDα 1 = 0. That is, the fractional derivative of any constant is zero. This property is
very important when dealing with initial states and power series [9]. On the other hand, LDα t = 1 and, for a smooth x,
LDα x(0) = x′(0) ∈ (−∞,∞). The units of LDα x(t) are time−1, in contrast to time−α .

A related fractional calculus, of better use in differential geometry and topology, is the Λ -fractional calculus [14]. It is
based on normalizing the Riemann-Liouville derivative, but it will not be treated in this contribution. On the other hand,
the normalization of other fractional operators has been investigated in the literature, see [15,16].
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3 Probabilistic interpretation of the L-fractional integral

Making the change ξ = s/t in (4), one has

LIα x(t) =
t

Γ (α)Γ (2−α)

∫ 1

0
tα−1(1− ξ )α−1ξ 1−αt1−αx(ξ t)dξ =

t

Γ (α)Γ (2−α)

∫ 1

0
(1− ξ )α−1ξ 1−αx(ξ t)dξ .

Introducing the dilation operator

[Sξ x](t) = x(ξ t)

and the function

Θ(ξ ) =
(1− ξ )α−1ξ 1−α

Γ (α)Γ (2−α)
,

we can write

LIα x(t) =
t

Γ (α)Γ (2−α)

∫ 1

0
(1− ξ )α−1ξ 1−α [Sξ x](t)dξ = t

∫ 1

0
Θ(ξ )[Sξ x](t)dξ .

We note that
∫ 1

0
Θ(ξ )dξ = 1

and, in fact,

Θ(ξ )dξ ∼ B(2−α,α).

From these expressions, the operator LIα in (4) can be interpreted as an expected value of a random variable ξ ∈ (0,1)
related to the scaling and having a beta distribution:

LIα x(t) = tE[x(ξ t)]. (5)

When α → 1−, the distribution is uniform on [0,1] and the standard integral is obtained.

4 Prabhakar fractional integral and probabilistic interpretation

We recall some notations in order to define the Prabhakar fractional integral.

The three-parameter Mittag–Leffler function, introduced by Prabhakar in 1971 [10], is defined by

E
γ
α ,β (z) =

∞

∑
n=0

(γ)n

Γ (nα +β )
·

zn

n!
,

where (γ)n =
Γ (γ+n)

Γ (γ) is the Pochhammer symbol and α,β ,γ,z ∈C with Re(α)> 0. Notice that the classical two-parameter

Mittag-Leffler function is retrieved for γ = 1, as well as the classical exponential function ez for α = β = γ = 1. For
Re(α)> 0 and Re(β )> 0, the Prabhakar kernel is

e
γ
α ,β

(ω ;t) = tβ−1E
γ
α ,β

(ωtα) =
∞

∑
n=0

(γ)n

Γ (nα +β )
·

ωntαn+β−1

n!
. (6)

We have the following values:

E0
α ,β (z) = 1/Γ (β ), e1

1,1(ω ;t) = eωt , e0
α ,β (ω ;t) = e

γ
α ,β

(0;t) = tβ−1/Γ (β ). (7)

For x ∈ L1(0,T ), the Prabhakar fractional integral is defined as [10,11]:

P
γ
α ,β ,ωx(t) =

∫ t

0
e

γ
α ,β (ω ;t − s)x(s)ds, (8)

for t ∈ [0,T ]. It is a linear and bounded operator from L1(0,T ) into L1(0,T ).
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If x ∈ L1(0,T ) is such that the convolution x∗ e
−γ
α ,1−β (ω ; ·) ∈ AC[0,T ], then the Prabhakar fractional derivative in the

Riemann-Liouville sense is defined by

D
γ
α ,β ,ωx(t) =

d

dt
P
−γ
α ,1−β ,ωx(t).

If x ∈ AC[0,T ], the Prabhakar derivative in the sense of Liouville-Caputo is defined as

C
D

γ
α ,β ,ω

x(t) = P
−γ
α ,1−β ,ω

x′(t).

By (7), we note that

P
0
α ,α ,1x(t) =

∫ t

0
e0

α ,α(ω , t − s)x(s)ds =
1

Γ (α)

∫ t

0
(t − s)α−1x(s)ds = Iα x(t), (9)

and also,

P
γ
α ,α ,0x(t) =

∫ t

0
e

γ
α ,α(0, t − s)x(s)ds =

1

Γ (α)

∫ t

0
(t − s)α−1x(s)ds = Iα x(t).

In both cases, the classical Riemann-Liouville integral (3) of order α > 0 is a particular case of the Prabhakar operator (8).
This Prabhakar operator also includes the L-fractional integral (4), with α ∈ (0,1). Indeed, we note that

LIα x(t) =
1

Γ (2−α)
P

γ
α ,α ,0[t

1−αx(t)]

or
LIα x(t) =

1

Γ (2−α)
P

0
α ,α ,1[t

1−αx(t)],

revealing the generality of the Prabhakar definition.
For s ∈ [0, t], let ξ = s/t, so that

P
γ
α ,β ,ωx(t) =

∫ 1

0
e

γ
α ,β (ω ;t(1− ξ ))x(tξ )tdξ = tβ

∫ 1

0
(1− ξ )β−1E

γ
α ,β (ωtα(1− ξ )α)x(tξ )dξ .

Now, with (6) and (8),

tβ
∫ 1

0
(1− ξ )β−1E

γ
α ,β (ωtα(1− ξ )α)dξ = P

γ
α ,β ,ω1 =

∫ t

0
e

γ
α ,β (ω ;s)ds

=
∞

∑
n=0

(γ)n

Γ (nα +β )
·

ωn
∫ t

0 sαn+β−1ds

n!

=
∞

∑
n=0

(γ)n

Γ (nα +β + 1)
·

ωntαn+β

n!

= e
γ
α ,β+1

(ω ;t).

Therefore,

tβ (1− ξ )β−1E
γ
α ,β

(ωtα(1− ξ )α)

e
γ
α ,β+1

(ω ;t)

verifies
∫ 1

0

tβ (1− ξ )β−1E
γ
α ,β (ωtα(1− ξ )α)

e
γ
α ,β+1

(ω ;t)
dξ = 1,

and an analogous probabilistic interpretation is then possible for the Prabhakar fractional integral (8). We can write

P
γ
α ,β ,ω

x(t) = e
γ
α ,β+1

(ω ;t)E[x(t Ξt)],

where the random variable of support (0,1) is distributed as

Ξt ∼
tβ (1− ξ )β−1E

γ
α ,β (ωtα(1− ξ )α)

e
γ
α ,β+1

(ω ;t)
dξ .
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When (α,α,ω ,γ) = (α,α,1,0) and α ∈ (0,∞), that is, we are considering the Riemann-Liouville integral (9), we
have the density

Ξt ∼
tα(1− ξ )α−1E0

α ,α(t
α(1− ξ )α)

e0
α ,α+1(1;t)

dξ =
tα(1− ξ )α−1 1

Γ (α)

tα

Γ (α+1)

dξ = α(1− ξ )α−1dξ ∼ B(1,α),

by (7), and

Iα x(t) = e0
α ,α+1(1;t)E[x(t Ξt)] =

tα

Γ (α + 1)
E[x(t Ξt)]. (10)

In this case, Ξt is actually time independent. In particular, for the L-fractional integral (4) and α ∈ (0,1),

LIα x(t) =
1

Γ (2−α)
Iα [t1−αx(t)] =

1

Γ (2−α)

tα

Γ (α + 1)
E[t1−α Ξ 1−α

t x(t Ξt)] = tE[x(t ξ )],

where ξ ∼ B(2−α,α), and we retrieve (5). Observe that (10) contains the power tα , whereas (5) only has t, which
matches with the units of the corresponding differential operators, time−α and time−1, respectively.

5 Conclusions

We introduce the L-fractional integral.
We give a probabilistic explanation of the L-fractional integral operator, by means of dilation and the beta distribution.
The L-fractional integral is a particular case of the Prabhakar integral, as many other fractional operators. For this

general Prabhakar integral, we derive a probabilistic interpretation as well, by means of a certain density function.
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