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Abstract: We present a probabilistic interpretation of the L-fractional integration. This integral is the inverse of the known L-fractional
derivative. We prove that the fractional integral can be expressed as an expected value of a random variable, which describes dilation
or scaling and is related to the beta distribution. The proposed explanation gives the possibility of a generalization of non-integer-order
integration and differentiation, by using continuous probability densities. In fact, the general Prabhakar integral operator can be given
a probabilistic interpretation as well, in terms of an average, and thus obtain the Riemann-Liouville and L integrals as particular cases.
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1 Introduction

Fractional calculus is a relevant area of research and applications. See, for example, the classical monograph [1] or [2,3,
4]. To cite just an example, the classical fractional Riemann-Liouville operator was considered by Hardy and Littlewood
[5] or Riesz [6].

The L-fractional derivative of an absolutely continuous function x : [0,7] — R, x € AC[0,T], is [7,8]

CDOt
"D%x(t) = %a(f) (1

where 7 € [0,T] is the time, & € (0, 1) is the fractional order of differentiation, and

o _ 1 ! xl(T)
p x(t)fr(]_a)/o et )

is the Caputo fractional derivative of x with first-order derivative x’, being I" the gamma function. For a motivation of
L-fractional models, we refer the reader to [9].

We will give an explicit definition of the L-fractional integral as an inverse of the L-fractional derivative. We will show
that the L-fractional integral can be interpreted as an expected value of a random variable, related to scaling and having
a beta distribution. We will present extensions concerning the Prabhakar fractional integral as well [10,11], that include
existing fractional operators. Thus, our work provides a relation between fractional integral operators and probability
theory. Essentially, we will see that, in general, a fractional integral is related to an expectation with respect to a random
variable & of density p(&), i.e., £ ~ p(&)d&, having support in (0, 1).
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2 L-fractional integral

Leta e (0,1),T >0,andx € L' (0,7T) (i.e., Lebesgue integrable). We recall that the classical Riemann-Liouville fractional

integral is defined as
] !
I%x(t :—/ t—5)% x(s)ds. 3
0= Frgg f, 9“5 G)

The operator I : L'(0,T) — L'(0,T) is linear and bounded with norm ||I%|| < T%/I"(a + 1). Moreover, it is injective
and therefore it has a left inverse. For the Caputo fractional derivative (??), defined for x € AC[0,T], we know that

[1%oDY|x(t) = x(t) +¢, = —x(0),
forall z € [0,T]. Also, if x € AC[0, T], then I%x € AC[0,T] (see property (6) of Proposition 3.2 in [12]) and
(‘D% o I*]x(t) = x(¢),

for almost every ¢ € [0, T]. This means that °D% is a left inverse of I%, or, in other words, I* is a right inverse of “D%.
In general, a fractional integral is of the form I%x(¢) = ﬁ Jo k(t,5)x(s)ds, with k the kernel of the integral operator.

Different kernels give different fractional integrals.
We now consider the L-fractional integral case of order & € (0, 1), as a right inverse of “D. It should be true that

[ED% o L1%)x(1) = x(t).
To define 1%, set [1%x =y, or LD%y(t) = x(t). Then,

1-a
py(r) = ﬁx(t) — £(1).

Therefore,

or

't (f— o—1
y(t) =y(0)+ F(loc) ./0 (Ii(Z) ) s 7% (s)ds.

This gives us the definition of the L-fractional integral,

1 —s o—1
1%(1) = F(loc)/o st (s)ds. @

The kernel is identified as

t —s a—1
Lp%x(t) = ﬁ/o kp(t,s)x(s)ds, kp(t,s) = %s'a

This expression defines a linear and bounded operator from L' (0, T) into itself. The kernel of the L-fractional integral has
some properties of a density function [13], as will be seen. Observe that

tlfa

(1% o DY) x(t) = 1* (m

: LD“x(t)) = [I*oD¥x(t) = x(t) +c.
For (??), notice that
CDatﬁ _ F(BJFl) t[ifot7
TB—oat1)
for B > 0. In particular, ‘D% = ¢'~%/I"(2 — &), hence the L-fractional derivative (1) can be rewritten as

LD%x(t) = % Dox(r).

For power 8 = 0, “D*1 = 0, so that “D*1 = 0. That is, the fractional derivative of any constant is zero. This property is
very important when dealing with initial states and power series [9]. On the other hand, “D% = 1 and, for a smooth x,
Lpx(0) = ¥'(0) € (—oo,0). The units of “D%x(¢) are time ™!, in contrast to time %,

A related fractional calculus, of better use in differential geometry and topology, is the A-fractional calculus [14]. It is
based on normalizing the Riemann-Liouville derivative, but it will not be treated in this contribution. On the other hand,
the normalization of other fractional operators has been investigated in the literature, see [15, 16].
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3 Probabilistic interpretation of the L-fractional integral
Making the change & = s/t in (4), one has

t t

Lp%x(t) = m/ol 1 N1 =) TET Ay (Er)dE = m./; (1-§&)* g% (Er)dE.

Introducing the dilation operator

[Sex](r) = x(S1)
and the function
(1 _ é)aflfg' -«

06) = rar2-o)’

we can write
1

O(S)[Sex (1)dS.

Lya ! /1 a—lgl-a /
19x(t) = =——=7—— 1— Sex](t)dé =1t

0= Fara—a f, (-8 Issdnag =1 |
We note that |

| ez =1
and, in fact,
O(E)dE ~ B2 - a, ).
From these expressions, the operator 2/% in (4) can be interpreted as an expected value of a random variable & € (0,1)
related to the scaling and having a beta distribution:
1%%(1) = tE[x(1)]. (5)

When o0 — 17, the distribution is uniform on [0, 1] and the standard integral is obtained.

4 Prabhakar fractional integral and probabilistic interpretation

We recall some notations in order to define the Prabhakar fractional integral.
The three-parameter Mittag—Leffler function, introduced by Prabhakar in 1971 [10], is defined by

v W
E;ﬁ(z)irg‘ol"(na—i—ﬁ) n!’

where (), = FI(_@)” )

Mittag-Leffler function is retrieved for y = 1, as well as the classical exponential function e* for &« = B = y = 1. For
Re(a) > 0 and Re(f) > 0, the Prabhakar kernel is

is the Pochhammer symbol and ¢, 3,7,z € C with Re(a) > 0. Notice that the classical two-parameter

oo B—1
y Y AR a (,y)” wntan+

w;t)=t""E wt”) = . 6

We have the following values:
EO 711—‘ 1 . __ 0t 0 . _ 7 O 7ﬁ711—' 7
ap@ =1/T(B), ey (w:)=e”, e gl:r)=e, 5(0:1) =1"""/T'(B). @)

Forx e L! (0,T), the Prabhakar fractional integral is defined as [10, 11]:
!

Pé,ﬁ,mx(t):/() ez;ﬁ(a);tfs)x(s)ds, )

for ¢ € [0,T]. It is a linear and bounded operator from L!(0,7) into L' (0,T).
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If x € L'(0,T) is such that the convolution x * @;ﬁ, B (w;-) € AC[0,T], then the Prabhakar fractional derivative in the

Riemann-Liouville sense is defined by
d
Y Y
Daﬁw() dtPalﬁw()

If x € AC[0, T], the Prabhakar derivative in the sense of Liouville-Caputo is defined as

C}Dgﬁ ROE P;Kiﬁywx/(t).
By (7), we note that
Phait(t) = [ a1 =9x(ds = o [10=9) a(s)ds = 15(0), ©)

and also,
P’ . 0¥(t) = /0 el (0,1 —s5)x(s)ds = ﬁ /o (t — )% Lx(s)ds = I%x(r).

In both cases, the classical Riemann-Liouville integral (3) of order ¢ > 0 is a particular case of the Prabhakar operator (8).
This Prabhakar operator also includes the L-fractional integral (4), with o € (0, 1). Indeed, we note that

45(1) = Fg g Pl 0]
(1) = g P50

revealing the generality of the Prabhakar definition.
For s € [0,7], let & = s5/t, so that

Pl a0 = [ T (@in(1 — E)x(E udg = JA (1= EPET p(an (1 — )08
Now, with (6) and (8),

-1 ,
IB/O (1=&)P'E] g(0r*(1-8)*)dE =P} ; 1 :/ el, (@s5)ds

oo wn fé gon+p—1 ¢
r; I'(na Jr ﬁ n!
oo w"on+B
B ; I'(na Jr ﬁ +1) nl
ZB (w:1).
Therefore,
(1 EPEL (1 - £)%)
eéﬁﬂ (w;1)
verifies
/wﬁm—é)ﬁ'E;ﬁwra(l—é)a) .
: d§ =1,
0 eé! g1 (@)
and an analogous probabilistic interpretation is then possible for the Prabhakar fractional integral (8). We can write

PY

an () eé’ﬁﬂ((D;Z‘)E[x(tEt)],

where the random variable of support (0, 1) is distributed as

B 1— ﬁ*lEY af] g\
T P
ea,ﬁ+1(w’t)

[x]

<
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When (o, @, 0,y) = (a,a,1,0) and @ € (0,00), that is, we are considering the Riemann-Liouville integral (9), we
have the density

(1= B (2 (1=8)%) (18" g

I'la —
E ~ T d = e = a(1-§)* g ~ B(1,a),
o,a+1\ " I'(o+1)
by (7), and
= % =
Iax(t) = eg"aJrl (1,[)E[X(t ..”q)] = mE[}C(f ._”/[)]. (10)
In this case, &, is actually time independent. In particular, for the L-fractional integral (4) and @ € (0, 1),
1 1 t*
Lyo o l—o l-oo=l-a -
1%x(t) = =——=I1"t )] = D] G t5)] =tE[x(r
x( ) F(Z*(X) [ X( )] F(Z*(X)F((Xﬁ*l) [ t X( l)] [‘x( é)]v

where & ~ B(2 — o, o), and we retrieve (5). Observe that (10) contains the power %, whereas (5) only has 7, which
matches with the units of the corresponding differential operators, time~%* and time ™!, respectively.

5 Conclusions

We introduce the L-fractional integral.
We give a probabilistic explanation of the L-fractional integral operator, by means of dilation and the beta distribution.
The L-fractional integral is a particular case of the Prabhakar integral, as many other fractional operators. For this
general Prabhakar integral, we derive a probabilistic interpretation as well, by means of a certain density function.
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