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Abstract: The COVID-19 pandemic has spread quickly throughout the world, posing a serious threat to human-to-human transmission.

The novel coronavirus pandemic is described quantitatively in this paper using a mathematical model of COVID-19 driven by a system

of ordinary differential equations. The suggested model is used to provide predictions regarding the behavior of a COVID-19 outbreak

over a shorter time frame. It is demonstrated that the system of model equations has a unique and existing solution. Furthermore,

the answer is positive and bounded. Thus, it is argued that the model created and discussed in this work is both mathematically and

biologically sound. A threshold parameter that controls the disease transmission is used in a qualitative analysis of the model to confirm

the existence and stability of disease-free and endemic equilibrium points. Additionally, the key parameters undergo sensitivity analysis

to ascertain their relative significance and potential influence on the COVID-19 virus dynamics.
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1 Introduction

Coronavirus-19 (COVID-19) is an infectious infection
attributable to a newly located coronavirus[9]. It is a new
strain that was discovered in 2019 and has not been
previously identified in humans[7]. The COVID-19 is a
novel Coronavirus that was first reported to the world
health organization country office in China on 31
December 2019 [5]. The outbreak was declared a public
health emergence of international concern on 30 January
2020. On 11 February 2020, WHO announced a name for
the new Coronavirus-19 disease ”COVID-19” [8]. Several
studies suggest that COVID-19, including preliminary
information on the COVID-19 virus may persist on the
surfaces for a few hours or up-to several days.It is
transmitted from person to person via respiratory droplets
produced when an infected person coughs or sneezes and
between people who are in close contact with one another
with in about 6 feets.
Mathematical modeling helps CDC and partners respond
to the COVID-19 pandemic by informing decision about

pandemic planning, resource allocation and
implementation of social distancing measures and other
intervations. The majority of the transmission is
happening through respiratory droplets that we may
inhale from close contact with one another [3]. It is not
certain how long the virus that causes COVID-19 survives
on the surfaces, but it seems to be have like other
coronaviruses.The most common symptoms of
Coronavirus-19 (COVID-19) are fever, cough and
shortness of breath and breathing difficulties [9]. The
period within which the symptoms would appear is 2−14
days[9]. In more severe cases infection can cause
pneumonia, sever acute respiratory syndrome and even
death. There is no specific treatment for the disease
caused by Coronavirus-19 (COVID-19). However, many
of the symptoms can be treated and therefore the
treatment is based on the patient’s clinical condition. The
best ways that are recommended by WHO to prevent the
novel coronavirus (COVID-19) are, taking vaccine of
covid-19, washing hands often with soap and water, if not
available use hand sanitizer, avoid touching your eyes,
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nose, or mouth with unwashed hands, avoid contact with
people who are sick, stay home while you are sick and
avoid close contact with others, cover your mouth/nose
with a tissue or sleeve when coughing or sneezing and so
on [8].
Currently, COVID-19 is of brilliant challenge to
researchers, governments, and every person due to the
excessive rate of infection unfold and the significant
number of deaths that occurred. Chen et al developed
Bats-Hosts-Reservoir -People transmission network
model for simulating the potential transmission from the
infection source (probably be bats) to the human infection
[11]. Bats-Hosts-Reservoir network was hard to explore
clearly and public worries have been focusing at the
transmission from Huanan Seafood Wholesale Market
(reservoir) to people, they simplified the model as
Reservoir-People (RP) transmission network model[7].
The model showed that the transmission of SARS-CoV-2
was higher than the Middle East respiratory syndrome in
the Middle East countries, similar to severe acute
respiratory syndrome, but lower than MERS in the
Republic of Korea[14]. Furthermore, Chayu Yang and Jin
Wang [13] model describes the multiple transmission
pathways in the infection dynamics, and emphasizes the
role of the environmental reservoir in the transmission
and spread of this disease. The analytical and numerical
results indicate that the Coronavirus infection would
remain endemic, which necessitates long-term disease
prevention and intervention programs. A lot of authors
developed a mathematical model to illustrate the
dynamics of the disease that helped them to suggest
disease control mechanism and also described the
transmission dynamics of the Coronavirus infection. Li Y
et al. [14] proposed a mathematical model, based on the
transmission mechanism of COVID-19 in the population
and the implemented prevention and control measures.
Also they established the dynamic models of the six
chambers, and establish the time series models based on
different mathematical formulas according to the
variation law of the original data. E.D.Gurmu et al [7]
modify the model developed by Li Y et al[14] by adding
the asymptomatic compartment. In this paper we modify
the model developed by E.D.Gurmu et al [7], by adding
exposed, hospitalized and death compartment.

2 Model Assumption and Formulation

Mathematical modeling methods requires translation of a
biological scenario into a mathematical problem. It begins
with a clear description of the processes primarily based
on the modeler understanding of the system. The
translation of a biological scenario into mathematical
equations should be made with a specific goal or
biological question in mind. Then the verbal description
of the system is encoded in mathematical equations. The
total number of human population at a time t, denoted by
N(t), is subdivided into ten compartments. Namely:

i) Protected individuals P(t); are individuals who are
protected against the disease over period of time at
specific area not vulnerable to covid-19.
ii) Susceptible individuals S(t); individuals who are
vulnerable to COVID-19.
iii) Exposed individuals E(t); individuals who are
infected but not yet infectious.
iv) Asymptomatic individuals A(t); are individuals who
are infected and infectiuos but do not show a symptoms
of corona virus (COVID-19).
v) Infective individual in symptomatic phase I(t);
individuals who are showing symptoms of corona virus
(COVID-19).
vi) Quarantine individuals Q(t); are individual who are
infectious and compulsory quarantine due to reduce the
spread of COVID-19 and get treatment.
vii) Hospitalized individuals H(t); are individuals who
enters a hospitals due to the hardness of COVID-19.
viii) Recovered individual R(t); are individuals that
recovered from COVID-19 at a time t due to treatment at
quarantine class, hospitalized class and chronic class of
COVID-19.
ix) Chronic individuals C(t); are individuals who are in
the intensive care unit (ICU) class that lead to death class
of COVID-19.
x) Death class D(t); are individuals who do not recovered
from COVID-19 in the intensive care unit (ICU) class
and died.
Then the total population at a time t denoted by N(t) is
given by:

N(t) = P(t)+ S(t)+E(t)+A(t)+ I(t)+Q(t)+H(t)+
R(t)+C(t)+D(t).

Thus the model assumed that the protected individuals are
generated by recruitment of individuals into the
population at a constant rate of π , and decreased by
natural death at a rate µ and further deceased by losing
protection at a rate δ . Susceptible individuals are
generated by losing protection of protected individuals at
a rate δ and losing immunity of recovered individuals at a
rate θ . Also susceptible individual are decreased by
acquiring COVID-19 infection following effective contact
with infectious individual at a rate λ , such that;

λ = β [I(t)+qA(t)]
N

,

is a force of where β is the effective contact rate (contact
capable of leading to infection) and q is the transmission
coefficient for the asymptomatic individuals. If q > 1 then
the asymptomatic individuals infect the susceptible
individuals more likely than the symptomatic individuals.
If q < 1, then the infective symptomatic individuals have
a good chance to infect the susceptible individuals than
asymptomatic individuals and if q = 1,then both
asymptomatic and infective symptomatic individuals have
equal chance to infect the susceptible individuals. After a
disease incubation period 1

η , where η is per capita rate of

becoming infections a proportion of p of the individuals
in E(t) may develop a symptoms of COVID-19 infection
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and move to the infected compartment I(t) at a rate pη
and the rest become asymptomatic individuals with
COVID-19 infection with probability (1− p) and moves
to the asymptomatic A(t) compartment at a rate (1− p)η .
The population of asymptomatic individuals are
generated by the fraction of exposed individuals at a rate
(1 − p)η and decreased by developing a symptoms of
COVID-19 at a rate ψ and quarantined at a rate γ .
The population of infective individuals are generated by
the fraction of exposed individuals at a rate η p and
asymptomatic individuals by developing a symptoms of
COVID-19 at a rate ψ and decreased by quarantined at a
rate ϕ . The population of quarantine individuals are
generated by isolating rate of asymptomatic and infective
individuals in symptomatic phase at a rate γ and ϕ
respectively and decreased by a rate of treatment in the
quarantine class at a rate α p and failure of treatment at
quarantine class at a rate (1− p)α .
The population of hospitalized individuals are increased
by the failure of treatment at the quarantine class at the
rate (1− p)α and decreased by recovering rate at φ due to
treatment at hospitals and failure of treatment at a rate ω
in hospitals. The population of recovered individuals are
generated by recovering rate at α,φ and ρ due to
treatment at quarantine class, hospital and ICU class
respectively and decreased by losing immunity at a rate θ .
The population of a chronic individuals are generated by
the failure of treatment in the hospitals at a rate ω ,
decreased by the success of treatment at ICU class at a
rate ρ and failure of treatment at ICU class at a rate τ .
The population of at the death classes are generated by
the failure of treatment in the ICU class at a rate τ . All
types of cells suffer natural mortality at a rate µ and all
parameters in the model are non-negative .
Up on including the basic assumption the schematic
diagram of the modified model can be given us below by
the figure 1.

Fig. 1: Schematic Diagram of COVID-19 model

Based on the model assumptions, the notations of
variables, parameters and the schematic diagram, the
model equations are formulated and given as follows:
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
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
















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
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
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





















dP
dt

= π − (µ + δ )P,
dS
dt

= δP+θR− (µ+λ )S,
dE
dt

= λ S− (µ +η)E,
dA
dt

= (1− p)ηE− (µ + γ +ψ)A,
dI
dt

= pηE +ψA− (µ +ϕ)I,
dQ
dt

= γA+ϕI− (µ +α)Q,

dH
dt

= (1− p)αQ− (µ+ω +φ)H,

dR
dt

= α pQ+φA+ρC− (µ +θ )R,
dC
dt

= ωH − (µ +ρ + τ)C,
dD
dt

= τC− µD.

(1)

The non-negative initial conditions of the system of
model equations (1) are denoted by
P(0) > 0,S(0) > 0,E(0) ≥ 0,A(0) ≥ 0, I(0) ≥ 0,Q(0) ≥
0,H(0) ≥ 0,R(0) ≥ 0,C(0) ≥ 0,D(0) ≥ 0. This system
consists of ten first order non-linear ordinary differential
equations.

3 Mathematical Analysis of the Formulated

Model

3.1 Invariant Region

Theorem 1.The total population size N of the system of

model equation 1 is bounded in the invariant region Ω.

That is, size of N is bounded for all t.

proof: We adhere to the following steps to show the

positive invariance of Ω , that is all the solution of 1 that

initiate in Ω remains in the region Ω ,which is bounded in

Ω .

The total population is given by

N(t) = P(t)+ S(t)+E(t)+A(t)+ I(t)+Q(t)+H(t)+
R(t)+C(t)+D(t).

The rate of change of the total population by adding all the

equations considered in 1 is:

dN
dt

= π − µN−φ(A+H)≤ π − µN

Notice that dN
dt

is bounded above by π − µN and below by

0.

Hence by using standard comparison theorem [10] it can

be shown that,

0 ≤ N(t)≤
π

µ
+(N0 −

π

µ
)e−µt (2)

As t −→ ∞ in equation (2) , the population size N −→ π
µ

which implies that 0 ≤ N ≤ π
µ .

Thus the feasible solution set of the equation of the model

enter and remain in the the region
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Ω = {(P,S,E,A, I,Q,H,R,C,D) ∈ R
10
+ : N ≤ π

µ }.

Therefore, the basic model is well posed

epidemiologically and mathematically. Hence , it is

sufficient to study the dynamics of the basic model in Ω .

3.2 Existence and Positivity of solution

In order to show that the model is biologically valid, it is
required to prove that the solutions of the system of
differential equations (1) are both exist and positive for all
time. It is done starting with proving Lemma 1.

Lemma 1.(Existence): The solutions of the model

equations (1) together with the initial conditions

P(0) > 0,S(0) > 0,E(0) ≥ 0,A(0) ≥ 0, I(0) ≥ 0,Q(0) ≥
0,H(0)≥ 0,
R(0)≥ 0,C(0)≥ 0,D(0)≥ 0 exist in R

10
+ .

Proof: Let the system of equation (1) be as follows:












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
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














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




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

























f1 = π − (µ + δ )P,

f2 = δP+θR− (µ+λ )S,

f3 = λ S− (µ +η)E,

f4 = (1−P)ηE − (µ + γ +ψ)A,

f5 = pηE +ψA− (µ +ϕ)I,

f6 = γA+ϕI− (µ +α)Q,

f7 = (1− p)αQ− (µ +ω +φ)H,

f8 = α pQ+φA+ρC− (µ +θ )R,

f9 = ωH − (µ +ρ + τ)C,

f10 = τC− µD.

(3)

According to Derrick and Groosman theorem, let Ω
denote the region

Ω = {(P,S,E,A, I,Q,H,R,C,D) ∈ R
10
+ ;N ≤ π

µ }.

Then equations (1) have a unique solution if
∂ fi
∂x j

, i, j = 1,2,3,4,5,6,7,8,9,10 are continuous and

bounded in Ω . Here, x1 = P,x2 = S,x3 = E,x4 = A,x5 =
I,x6 = Q,x7 = H,x8 = R,x9 = C,x10 = D. The continuity

and boundedness are verified here under:

For f1:

| ∂ f1
∂ p

| = | − (µ + δ )| <
∞,

| ∂ f1
∂S

|= 0 < ∞,

| ∂ f1
∂E

|= 0 < ∞,

| ∂ f1
∂A

|= 0 < ∞,

| ∂ f1
∂ I

|= 0 < ∞,

| ∂ f1
∂Q

|= 0 < ∞,

| ∂ f1
∂H

|= 0 < ∞,

| ∂ f1
∂R

|= 0 < ∞,

| ∂ f1
∂C

|= 0 < ∞,

| ∂ f1
∂D

|= 0 < ∞.

For f2:

| ∂ f2
∂P

|= δ < ∞,

| ∂ f2
∂S

| = | − (µ +
β (I+qA)

N
)|< ∞,

| ∂ f2
∂E

|= 0 < ∞,

| ∂ f2
∂A

|= |− β qS
N

|< ∞,

| ∂ f2
∂ I

|= |− β S

N
|< ∞,

| ∂ f2
∂Q

|= 0 < ∞,

| ∂ f2
∂H

|= 0 < ∞,

| ∂ f2
∂R

|= θ < ∞,

| ∂ f2
∂C

|= 0 < ∞,

| ∂ f2
∂D

|= 0 < ∞.

Similarly true for f3 − f10. Thus, all the partial

derivatives
∂ fi
∂x j

, i, j = 1,2,3,4,5,6,7,8,9,10 exist,

continuous and bounded in Ω . Hence, by Derrick and

Groosman theorem, a solution for the model (1) exists

and is unique.

Lemma 2.(Positivity) Solutions of the model equations

(1) together with the initial conditions

P(0) > 0,S(0) > 0,E(0) ≥ 0,A(0) ≥ 0, I(0) ≥ 0,Q(0) ≥
0,H(0)≥ 0,R(0)≥ 0,C(0) ≥ 0 and D(0) ≥ 0 are always

positive (OR) the model variables

P(t),S(t),E(t),A(t), I(t),Q(t),H(t),R(t),C(t) and D(t)
are positive for all t and will remain in R

10
+ .

Proof: Positivity of the model variables are shown

separately for each of the model variables

P(t),S(t),E(t),A(t), I(t),Q(t),H(t),R(t),C(t) and D(t).
Positivity of P(t): The model equation in (1) given by
dP
dt

= π − (µ + δ )P can be expressed without loss of

generality (WOLG), after eliminating the positive terms π
which are appearing on the right hand side, as an

inequality as dP
dt

≥−(µ + δ )P .

Using variables separable method and on applying

integration, the solution of the foregoing differentially

inequality can be obtained as P(t)≥ e−(µ+δ )t . Recall that

an exponential function is always non-negative

irrespective of the sign of the exponent, i.e., the

exponential function e−(µ+δ )t is a non-negative quantity.

Hence, it can be concluded that P(t) > 0. Similarly,

solving the system of differential equation of the model,

we obtain the exponential function:

S(t)≥ e−µt− β
N

∫

(I+qA)dt , E(t)≥ e−(µ+η)t ,

A(t)≥ e−(µ+γ+ψ)t ,

I(t)≥ e−(µ+ϕ)t ,

Q(t)≥ e−(µ+α)t ,

H(t)≥ e−(µ+ω+φ)t ,

R(t)≥ e−(µ+θ)t ,

C(t)≥ e−(µ+ρ+τ)t ,

D(t)≥ e−µt .

Recall that an exponential function is always

non-negative irrespective of the sign of the exponent.

Hence, it can be concluded that all the solutions of model

equations are positive. Thus, the model variables

P(t),S(t),E(t),A(t), I(t),Q(t),H(t),R(t),C(t) and D(t)
representing population sizes of various types of cells are

non-negative quantities and will remain in R
10
+ for all t.

4 Stability Analysis of Disease-Free

Equilibrium (DFE)

Disease free equilibrium points are steady state solutions
where there is no disease in the population. In the absence
of the disease this implies that E(t) =A(t) = I(t) =Q(t) =
H(t) = R(t) =C(t) = D(t) = 0 and the equilibrium points
require that the right hand side of the model equation set
equal to zero. Thus, the disease-free equilibrium point of
the model equation in (1) above is given by
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E0 = { π
µ+δ ,

δπ
µ(µ+δ ) ,0,0,0,0,0,0,0,0}

The local stability of the DFE, E0, of the model can be
established using the basic reproduction number. The
basic reproduction number is denoted by R0 and it is
defined as the expected number of people getting
secondary infection among the whole susceptible
population. It is computed using next-generation matrix
defined in [1]. In this method R0 is defined as the largest
eigenvalue of the next generation matrix. Using the
notation as in [1] for the model system (1)the associated
matrices F and V for the new infectious terms and the
remaining transition terms are respectively given by:

Fi =



















β ( I+qA)S
N
0
0
0
0
0
0



















and

Vi =



















(µ +η)E
−(1− p)ηE+(µ + γ +ψ)A
−pηE −ψA+(µ +ϕ)I
−γA−ϕI+(µ +α)Q

−(1− p)αQ+(µ+ω +ψ)H
−ωH +(µ +ρ + τ)C

−τC+ µD



















The Jacobian of Fi and Vi at the disease free equilibrium
point E0 takes the form respectively as

F(E0) =



















0
β δq

µ+δ
β δ

µ+δ 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



















, and

V (E0) =



















a 0 0 0 0 0 0
(1− p)η b 0 0 0 0 0
−pη −ψ c 0 0 0 0

0 −γ −ϕ d 0 0 0
0 0 0 −(1− p)α e 0 0
0 0 0 0 −ω f 0
0 0 0 0 0 −τ µ



















Then after some algebraic computations the product of
the matrices F(E0) and [V (E0)]

−1 can be computed as;

[F(E0)][V (E0)]
−1 =





















β δη(bp+(cq+ψ)(1−p))
abc(µ+δ )

β δ (qc+ψ)
bc(µ+δ )

β δ
c(µ+δ ) 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0





















Now it is possible to calculate the eigenvalue to determine
the basic reproduction number R0 by taking the spectral
radius of the matrix [F(E0)][V (E0)]

−1. Thus, the
eigenvalues are computed by evaluating
det[[F(E0)][V (E0)]

−1 −λ I] = 0 or equivalently solving;

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

J
abc(µ+δ ) −λ β δ (qc+ψ)

bc(µ+δ )
β δ

c(µ+δ ) 0 0 0 0

0 −λ 0 0 0 0 0
0 0 −λ 0 0 0 0
0 0 0 −λ 0 0 0
0 0 0 0 −λ 0 0
0 0 0 0 0 −λ 0
0 0 0 0 0 0 −λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

where J = β δη(bp+(cq+ψ)(1− p)). It reduces to the
tenth power equation for λ as

λ 9[λ − β δη(bp+(cq+ψ)(1−p))
abc(µ+δ ) ] = 0 giving the ten

eigenvalues as λ1 = 0 , λ2 = 0,
λ3 = 0,λ4 = 0,λ5 = 0,λ6 = 0,λ7 = 0,λ8 = 0,λ9 = 0,

λ10 =
β δη(bp+(cq+ψ)(1−p))

abc(µ+δ ) .

However, the dominant eigenvalue here is

λ10 = β δη(bp+(cq+ψ)(1−p))
abc(µ+δ ) and it is the spectral radius as

the threshold value or the basic reproductive number.
Thus, it can be concluded that the reproduction number of
the model is;

R0 =
β δη(bp+(cq+ψ)(1−p))

abc(µ+δ ) ,

where, a= µ+η ,b= µ+γ+ψ ,c= µ+ϕ ,d = µ+α,e=
µ +ω +φ , f = µ +ρ + τ

4.1 Local Stability of Disease Free Equilibrium

To find the local stability of DFE , the Jacobian of the
model equations evaluated at E0 is used. Where,

E0 = { π
µ+δ ,

δπ
µ(µ+δ ) ,0,0,0,0,0,0,0,0}.

Now, the stability analysis of DFE is conducted and the
results are presented in the form of theorems and proofs as
follows:

Theorem 2.The DFE E0 of the system (1) is locally

asymptotically stable if R0 < 1 and unstable if R0 > 1.

proof Consider the right hand side expressions of the
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equations (1) as functions so as to find the Jacobian

matrix as follows:







































































dP
dt

= π − (µ + δ )P = f1
dS
dt

= δP+θR− (µ +λ )S = f2
dE
dt

= λ S− (µ +η)E = f3
dA
dt

= (1− p)ηE − (µ + γ +ψ)A = f4
dI
dt

= pηE +ψA− (µ +ϕ)I = f5
dQ
dt

= γA+ϕI− (µ +α)Q = f6
dH
dt

= dA
dt

= (1− p)αQ− (µ +ω +φ)H = f7
dR
dt

= α pQ+φA+ρC− (µ +θ )R = f8
dC
dt

= ωH − (µ +ρ + τ)C = f9
dD
dt

= τC− µD = f10

(4)

Now, the Jacobian matrix of

( f1, f2, f3, f4, f5, f6, f7, f8, f9, f10) w.r.to

(P,S,E,A, I,Q,H,R,C,D) at the disease free equilibrium

E0 reduces to; J(E0)=

































−a 0 0 0 0 0 0 0 0 0

δ −b 0 − β δq

µ+δ − β δ
µ+δ 0 0 θ 0 0

0 0 −c
β δq

µ+δ
β δ

µ+δ 0 0 0 0 0

0 0 (1− p)η −d 0 0 0 0 0 0
0 0 0 γ ϕ −e 0 0 0 0
0 0 kη ψ − f 0 0 0 0 0
0 0 0 0 0 (1− p)α −g 0 0 0
0 0 0 φ 0 α p 0 −h 0 0
0 0 0 0 0 0 0 ω −i 0
0 0 0 0 0 0 0 0 τ −µ

































where

a = µ + δ ,b = µ ,c = µ + η ,d = µ + γ + ψ ,e = µ +
ϕ , f = µ +α,g = µ +ω +φ ,h = µ +θ , i = µ +ρ + τ .

Now, the eigenvalues of J(E0) are required to be found.

Then, the characteristic equation det[J(E0)− λ I] = 0 is

simplified and found as follows:

= (−a − λ )(−b− λ )(−c − λ )(−d − λ )(−e − λ )(− f −
λ )(−g−λ )(−h−λ )(−i−λ)(−µ−λ ) = 0
Thus, the ten eigenvalues of the matrix are determined as

λ1 =−a, λ2 =−b, λ3 =−c, λ4 = d, λ5 =−e,

λ6 =− f , λ7 =−g, λ8 =−h, λ9 =−i, λ10 =−µ .

It can be observed that all the eigenvalues λ1 , λ2 ,λ3,λ4

,λ5, λ6 , λ7, λ8, λ9, λ10 are absolutely negative quantities.

Therefore, it is concluded that the DFE E0 of the system of

differential equations (1) is locally asymptotically stable if

R0 < 1 and unstable if R0 > 1.

4.2 Global Stability of Disease Free

Equilibrium

To investigate the global stability of the disease free
equilibrium points we used technique implemented by
Castillo-Chavez and Song [2]. First the model equation
(1) can be re-written as

dX
dt

= F(X ,Z),
dZ
dt

= G(X ,Z) = G(X ,0) = 0,

where, X = (P,S,R) stands for the uninfected population
and Z = (E,A, I,Q,H,C,D) also stands for the infected
population. The disease free equilibrium point of the
model here is denoted by U = (X0,0). The point

U = (X0
,0) = { π

µ+δ ,
δπ

µ(µ+δ ) ,0,0,0,0,0,0,0,0} to be

globally asymptotically stable equilibrium for the model
provided that R0 < 1 and the following conditions must
be met:
H1 : dX

dt
= F(X∗,0),X∗ is globally asymptotically stable.

H2 : G(X ,Z) = AZ − Ĝ(X ,Z), Ĝ(X ,Z)‘ ≥ 0 for
(X ,Z) ∈ Ω .
Where A = DZG(U,0) is a Metzler matrix (the off
diagonal elements of A are non-negative) and G is the
region where the model make biologically sense. If the
model (1) met the above two criteria then the following
theorem holds.

Theorem 3.The point U = (X∗,0) is globally

asymptotically stable equilibrium provided that R0 < 1
and the condition (H1) and (H2) are satisfied.

proof: From system (1) , we get F(X ,Y ) and G(X ,Y );

F(X ,Z) =





π − (µ + δ )P
δP+θR− (λ + µ)S

α pQ+φA+ρC− (µ +θ )R





and

G(X ,Z) =



















β
N

S(I+ qA)− (µ +η)E
(1− p)ηE− (µ + γ +ψ)A

pηE +ψA− (µ +ϕ)I
γA+ϕI− (µ +α)Q

(1− p)αQ− (µ+ω +φ)H
ωH − (µ +ρ + τ)C

τC− µD



















The compartmental model 1 stated in condition (H1) can

be expressed in the reduced system as;

dX

dtZ=0

=





π − (µ + δ )P
δP− µS

0



 (5)

Analytically solving equation (5) above it is obvious that

{ π
µ+δ ,

δπ
µ(µ+δ )

,0} is the global asymptotic point. Thus, X∗

is globally asymptotically stable for dX
dt

= F(X ,0) and the

first condition (H1) holds for the system 1.

Now for the second condition the matrices A for the model

system 1 can be expressed from the equation for infected

compartments in the model as;

A =


















−a β q β 0 0 0 0
(1− p)η −b 0 0 0 0 0

pη ψ −c 0 0 0 0
0 γ ϕ −d 0 0 0
0 0 0 (1− p)α −e 0 0
0 0 0 0 ω − f 0
0 0 0 0 0 τ −µ ,


















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where a = (µ + η),b = (µ + γ + ψ),c = (µ + ϕ),d =
(µ +α),e = (µ +ω +φ), f = (µ +ρ + τ) and the matrix

Ĝ(X ,Z) can be written as, Ĝ(X ,Z) = AZ − G(X ,Z),
which is:

Ĝ(X ,Z) =





















Ĝ1(X ,Z)
Ĝ2(X ,Z)
Ĝ3(X ,Z)
Ĝ4(X ,Z)
Ĝ5(X ,Z)
Ĝ6(X ,Z)
Ĝ7(X ,Z)





















=



















β (I + qA)(1− S
N
)

0
0
0
0
0
0



















Then the matrix A is a M- matrix since all its off diagonal

elements are non-negative and Ĝ(X ,Z) ≥ 0 in the region

Ω as S(t)≤ N(t) for in which condition (H2) holds.

Since the two conditions (H1) and (H2) holds, the disease

free steady state E0 of the model 1 is globally

asymptotically stable in the region Ω for R0 < 1.

4.3 Endemic Equilibrium

The endemic equilibrium point
E1 = {P∗,S∗,E∗,A∗, I∗,Q∗,H∗,R∗,C∗,D∗,} is a steady
state solution where the disease persists in the population.
The endemic equilibrium point is obtained by setting
rates of changes of variables with respect to time in model
equations (1) to zero. That is, setting dP

dt
= dS

dt
= dE

dt
=

dA
dt

= dI
dt

= dQ
dt

= dH
dt

= dR
dt

= dC
dt

= dD
dt

= 0 the model
equations take the form as solved for state variables
interms of the parameters after some algebraic operation
and obtain the following;











































































































P∗ = π
a

S∗ = cde f ghiδπ
k

E∗ = de f ghiλ ∗δπ
k

A∗ = e f ghiλ ∗δπη(1−p)
k

I∗ = p f ghiλ ∗δπη(k(d−1)+1)
k

Q∗ = ghiλ ∗δπ [η(1−p)(γe+ϕ)+d pϕη]
k

H∗ = hiαηλ ∗δπ(1−p)[(1−p)(eγ+ϕ)+dkηϕ]
k

R∗ = cde f ghiλ ∗δπ(µ+λ ∗)
k

− δπ
αθ

C∗ = hαωηλ ∗δπ(1−p)[(1−p)(γe+ϕ)+d pϕ]
k

D∗ = hλ ∗αωτδπη[(1−p)(γe+ϕ)+d pϕ]
k

(6)

where, k = (cde f giα(µ + λ ∗) − λ ∗θαη [[αkgi +
ραω(1 − p)][(1 − p)(γe + ϕ) + d pϕ ] + e f giφ(1 − p)]),
and
a = µ +δ ,b = µ +λ ∗,c = µ +η ,d = µ + γ +ψ ,e = µ +
ϕ , f = µ + α,g = µ +ω + φ ,h = µ + θ , i = µ + ρ + τ

and λ ∗ = β (I∗+qA∗)
N∗

4.3.1 Stability Analysis of Endemic Equilibrium

In the presence of the infectious disease, the model
populations have a unique endemic steady state E1. To
find the local stability of E1, the Jacobian of the model
equations evaluated at E1 is used. Now, the stability
analysis of E1 is conducted and the results are presented
in the form of theorems and proofs as follows:

Theorem 4.The endemic equilibrium point E1 of the

system (1) is locally asymptotically stable if R1 > 1 and

unstable if R1 < 1.

proof: Consider the right hand side expressions of the

equations (1) as functions so as to find the Jacobian

matrix as follows:

J(E1) =































−a 0 0 0 0 0 0 0 0 0

δ −k3 0
−β qS∗

N∗
−β S∗

N∗ 0 0 θ 0 0

0 λ ∗ −c
β qS∗

N∗
−β S∗

N∗ 0 0

0 0 k4 −d 0 0 0 0 0 0
0 0 0 γ ϕ −e 0 0 0 0
0 0 kη ψ − f 0 0 0 0 0
0 0 0 0 0 k5 −g 0 0 0
0 0 0 φ 0 α p 0 −h 0 0
0 0 0 0 0 0 0 ω −i 0
0 0 0 0 0 0 0 0 τ −µ































where k3 = (µ +λ ∗),k4 = (1− p)η ,k5 = (1− p)α . Now,

the eigenvalues of J(E1) are required to be found. The

characteristic equation det[J(E1)− λ I] = 0 is expanded

and simplified as follows:

(−a − λ )(−(µ + λ ∗) − λ )(−c − λ )(−d − λ )(−e −
λ )(− f −λ )(−g−λ )(−h−λ )(−i−λ)(−µ−λ ) = 0
Thus the eigenvalues of the endemic equilibrium points

are:

λ1 =−µ − δ ,

λ2 =−[µ + β
N∗ (I∗+ qA∗)],

λ3 =−µ −η ,

λ4 =−µ − γ −ψ ,

λ5 =−µ −ϕ ,
λ6 =−µ −α,

λ7 =−µ −ω −φ ,
λ8 =−µ −θ ,
λ9 =−µ −ρ − τ,
λ10 =−µ . where

A∗ = e f ghiλ ∗δπη(1−p)
k

I∗ = p f ghiλ ∗δπη(k(d−1)+1)
k

It can be observed that all the eigenvalues λ1 , λ2 ,λ3,λ4

,λ5, λ6 , λ7, λ8, λ9, λ10 are absolutely negative quantities.

Therefore, it is concluded that the endemic equilibrium

point E1 of the system of differential equations (1) is

locally asymptotically stable if R0 > 1 and unstable if

R0 < 1.
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Theorem 5.The endemic equilibrium point of the model

equation (1) is globally asymptotically stable if R0 > 1.
Proof To show the result we define the following

Lyapunov function as follows:

L(P∗,S∗,E∗,A∗, I∗,Q∗,H∗,R∗,C∗,D∗) =
[P − P∗ − P∗ln( P

P∗ )] + [S − S∗ − S∗ln( S
S∗
)] + [E − E∗ −

E∗ln( E
E∗ )]+ [A−A∗−A∗ln( A

A∗ )]+ [I− I∗− I∗ln( I
I∗
)]

By taking the derivative of L with respect to t:
dL
dt

= (1 − p∗

p
) d p

dt
+ (1 − S∗

S
) dS

dt
+ (1 − E∗

E
) dE

dt
+ (1 −

A∗

A
) dA

dt
+ (1 − I∗

I
) dI

dt
+ (1 − Q∗

Q
) dQ

dt
+ (1 − H∗

H
) dH

dt
+ (1 −

R∗

R
) dR

dt
+(1− C∗

C
) dC

dt
+(1− D∗

D
) dD

dt
.

= (1 − p∗

p
)[π − (µ + δ )P] + (1 − S∗

S
)[δP + θR − (µ +

λ )S]+ (1− E∗

E
)[λ S− (µ +η)E]+ (1− A∗

A
)[(1− p)ηE −

(µ + γ +ψ)A] + (1− I∗

I
)[pηE +ψA− (µ + ϕ)I] + (1−

Q∗

Q
)[γA +ϕI − (µ +α)Q] + (1− H∗

H
)[(1 − p)αQ − (µ +

ω +φ)H]+ (1− R∗

R
)[α pQ+φA+ρC− (µ +θ )R]+ (1−

C∗

C
)[ωH − (µ +ρ + τ)C]+ (1− D∗

D
)[τC− µD]

= (1 − p∗

p
)(π − aP) + (1 − S∗

S
)(δP + θR − bS) + (1 −

E∗

E
)(λ S− cE)+ (1− A∗

A
)((1− p)ηE − dA)+

(1 − I∗

I
)(pηE + ψA − eI) + (1 − Q∗

Q
)(γA + ϕI − f Q) +

(1 − H∗

H
)((1 − p)αQ − gH) + (1 − R∗

R
)(α pQ + φA +

ρρC− hR)+ (1− C∗

C
)(ωH − iC)+ (1− D∗

D
)(τC− µD)

After some simplification and rearrangement we obtain;
dL
dt

= π + δP + θR + λ S + ηE + dA + ϕI + αQ + (ρ +
τ)C+ωH +aP∗+bS∗+ cE∗+dA∗+ eI∗+ f Q∗+gH∗+
µD∗ − [aP+ bS+ cE + dA+ eI + f Q + gH + hR+ iC +

µD + (δP + θR) S∗

S
+ λ S E∗

E
+ (1 − p)ηE A∗

A
+ (pηE +

ψA) I∗

I
+ γA Q∗

Q
+(1− p)αQ H∗

H
+(α pQ+ φA+ρC)R∗

R
+

ωH C∗

C
+ τC D∗

D
].

= (π + δP + θR + λ S + ηE + dA + ϕI + αQ + (ρ +
τ)C +ωH − [aP+ bS+ cE + dA+ eI+ f Q+ gH + hR+
iC+ µD])+ aP∗+ bS∗+ cE∗+ dA∗+ eI∗+ f Q∗+ gH∗+

µD∗ − [(δP + θR) S∗

S
+ λ S E∗

E
+ (1 − p)ηE A∗

A
+ (pηE +

ψA) I∗

I
+ γA Q∗

Q
+(1− p)αQ H∗

H
+(α pQ+ φA+ρC)R∗

R
+

ωH C∗

C
+ τC D∗

D
].

=µN + aP∗ + bS∗ + cE∗ + dA∗ + eI∗ + f Q∗ + gH∗ +

µD∗ − [(δP + θR) S∗

S
+ λ S E∗

E
+ (1 − p)ηE A∗

A
+ (pηE +

ψA) I∗

I
+ γA Q∗

Q
+(1− p)αQ H∗

H
+(α pQ+ φA+ρC)R∗

R
+

ωH C∗

C
+ τC D∗

D
].

dL
dt

= M−K.

where, M =
µN + aP∗ + bS∗ + cE∗ + dA∗ + eI∗ + f Q∗ + gH∗ + µD∗

and

K = [(δP + θR) S∗

S
+ λ S E∗

E
+ (1 − p)ηE A∗

A
+ (pηE +

ψA) I∗

I
+ γA Q∗

Q
+

(1− p)αQ H∗

H
+(α pQ+φA+ρC)R∗

R
+ωH C∗

C
+ τC D∗

D
]

Now, dL
dt

= M−K < 0 if M < K.

Thus if M < K then dL
dt

< 0, nothing that dL
dt

= 0 if and

only if P = P∗,P = P∗,

S = S∗,E = E∗,A = A∗, I = I∗,Q = Q∗,H = H∗,R =
R∗,C =C∗,D = D∗.

Therefore the largest compact invariant set in

{(P∗,S∗,E∗,A∗, I∗,Q∗,R∗,C∗,D∗) ∈ Ω ; dL
dt

= 0} is a

singleton E1 is the endemic equilibrium point of the

system (1). By LaSalle’s invariant principle [15], it

implies that E1 is globally asymptotically stable in Ω if

M < k and R0 > 1.

4.4 Sensitivity Analysis

Sensitivity analysis allows us to assess the impact that
changes in a certain parameter will have on the model and
it can help someone to determine which parameters are
the key drivers of a model’s results. To investigate which
parameters have high impact on the R0, we apply the
approach presented in [18]. The main goal of this section
is to perform sensitivity analysis of COVID-19
transmission model to the parameters describing in it, i.e.
to determine the amount that the entire model changes
when each parameter is altered. For instance, the
normalized forward sensitivity index on R0 , which
depends differentially on a parameter P, as defined in [16]
as;

ϒ R0
P =

∂R0

∂P
×

P

R0

. (7)

The explicit expression of R0 is given by

R0 =
β δη(bp+(cq+ψ)(1−p))

abc(µ+δ )
=

β δη[(µ+γ+ψ)p+(q(µ+ϕ)+ψ)(1−p)]
(µ+η)(µ+γ+ψ)(µ+ϕ)(µ+δ )

.

where, a = µ +η ,b = µ + γ +ψ ,c = µ +ϕ .

Since R0 depends only on nine parameters, we derive an
analytical expression for its sensitivity to each parameters
using the normalized forward sensitivity index as in [18]
by taking the values of the parameters from table 2 in 7
and computed as follows:

ϒ
(R0)

β = ∂R0

∂β × β
R0

= 1,

ϒ
(R0)

η = ∂R0

∂η × η
R0

= µ
µ+η ,

ϒ
(R0)

ψ = ∂R0

∂ψ × ψ
R0

= (1−p)[µ+γ+2ψ+q(µ+ϕ)]
µ(p+q(1−p)−p2)+(ηq+ψ)(1−p)

×ψ ,

ϒ
(R0)

ϕ = ∂R0

∂ϕ × ϕ
R0

=

q(1−p)(µ+ϕ)−[(µ+γ+ψ)p+(q(µ+ϕ)+ψ)(1−p)]
(µ+ϕ)(µ+γ+ψ)p+(q(µ+ϕ)+ψ)(1−p)

×ϕ ,

ϒ
(R0)

δ
= ∂R0

∂δ × δ
R0

= µ
µ+δ ,

ϒ
(R0)

γ = ∂R0

∂γ × γ
R0

= −(q(µ+ϕ)+ψ)(1−p)γ
(µ+γ+ψ)[(µ+γ+ψ)p+(q(µ+ϕ)+ψ)(1−p)],

ϒ
(R0)
p = ∂R0

∂ p
× p

R0
= [µ+γ−q(µ+ϕ)]p

(µ+γ+ψ)p+(q(µ+ϕ)+ψ)(1−p),

ϒ
(R0)

q = ∂R0
∂q

× q
R0

= (µ+ϕ)(1−p)
(µ+γ+ψ)p+(q(µ+ϕ)+ψ)(1−p)

.

ϒ
(R0)

µ = ∂R0
∂ µ × µ

R0
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= [(p+q(1−p))(µ+η)(µ+γ+ψ)(µ+ϕ)(µ+δ )]×µ
(µ+η)(µ+γ+ψ)(µ+ϕ)(µ+δ )[(µ+γ+ψ)p+(q(µ+ϕ)+ψ)(1−p)]

− D
(µ+η)(µ+γ+ψ)(µ+ϕ)(µ+δ )[(µ+γ+ψ)p+(q(µ+ϕ)+ψ)(1−p)],

where, D = [(µ + γ +ψ)p+(q(µ+ϕ)+ψ)(1− p)][(µ+
γ +ψ)(µ +ϕ)(µ + δ ) + (µ +η)(µ +ϕ)(µ + δ )+ (µ +
η)(µ + γ +ψ)(µ +δ )+(µ +η)(µ + γ +ψ)(µ +ϕ)]×µ

Table 1: Table of Sensitivity indices

Parameter Symbol Sensitivity indices

β 1

ψ 0.416

q 0.394

η 0.241

δ 0.026

ϕ -0.054

γ -0.057

p -0.063

µ -0.464

Those parameters which have a positive indices 1 i.e.
β ,ψ ,q,η and δ show that they have great impact on
expanding the virus transmission in the community if
their values are increasing as the result the basic
reproduction number increases as their values increase, it
means that the average number of secondary cases of
infection increases in the community. Also, those
parameters in which their sensitivity indices are negative
i.e. ϕ ,γ, p and µ have an influence of minimizing the
burden of the disease in the community as their values
increase while the others are left constant. And also, as
their values increase, the basic reproduction number
decreases, which leads to minimizing then endemicity of
the disease in the community.

5 Numerical Simulation

In this section, numerical simulation study of model
equations [1] are carried out using the software
MAT LABR2015b with ODE45 solver. To conduct the
study, a set of physically meaningful values are assigned
to the model parameters. These values are either taken
from literature review or assumed on the basis of reality.
Using the parameter values given in Table 1 and the initial
conditions P(0) = 19000,S(0) = 700,E(0) = 600,A(0) =
500, I(0) = 400,Q(0) = 280,H(0) = 8000,R(0) =
500,C(0) = 1000,D(0) = 300 in the model equations [1]
a simulation study is conducted and the results are given
in the following table below.

Figure (2) shows that protected individuals decreases
due to loss of protection at a rate δ and more number of
protected individuals join susceptible class and converges
to disease free equilibrium points. Like wise figure (3)
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Fig. 2: Dynamics of protected individuals

0 20 40 60 80 100

Time(Weeks)

0

100

200

300

400

500

600

700

S
u

s
c
e
p

ti
b

le
 I
n

d
iv

id
u

a
ls

Fig. 3: Dynamics of Susceptible Individuals
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Fig. 4: Dynamics of Exposed Individuals
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Fig. 5: Dynamics of Asymptomatic Individuals
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Fig. 6: Dynamics of Infected Individuals
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Fig. 7: Dynamics of Quarantined Individuals
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Fig. 8: Dynamics of Hospitalized Individuals
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Fig. 9: Dynamics of Recovered Individuals
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Fig. 10: Dynamics of Death Individuals
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Fig. 11: Dynamics of Chronic Individuals
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Fig. 12: Effect of varying effective contact rate on susceptible

individuals
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Fig. 13: Effect of varying effective contact rate on Exposed

individuals
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Fig. 14: Effect of varying effective contact rate on asymptomatic

individuals
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Fig. 15: Effect of varying effective contact rate on infected

individuals
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Fig. 16: Effect of varying effective contact rate on chronic

individuals
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Fig. 17: Effect of varying effective contact rate on quarantined

individuals

Table 2: Parameter values used in numerical simulations

Parameter Value Reference

π 125 Assumed

µ 0.0200 [7]

β 0.6000 Assumed

ϕ 0.0640 [7]

α 0.0360 Assumed

γ 0.0100 [7]

η 0.0630 Assumed

ρ 0.0150 Assumed

δ 0.0456 Assumed

φ 0.0500 Assumed

τ 0.0400 Assumed

φ 0.0500 Assumed

ψ 0.2300 Assumed

θ 0.0023 [7]

p 0.2000 Assumed

q 1.001 Assumed

ω 0.0450 Assumed
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Fig. 18: Effect of varying effective contact rate on recovered

individuals
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Fig. 19: Effect of varying effective contact rate on death

individuals

shows that susceptible individuals decrease due to
effective contact with infectious individuals and join
infectious class.
Figure (4) shows that exposed individuals increase firstly
as a result of some susceptible individual joins exposed
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class because of effective contact with infectious
individuals and decrease due to it join the asymptomatic
and infected classes. Likewise figure (5) and (6) shows
that asymptomatic and infected individuals decrease due
to it join quarantine class. Similarly, figure (7) shows that
quarantined individuals decrease due it recovers from
COVID-19 and join hospital as result of the hardness of
the disease in the quarantined class. Moreover figure (8)
shows that hospitalized individuals decrease due to loss of
immunity and recovered from COVID-19 and decrease
due to it enters the intensive care unity (ICU) class as a
result of the hardness of COVID-19 and figure (9) shows
that recovered individuals decrease due to it loss
immunity and join susceptible class. Also figure (11)
shows that chronic individuals increase firstly as a
consequence some hospitalized individuals joins the
intensive care unity(ICU) and decrease due to it recover
from COVID-19 and join recovered class and died by the
disease and enters the death class and similarly figure(10)
shows that death individuals increase firstly as a result of
some chronic individuals dies in the ICU class and join
the death class and decrease due to death. Finally figure
(12), (13), (14) (15), (16), (17), (18) and (19)
shows that effective contact rate has an effect on reducing
COVID-19 among the community. When the contact rate
is increasing the disease transmission in the community is
increasing and when the contact rate is decreasing the
disease transmission in the community is decreasing. That
is why reducing contact remains among the reasons for
reducing COVID-19.

6 Conclusion and Recommendation

This study examines a mathematical model of COVID-19
transmission dynamics. Furthermore, the existence,
positivity, and boundedness of the formulated model have
been shown, indicating that it is biologically meaningful
and mathematically well posed. Specifically, the model’s
stability analyses were studied utilizing the fundamental
reproduction number. In addition, the solution to the
model equation is numerically enhanced, and the model’s
sensitivity analysis is performed to identify which
parameter has the most impact on disease transmission.
Numerical simulations reveal that each parameter in the
model has an effect on the model variables, and when the
contact rate increases, the transmission increases in the
community, while when the contact rate decreases,
disease transmission decreases. Although combating
COVID-19 infection remains a worldwide issue, the
findings of this study suggest that the government
implement education programs emphasizing the necessity
of voluntary and routine COVID-19 screening. There is
also a need to increase the number of hospitals that deal
with COVID-19 infection and screen more people who
have it. Furthermore, future research should explore
including optimal control against COVID-19 transmission

dynamics in the model.
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