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Abstract: In this paper, using Poisson stochastic processes, we introduce an approach to the problem of the approximate join operation
in random databases. It is shown that the cardinalities of the result sets obtained from an approximate join operation follow this type
of stochastic process. Initially, we treat the case of the approximate join between two random tables, which is accomplished using a
homogeneous bidimensional Poisson process. Further, we extend theobtained result to the case of the multiple join. This generalization
is made through a multidimensional Poisson process. As a consequence, the algorithms that simulate these processes can also simulate
the cardinalities of the sets resulting from the approximate join operation.
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1 Introduction

The uncertainty or randomness of the information is
relevant or even specific to a multitude of research or
activity fields, including computers, physics, biology,
medicine, telecommunications, electronics. Moreover, as
the computer science trends are continuously changing,
this type of information has a significant meaning in the
context of mobile applications and service-oriented
computing [1]. The importance of databases storing
random or uncertain information is also given by the fact
that, generally, besides the uncertainty, these data are
characterized by their considerable volume. Due to its
size, this information is stored and processed in large
databases and data warehouses. In databases containing
this type of data the search and identification are adjusted
in order to support the approximate matching of the
records, instead of the exact match [2,7]. The adjustment
of the relational operations is needed as, in this case, an
exact match query could possibly return empty result sets.

The most costly relational operation in databases is the
join. The big cost of this operation is caused by the fact
that, during its processing, a cartesian product between the
two relations is determined [3]. In high volumes of data,
the optimization of this operation is very important, as it
can make the difference between a real-time processing
and a prohibitive time of response to a query.

Consequently, in the context of random databases, we
have to cope with the optimization of the modified,
approximate join. A useful approach for the optimization
of multiple joins is to estimate the number of records
resulting from each join and then order the sequence of
these operations according to the cardinalities of their
result sets.

The first probabilistic approach to the random
databases field considered relations in which the records
are random vectors following a multidimensional
probability distribution [2]; an estimation of the number
of records resulting from the approximate join operation
was established. In the previous work, we defined the
heterogeneous random databases [4], in which the values
of the columns follow different probability distributions,
and extended the results from the homogeneous case in
this framework. It was concluded that the cardinality of
the result of this operation follows a Poisson probability
distribution, in both cases.

In this paper, a new approach to this estimation is
presented. The result of the approximate join is treated
from the perspective of a bidimensional Poisson
stochastic process. We state and prove the results which
arrised in this context. Further, we generalize these results
to the case of multiple joins, using the multidimensional
Poisson stochastic process. This new approach is
important in the simulation of random databases, as there
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are algorithms that allow the simulation of this type of
stochastic process, both in the bidimensional and
multidimensional case [5].

The second section of this paper presents the main
concepts in random databases and a short state of art of
the research that concluded with the Poisson estimation of
the probability distribution of the approximate join’s
result set cardinalities. The third section introduces the
bidimensional and multidimensional Poisson perspective
of this problem and the results we reached. The fourth
section presents the algorithms for the simulation of the
Poisson stochastic process, both bidimensional and
multidimensional. The article ends with a conclusion
section which briefly emphasizes the main contributions
of the presented research.

2 Overview of the queries result’s cardinality
in random databases

2.1 Concepts

Consider a relationR in a random database. This structure
is described by the relation schemaR(U), where
U = {A1,A2, . . . ,Al} is the set of all attributes in the
relation R; the relation is implemented by a (random)
tableT (R). The table can be regarded as a matrix withm
rows (the tuples) andl columns (the attributes of the
relation). The numberl defines the arity of a tuple in the
relationR [6], while the numberm of tuples in a relation
is referred as the relation’s cardinality (e.g., [8]). Due to
the identification problems that might appear in random
databases, in the research performed in this field [2,9] the
notion of table was rather considered, instead of the
relation. Because a table is a multiset of tuples, its
cardinality is greater or equal to the number of distinct
tuples.

Each attributeAi , for i = 1, l , has an associated
domain of valuesDAi ; thus, the tuples’ values will belong
to the cartesian productDU := DA1 ×DA2 × . . .×DAl . For
each subsetA ⊆ U , the projection corresponding to the
j-th tuplet j is denoted byprA(t j), for j = 1,m. Consider
T =

{

t j
∣

∣ j = 1,m1
}

and S =
{

sj
∣

∣ j = 1,m2
}

two tables
with the attribute setsU1 andU2 and the domainsDU1 and
DU2, respectively [6]. The equi-join operation betweenT
and S, denoted byT ⋊⋉ S, results in a new table whose
records are determined based on equality tests between
the corresponding values in the attributes setsA and B,
whereA ⊆ U1, B ⊆ U2 and|A| = |B|. More precisely, the
result set of this operation contains combined tuplesti , sj
from T and S, respectively, such thatprA(ti) = prB(sj),
1≤ i ≤ m1 and 1≤ j ≤ m2.

Due to the approximate matching problems in random
databases, the equi-join operation [2,4] was replaced by
the approximate join, denoted byT ⋊⋉A≈B S. In order to
define this operation, we have to consider a distanced
between the elements inDA andDB, whereDA andDB are

the projections ofDU1 andDU2 on the attribute setsA and
B. Suppose thatDA andDB are subsets of a metric space
on which the distanced is defined. In the case of numeric
attributes, the Euclidean distance can be considered asd.

Definition 1. [2] The valuesx∈DA andy∈DB areε-close,
ε ≥ 0, if d(x,y)≤ ε.

The result of the approximate join operation is
composed of theε-close tuples according to the given
distance. For the particular caseε = 0, we obtain the
equi-join operation. In what follows, we considerA andB
fixed and we will omit them in the approximate (ε-) join’s
notation.

Definition 2. Consider the random tablesT andS. Theε-
join operation is defined as follows:

T⋊⋉εS= {(x,y) ∈ T ×S|d(xA,yB)≤ ε}

The random variableNε = |T⋊⋉εS|, specifying the
cardinality of the result set of theε-join defined above,
has been a debated subject of research [2,7,9], mainly in
terms of probability distribution’s estimation.

2.2 Probability distribution of theε-join’s
cardinalities

At the beginning of the research concerning the
cardinality Nε , the random tables consisted of records
which followed the same (possibly multidimensional)
probability distribution [2]. Further, we considered the
concept of heterogeneous random table, in which
different subsets of columns can follow different
probability distributions. In this context, in [4] we
proposed two methods of estimation.

Firstly, we generated the histograms for the
cardinalities of the join result between two random tables.
The shape of the histograms suggested that the valuesNε
follow a Poisson distribution, thus we applied theχ2 test
[10] in order to determine that more accurately. Besides,
it could be noticed that there was a threshold ofε up to
which the Poisson distribution was followed byNε .

Secondly, we proved in a sounder manner that the
number of records in the result set obtained in an
ε-operation on random tables follows a Poisson
distribution. The result actually extended the main result
in [2]. The proof was obtained through a Poisson
approximation using the Stein-Chen method [11], which
approximates a probability distributionP by a simpler
distributionQ, easier to define and to use in simulations.
Also, the proof of the Poisson estimation of the
cardinalities distribution uses concepts as entropy [12]
and coincidence probabilities [13]. The difference
between the actual probability and the Poisson one was
measured by the total variation distance [2,14].

Following the previous research for the homogeneous
case and the approaches described above for the
heterogeneous one, we can state that the valuesNε are
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Poisson distributed of parameterλ , where λ = E(Nε),
the mean value ofNε .

3 A multidimensional Poisson process
approach to theε-join in random databases

In what follows, we study the cardinalities of anε-join
operation’s result set through the perspective of a
homogeneous bidimensional Poisson process. The result
that we present will be further generalized to the
multidimensional case.

3.1 Theε-join of two tables from the perspective
of a bidimensional Poisson process

In our setting, we consider the random tablesT, S,
|T| = m1, |S| = m2, whose attributesA and B,
respectively, are supposed to link the two tables in an
ε-join condition. These attributes have compatible
domains of valuesDA and DB, respectively. As these
attributes should have a similar meaning, we suppose that
their values follow the same type of unidimensional
probability distribution on the domainsDA, DB. This
probability distribution has the same parameters for both
attributes.

Without loss of generality, we consider that the
domainsDA andDB are the intervals[0,K], respectively
[0,L], whereK > 0, L > 0. In this case, the result of the
ε-join operation can be represented by points in the
rectangleD = [0,K]× [0,L].

As it can be noticed, in this setting the sets of join
attributes have a single element. Further, we introduce the
bidimensional Poisson process of intensityλ and we
show that the number of records in theε-join operation’s
result follow a process of this type.
Definition 3. [15] A process which consists of random
points in the bidimensional plane is a bidimensional
Poisson process of intensityλ if the following conditions
are satisfied:

1.The number of points in any region of areaΓ is Poisson
distributed of parameterλ Γ.

2.The numbers of points in disjoint regions correspond
to independent random variables.

We will consider that the points in the rectangleD are
uniformly distributed. From the results we mentioned in
section 2.2, the number of pointsNε = ND ,ε in the
rectangleD is Poisson(λ ) distributed, with the parameter
λ specified before as the mean value ofNε . Let ∆ be the
area of the rectangleD . From the uniformity hypothesis
mentioned above, we can consider that the number of
points in a rectangle of areaΓ, included in the rectangle
D , is Poisson distributed of parameterλ · Γ

∆ .
Denote:

λ ′ =
λ
∆
. (1)

Thus, the number of points in a rectangle of areaΓ is
Poisson distributed of parameterλ ′ Γ. Consequently, the
conditions of the definition 3 are satisfied and we can
state the following result:
Proposition 1. The cardinality of anε-join operation
between the tablesT andS, based on the attributesA and
B, respectively, with A and B following the same
probability distribution, forms a homogeneous
bidimensional Poisson process of parameterλ ′ given in
Eq.1.

A consequence of the proposition 1 is the statement of
a relation betweenm2, ε and∆. Suppose that the tableS is
decomposed intom2 tablesSj , 1≤ j ≤ m2, each having a
single recordsj andprB (sj) =B j . Thus, the join operation
is decomposed intom2 join operations between the tables
Sj , 1≤ j ≤ m2, and the tableT.

Denote byN j
ε the number of records obtained in the

join betweenSj and T, 1 ≤ j ≤ m2. From the previous
considerations, we know thatN j

ε is a Poisson random
variable of parameterλ j . We will suppose that the sets of
result records obtained in them2 join operations are
disjoint. Then, the following relation holds:

m2

∑
j=1

N j
ε = Nε (2)

From the property of the sum of Poisson variables [16],
it is known that:

m2

∑
j=1

N j
ε ∼ Poisson

(

m2

∑
j=1

λ j

)

(3)

From the Eq.2, 3 and becauseNε is Poisson distributed
of parameterλ , it results that:

m2

∑
j=1

λ j = λ (4)

Denote Bε (B j) =
{

x∈ DB|d(x,B j)≤ ε
}

and
considermes(Bε (B j)) the measure ofBε (B j). Then,
from proposition 1, we obtain that:

λi = λ ′ ·mes(Bε (B j)) (5)

From the Eq.4 and5, we obtain the following result:
Proposition 2. Consider theε-join operation between the
attributes A and B of the random tablesT and S,
respectively, andBi , 1≤ i ≤ m2, the values of attributeB.
Then:

m2

∑
i=1

mes(Bε (Bi)) =
λ
λ ′

(6)

Becausemes(Bε (B j)) depends onε and λ
λ ′ = ∆,

proposition 2 provides the connection betweenm2, ε and
∆. If we take into consideration the standard Lebesgue
measure, then:

mes(Bε (Bi)) = 4ε2 (7)
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so the Eq.6 becomes:

4m2ε2 = ∆ (8)

We recall that in the previous research [2,4] it has
been seen that the Poisson probability distribution is
followed up to a threshold ofε, which was not
determined. Using the Poisson perspective of theε-join,
this value may be determined. The relation stated in
proposition 2 allows to obtain a value forε which ensures
thatNε is Poisson distributed.

Taking into consideration the result from proposition
1, we can use methods of simulation of the cardinalities
of operations, based on the methods of simulation of the
bidimensional Poisson processes, which are presented in
section 4.

3.2 Generalization to theε-join of n tables

In what follows, the results in section 3.1 are extended to
the case of a multiple join. Consider the random tables
T1,T2, . . . ,Tn, n ≥ 2, and the corresponding attributes
A1,A2, . . . ,An which participate in theε-join operation.
As in the bidimensional case, suppose that the domain of
each attributeA j , 1≤ j ≤ n, is [0,K j ], K j > 0.

We consider the n-dimensional cube
C = [0,K1] × [0,K2] × . . . × [0,Kn], K j > 0 for each
j = 1,n. Similar to the reasoning in the bidimensional
case, the points in this cube are uniformly distributed and
Nε = NC ,ε ∼ Poisson(λ ), with λ = E(Nε).

Proceeding in an inductive manner, we find that the
parameterλ ′ of the Poisson process is

λ ′ =
λ

vol(C )
. (9)

Denote by

T ′ = T1⋊⋉εT2⋊⋉ε . . .⋊⋉εTn−1 (10)

and considerC ′ the corresponding(n−1)-dimensional
cube. As the join operation is closed and associative, it
implies that

T1⋊⋉εT2⋊⋉ε . . .⋊⋉εTn = T ′
⋊⋉εTn (11)

In the inductive step of the proof of Eq.9, we suppose
that the parameterλ ′ of the Poisson process corresponding
to theε-join which produces the tableT ′ is

λ ′ =
λ

vol(C ′)
(12)

From the right-side member of Eq.11we obtain that:

λ ′ =
λ

vol(C ′)
·

1
Kn

=
λ

vol(C )
(13)

The above considerations justify the following result:

Proposition 3. The cardinality of anε-join operation
between the tablesT1,T2, . . . ,Tn, based on the attributes
A1,A2, . . . ,An, n > 2, whereA j , j = 1,n follow the same
probability distribution, forms a homogeneous
multidimensional Poisson process of parameterλ ′ given
in Eq.9.

Consider that the cardinality of the tableTn is mn, mn >

0, and the values of the join attributeAn areA j
n, j = 1,mn.

Generalizing proposition 2 above, we state the following:

Proposition 4. Consider theε-join operation between the
attributesA′ andAn of the random tablesT ′, respectively
Tn, andA j

n, 1≤ j ≤ mn, the values of attributeAn. Then:

mn

∑
j=1

mes
(

Bε
(

A j
n

))

= vol(C ) . (14)

Similarly to the result stated in the bidimensional

case,mes
(

Bε

(

A j
n

))

depends onε and λ
λ ′ = vol(C );

thus, proposition 4 provides the connection betweenmn, ε
and vol(C ). Again, for the standard Lebesgue measure,
this relation is described by the formula:

2nmnεn = vol(C ) (15)

The relation in Eq. 15 allows to determine the
threshold value ofε for which the probability distribution
Poisson is followed in the case of the multipleε-join
betweenn tables.

4 Simulation of bidimensional and
multidimensional Poisson stochastic
processes

The distances between the random points of the
unidimensional Poisson process of parameterλ t,
t ∈ [0,∞), are distributed exponentially of parameterλ
[17]. As a consequence, the simulation of ap points
trajectory of the homogeneous unidimensional Poisson
process of intensityλ [5] can be done with the algorithm
1. This algorithm (1) outputs the sequenceT1,T2, . . . ,Tp
which is a trajectory of the processPoisson(λ ) on the
interval [0,∞). The iterative step of the algorithm uses the
standard exponential variable that can be simulated
through usual simulation methods, such as the inverse or
the rejection method [18].

In the bidimensional case, the simulation of the
Poisson process with the intensityλ on the rectangle
R = [0, t]× [0,1] can be realized through the algorithm2
[5], which actually extends the previous (unidimensional)
method.

In the algorithm2, the integerp is a selection value
which results from the simulation of the random variable
Poisson distributed of parameterλ t.

In section 3.2 we generalized the approximate join
operation ton tables. In this case, the simulation of a
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Algorithm 1 Simulate a Poisson process
Require: λ , p
Ensure: the Poisson trajectoryT1,T2, . . . ,Tp
1: T0 ⇐ 0
2: for i = 1 to p do
3: GenerateE ∼ Exp(1)
4: Ti ⇐ Ti−1+

E
λ

5: end for

Algorithm 2 Simulate a bidimensional uniform Poisson
process
Require: λ
Ensure: the 2-dimensional Poisson trajectory

(U1,T1) ,(U2,T2) , . . . ,
(

Up,Tp
)

1: GenerateT1,T2, . . . ,Tp a Poisson trajectory on[0, t]
2: for i = 1 to p do
3: GenerateUi ∼ U ([0,1])
4: end for

multidimensional Poisson process is needed. The
corresponding algorithm derives further from the previous
algorithm2; thus, one obtains an algorithm for simulating
a uniform Poisson process of intensityλ on the
n-dimensional cubeC = [0,K1]× [0,K2]× . . . [0,Kn].

Denote

V =
n

∏
i=2

Ki (16)

the volume of the (n−1)-dimensional cube
C ′ = [0,T2] × . . . [0,Tn]. The algorithm 3 provides a
method for the simulation of this type of Poisson process.
The vectors obtained as output of the algorithm3 are an
implementation of the Poisson process of intensityλ on
the n-dimensional cubeC . The points Qi = (Xi ,Ui),
1 ≤ i ≤ p, determine a uniform Poisson process of
parameterλ onC .

Algorithm 3 Simulate a multidimensional Poisson process
Require: λ
Ensure: the n-dimensional Poisson trajectory

(X1,U1) ,(X2,U2) , . . . ,
(

Xp,Up
)

1: t ⇐ 0;p⇐ 0
2: repeat
3: GenerateE ∼ Exp(1)
4: p⇐ p+1;t ⇐ t + E

λ
5: Xp ⇐

t
V

6: until Xp ≥ T1
7: for i = 1 to k do
8: GenerateUi ∼ U (I ′)
9: end for

5 Conclusion

This article introduced an approach to the problem of the
approximate join operation in random databases, from the
perspective of the Poisson stochastic processes. This
problem was previously studied from the point of view of
the estimation of the probability distribution of the result
sets’ cardinalities.

There are two main benefits which derive from the
advances presented in this article. The first contribution
consists of the fact that this approach provides a method
for the simulation of the cardinalities of the results of the
approximate join operations. Also, this article proposes a
way to compute the threshold of the values ofε up to
which the Poisson distribution of the cardinalities values,
proved in the previous researches in the domain, is
followed.
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Letiţia Velcescu is
a Lecturer in the Department
of Computer Science
of the Faculty of Mathematics
and Computer Science of the
University of Bucharest. She
received the PhD degree in
Mathematics while pursuing
an academic career in
the same institution. Her main

research interests cover database theory, algorithms and
data structures, modeling and simulation, theory of
probabilities and statistics. She published research papers
in international journals and she participated at scientific
conferences.

c© 2013 NSP
Natural Sciences Publishing Cor.


	Introduction
	Overview of the queries result's cardinality in random databases
	A multidimensional Poisson process approach to the -join in random databases
	Simulation of bidimensional and multidimensional Poisson stochastic processes
	Conclusion

