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Abstract: This paper introduces a novel deep learning model specifically designed for predicting climate change in Saudi Arabia until

the year 2030. The proposed model, called CNN-BRNN, is a hybrid architecture that integrates the strengths of Bidirectional Recurrent

Neural Network (BRNN) and Conventional Neural Network (CNN) models. The model is employed to provide accurate predictions

for four key factors: temperature, air temperature dew point, visibility distance, and air pressure at sea level. Each of these factors is

individually predicted to analyze the climate change trends in Saudi Arabia up to 2030. The CNN-BRNN model is compared to five

other machine learning regressors: Random Forest, Support Vector, K-Nearest Neighbor, Gradient Boosting, and Dummy regressor.

The outcomes demonstrate that the CNN-BRNN model performs better than the other models. The predictions generated by the CNN-

BRNN model reveal several significant climate change trends projected for Saudi Arabia until 2030. These trends include a projected

20-degree increase in the temperature, a rise in air temperature dew point, abnormal reduction in air visibility distance, and decreased

air pressure at sea level. These findings highlight the potential impacts of climate change on Saudi Arabia’s environment. Building

upon the obtained results, decision-makers can successfully handle the challenges caused by climate change, guaranteeing the nation’s

sustainability in the future.
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1 Introduction

Climate change presents an urgent and significant threat,
causing widespread harm to both natural and urban
environments and resulting in global economic losses
surpassing 500 billion [1]. Both quantum computing [2,3]
and classical computing systems push AI to provide a
partial solution by utilizing online resources [4,5] to
deliver timely recommendations derived from accurate
climate change forecasts. The versatility of AI extends to
various applications aimed at mitigating climate change’s
adverse effects, such as improving energy efficiency [6],
carbon sequestration and storage [7], predicting
renewable energy [8], managing power grids [9],
designing sustainable buildings [10], optimizing
transportation systems [11], enhancing smart agriculture
[12], optimizing industrial procedures [13], decreasing
deforestation [14], and creating resilient cities [15]. In this

study, we thoroughly address the main problem which
revolves around the urgent and significant threat posed by
climate change. We highlight the widespread harm caused
to both natural and urban environments, along with the
substantial economic losses exceeding billions of dollars.
We emphasize the critical need for effective solutions to
mitigate the negative effects of climate change and fulfill
the objectives of sustainable development. Moreover, we
underscore the role of artificial intelligence (AI) in
providing timely recommendations based on precise
climate change forecasts, thereby offering partial
solutions to this complex problem. By delving into
various applications of AI in mitigating climate change
impacts, such as improving energy efficiency, managing
power grids, and optimizing transportation systems, we
illustrate the broad scope of AI’s potential contributions
in this domain. We also discuss the challenges associated
with predicting climate patterns, including data
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availability constraints, and highlight the role of machine
learning techniques in addressing these challenges.

Researchers have discovered that improving the
efficiency of energy can significantly help lessen the
impact of climate change [16,17,18]. Smart
manufacturing has the capacity to reduce waste, energy
usage, and carbon emissions by 30–50% [19]. Moreover,
AI’s integration in the natural gas sector, improving
weather prediction accuracy by approximately 70%,
underscores its potential in enhancing climate-related
forecasting [20]. Integrating intelligent power grids with
AI has the capacity to increase efficacy of power systems,
leading to a reduction in costs of electricity by around
10–20%. Intelligent transportation systems have the
potential to decrease carbon emissions by around 60%
[21]. Furthermore, AI’s role extends beyond mitigation
efforts; it plays a vital role in fostering sustainability by
streamlining natural resource management and bolstering
the resilience of vulnerable areas [23]. According to the
2018 international report on climate change, annual
emissions of greenhouse gases from the globe are still
rising, threatening severe consequences unless addressed
within a 30-year timeframe. This necessitates both
mitigation efforts, focusing on emission reduction, and
adaptation strategies, preparing for inevitable
climate-related challenges [1]. Adaptation necessitates
strategic preparation for the capacity to endure and
successfully address climate-related difficulties and
catastrophic incidents [24]. AI emerges as a valuable tool
in both mitigating and adapting to climate change, aiding
in flood and drought hazard mitigation and supporting
adaptation measures such as crop monitoring for
enhanced food security [25]. From an adaptation
perspective, remote sensing methods for climate
prediction may be utilized to monitor crops and anticipate
yields, therefore enhancing food security in the presence
of droughts and other severe weather conditions [26]. The
challenges in predicting climate patterns are often
compounded by insufficient data availability, hindering
accurate forecasting. AI, particularly machine learning,
aims to address by identifying and leveraging connections
between climatic variables. Using pattern identification
and feature extraction techniques may enable us to
discern more valuable correlations within the climate
system, while regression models might help us quantify
non-linear associations between interconnected variables
[27].
The problem addressed in this paper is to provide
sustainable development for sustainability indictors based
on predicting climate change. Meeting current demands is
referred to as sustainable development while ensuring that
future generations can also meet their own demands. It
entails weighing the effects of decisions on the
environment, society, and economy in order to make
long-term well-being-promoting choices. Governments
and legislators require scientific predictions of climate
change to design effective plans and enact laws that
mitigate the consequences of climate change and fulfill

the objectives of sustainable development [28,29,30].
Machine learning (ML) can be extremely important for
supplying future information about natural problems,
including climate change. By employing ML techniques
such as optimizers and ensemble regression models,
promising outcomes can be achieved in forecasting the
future of climate change factors [31]. Several
prediction-related factors are considered when
anticipating climate change, including temperature, air
temperature dew point, visibility distance, and air
pressure at sea level. These factors have significant
implications for various sectors, such as agriculture,
flooding, dense fog, shipping, aviation, transportation,
tourism, and public safety [31,32].

This paper contributes to the ongoing efforts in adaptation
and mitigation of climate change by leveraging machine
learning and deep learning methods to predict climate
changes and impacts on the development of sustainable
development. Building upon the recognized potential of
AI in addressing climate-related challenges across various
sectors, this study focuses on integrating a diverse set of
ocean-atmospheric factors into predictive models.
Specifically, it employs a hybrid Bidirectional Recurrent
Neural Network (BRNN) and Conventional Neural
Network (CNN) model trained on key climate variables
including temperature, air temperature dew point,
visibility distance, and air pressure at sea level. The
methodology involves rigorous evaluation using standard
metrics such as MAE, RMSE, MedAE, MSE, and R2,
alongside a comparative analysis of five ML regressors,
namely the Gradient Boosting (GB), Random Forest
(RF), Nearest Neighbor (KNN), Support Vector
Regressor (SVR), and Dummy Regressor (DR). The
application of the CNN-BRNN model for forecasting
future climate predictions up to 2030 in Saudi Arabia
further underscores its practical utility. The proposed
method introduces several significant advancements,
which can be listed as follows: 1. Integration of Diverse
Ocean-Atmospheric Factors: The study incorporates a
wide range of ocean-atmospheric factors, including
temperature, air temperature dew point, visibility
distance, and air pressure at sea level, into predictive
models, enhancing the comprehensiveness of climate
change forecasting. 2. Hybrid CNN-BRNN Model:
Introducing a novel hybrid model combining BRNN and
CNN architectures, which effectively captures temporal
dependencies and spatial correlations in climate data,
leading to improved prediction accuracy. 3.
Comprehensive Evaluation and Comparison: Rigorous
evaluation of the proposed model using standard metrics
such as MAE, RMSE, MedAE, MSE, and R2, alongside a
comparative analysis with five commonly used machine
learning algorithms, providing robust validation of its
performance. 4. Long-Term Climate Prediction:
Application of the CNN-BRNN model to forecast future
climate predictions up to 2030 in Saudi Arabia, offering
valuable insights into long-term climate trends and
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facilitating proactive planning and decision-making. The
structure of the paper is as follows: The review of the
literature is summarized in Section 2. Section 3 outlines
the methods used and the model development process.
Section 5 presents the findings and room for more
investigation, whereas Section 4 discusses the results.

2 Literature review

Recent research explores the nexus of environmental
sustainability, urban resilience, and predictive modeling.
Supervised machine learning segmentation aids coastal
region management [33], complementing AI applications
in stormwater infrastructure for smart cities [34].
Sustainable development studies, like Uruguay’s
environmental policies amidst globalization [35], align
with renewable energy analyses, such as seasonal solar
system usage in Iran [36]. Predictive modeling
advancements, integrating neural architectures with linear
regression for traffic predicting [37], parallel
investigations into urban infrastructure vulnerabilities,
like small-scale storm sewer geysers [38]. For climate
change prediction, various predicting issues can be
considered, e.g., temperature, sea level pressure,
visibility, and dew predictions. This section discusses
some of the studies focused on these issues. S.P. Nitsure
et al. [39] utilized Artificial Neural Network (ANN) and
Genetic Programming (GP) methods to forecast sea levels
indirectly. They achieved this by anticipating sea level
anomalies (SLAs) utilizing the hourly-collected local
wind shear velocity ingredients as inputs from the specific
time to the preceding 12 hours. The investigation was
carried out at four locations situated in close proximity to
the shoreline of the United States. The predictions made
by the GP algorithm are superior to those made by the
ANN algorithm. The study yielded a maximum
correlation coefficient of 0.998, MAE of 0.106 m, a
scatter index (SI) of 0.031, and a coefficient of efficiency
(CE) of 0.995 for 1-day GP predictions. Rifat Tur et al.
[40] developed methodology for predicting fluctuations in
sea levels by utilizing data from sea level elevation
measurements and meteorological parameters gathered
from a tidal gauge located in Turkey. Multiple prediction
models were constructed utilizing adaptive neuro-fuzzy
inference system and linear regressions methods. The
results demonstrated that using meteorological factors as
input variables greatly improved the computational
accuracy of the MLR methods by up to 33% in predicting
short-term sea levels. Furthermore, the findings provided
a more accurate comprehension that ANFIS outperformed
MLR in predicting sea level utilizing lagged sea level
observations (SC1), as well as combined meteoro logical
variables observations and lagged sea level (SC2) as input
combinations. Tayeb Brahimi [28] suggested employing
the ANNs technique to forecast the daily wind speed
throughout several regions in Saudi Arabia. The proposed
approach is a feed-forward NN algorithm with the

back-propagation method for supervised learning. The
findings revealed that the optimal configuration is
achieved by employing 30 neurons in the hidden layers,
which corresponds to the lowest RMSE and the
maximum R. An analysis of five ML methods, including
Random Forest (RF), Random Tree (RT), ANN, Support
Vector Machines (SVM), and RepTree, showed that RT
has a small correlation and a highly significant root mean
square error. Mohammed Baljon et al. [41] outlined the
essential features necessary for forecasting precipitation.
They employed the ML technique as a novel classification
method to evaluate whether the anticipated rainfall would
be moderate or intense.

The performance measures are considered using
several metrics, including RMSE, accuracy, MAE, recall,
error, and F-measure. The results demonstrated that
Function Fitting Artificial Neural Network classifier
(FFANN) outperformed other classification techniques.
The DT algorithm accomplished a 96.1% success rate,
surpassing the RF classifier by 2.22 %, the KNN classifier
by 7.3%, the SVM classifier by 4.99%, the ANN classifier
by 4%, and the MLR classifier by 13.33%. Authors in
[42] tested 36 Regressors for forecasting the indoor
temperature in an intelligent building for three straight
hours. The comparison was based on real data gathered
every ten minutes from both a weather station and a smart
building. The models utilized in machine learning are
Random Forest, Gradient Boosting Machine, and Extra
Trees. RMSE and R were used to evaluate the models.
According to the findings, the Extra Trees had a smaller
RMSE of 0.058 and a higher correlation value of 0.97. An
investigation by three ML regressors was used in research
by [43] to forecast daily rainfall in Ethiopia from 1999 to
2018 using RF, XGBoost, and MLR.

The weather station provided a dataset with several
characteristics including rainfall, evaporation, maximum
temperature, lowest temperature, humidity, sunshine,
wind speed, date, month, and year. For MLR, RF, and
XGBoost, the Mean Absolute Error (MAE) values are
respectively, 4.97, 4.49, and 3.58. For RF, MLR, and
XGBoost, the corresponding RMSE values are 8.61, 8.82,
and 7.85. Chimango Nyasulu et al. [44] conducted a
Comparative analysis of 10 ML Regressors and a
suggested Ensemble Approach. The Ensemble Model
outperformed the ten basic models, according to the
experimental results. The following were the Ensemble
Model findings for each parameter: The MAE, RMSE,
MSE, and R for relative humidity were 4.0126, 29.9885,
5.4428, and 0.9335, respectively. The MAE, RMSE,
MSE, and R for the minimum temperature were,
respectively, 0.7908, 1.0515, 1.1329, and 0.9018. The
MAE, MSE, RMSE, and R for maximum temperature
were 1.2515, 2.8038, 1.6591 and 0.8205. For rainfall, the
coefficient of determination was 0.7733, the MAE was
0.2142, the MSE was 0.1681, and the RMSE was 0.4100.
The results demonstrated that the Ensemble Model can be
utilized to anticipate maximum and minimum
temperatures, relative humidity, and rainfall. Therefore, it
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can be shown from the literature on ocean and
atmospheric research that no work has been done on
temperature, sea level pressure, visibility, or dew forecast
in the same dataset.

Thus, there is a scope for exploring CNN and BRNN
in order to improve the precision of temperature, air
temperature dew point, visibility distance, and air
pressure at sea level predictions utilizing the main
causative factors.

3 Problem Statement and Methodology

The problem addressed in this study is the urgent need for
sustainable development procedures amidst the escalating
challenges of climate change. Both human societies and
natural ecosystems are seriously threatened by climate
change, leading to widespread environmental
degradation, economic losses, and social disruptions. To
combat this pressing issue, effective policies are needed
to reduce the effects of climate change while promoting
long-term well-being and resilience. However, designing
such strategies necessitates accurate predictions of future
climate changes and their implications. This study
focuses on leveraging ML and DL methods to improve
predictive models capable of forecasting key climate
variables. By integrating a wide range of
ocean-atmospheric factors and employing advanced
modeling techniques, the aim is to provide
decision-makers with actionable insights for formulating
sustainable development policies and adaptation
measures. The proposed framework for climate change
prediction in the first phase is described in Figure 1.

This paper’s primary objective is to investigate the
influence of sustainability development based on
predicted changes in atmospheric and oceanic factors
resulting from climate change, specifically focusing on
four factors: temperature, air temperature dew point,
visibility distance, and air pressure at sea level. This
objective is accomplished in two phases. In the first
phase, five traditional machine learning models (RF,
KNN, SVR, GB, and DR) and a deep learning model
(CNN-BRNN) are trained using two datasets to predict
the four identified factors. The CNN-BRNN model
combine the CNN and BRNN models. Performance
evaluation metrics are used to assess the models, and the
outcomes demonstrate that the CNN-BRNN model
performs better than the traditional ones in all four
factors. In the second phase, because the CNN-BRNN
model outperforms the other five traditional machine
learning models, it is then utilized to predict four climate
predictions. The first scenario involves forecasting the
temperature for the period of May 2019 to May 2030 in
SAUDI ARABIA. The second scenario focuses on
predicting the temperature dew point for the same time
frame in Saudi Arabia. The third scenario aims to forecast
the visibility distance, while the final scenario
concentrates on predicting the sea level pressure, all

spanning May 2019 to May 2030 in SAUDI ARABIA.
The subsequent subsections provide a detailed description
of the proposed methodology.

Table 1: The Statistical analysis of first dataset.

Attributes mean min std max

year 2017.7100 2017.0 0.7061 2019.0

month 6.0507 1.0 3.5216 12.0

day 15.6911 1.0 8.788 31.0

hour 12.5369 1.0 6.9103 24.0

minute 0.1311 0.0 1.9707 59.0

temp 24.723 -4.0 8.8809 50.0

wind 12.9571 -1.0 8.7116 163.0

barometer 1015.4554 904.0 6.9708 1101.0

visibility 11.053453 -1.0 7.0530 161.0

3.1 Dataset Description

We used two datasets- the first one is utilized to predict
temperature in SAUDI ARABIA for ten years, and the
second one is employed to predict wind speed, sea level
pressure, visibility, and dew. The first dataset is available
at: https://www.kaggle.com/datasets/esraamadi/saudi-
arabia-weather-history, with 249023 instances and 14
features. The second dataset is available at:
https://datasource.kapsarc.org/explore/dataset/saudi-
hourly-weather-data/information/. The second dataset
contains 15 Governorates with 1048574 instances and 23
features. The two datasets are divided into 70% for
training set, 15% for validation set to tune the
hyperparameters, and 15% for testing set to evaluate the
model’s performance. For the first dataset, the number of
instances for training is 174,317, for validation is 37,353,
and for testing is 37,353. For the second dataset, the
number of instances for training is 734,002, for validation
is 157,286, and for testing is 157,286. The statistica
analysis and heat map of the first dataset are described in
Figure 2 and Table 1. Additionally, the statistical analysis
and heat map of the second dataset are represented in
Figure 3 and Table 2. Heat map analysis is an essential
tool for analyzing and visualizing data, especially when
dealing with large data sets with many features. Here are
several reasons why heatmap analysis is important for
analyzing data set features. Heat maps are excellent for
visualizing the correlation between different features in a
data set. By representing correlations through color
gradients, heat maps can quickly show which features are
positively or negatively correlated, which is critical for
understanding relationships within data. Trends and
patterns that might not be immediately obvious from raw
data can be revealed on heat maps. By displaying the data
in a matrix format, it becomes easier to see clusters or
clusters of attributes with similar behaviors. It is easy to
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Table 2: The Statistical analysis of first dataset.

Attributes mean min std max

Wind Direction Angle 277.1818 229.74 180.0 999.0

Wind Speed Rate 35.54949 171.37 0.0 999.9

Sky Ceiling Height 45855.23 37878 3600.0 9999

Visibility Distance 20425.24 99457 9900.0 9999

Air Temperature Dew Point 58.1697 218.31 1.7 999.9

Air Temperature 63.56969 217.06 7.0 999.9

Atmospheric Sea Level Pressure 9908.5 909.31 952.3 9999

Fig. 1: Proposed Framework for Climate Change Prediction in Saudi Arabia.
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Fig. 2: Heat Map of the First Dataset’s Ocean and Atmosphere Parameter Correlation Matrix.

spot outliers or anomalies in a heat map due to distinct
color differences. This is important to clean the data and
ensure the quality of the dataset before further analysis.
Heatmaps can aid in feature selection by showing features
that have strong associations with the target variable. This
helps build more efficient and accurate predictive models
by focusing on the most relevant attributes [56,37].
Figure 2 shows a heat map matrix, that shows the
correlation between the first dataset features. In this case,
the features are minute, hour, day, month, year, wind
speed, temperature, barometer, and visibility. The
correlation coefficient between two features varies
between −1 and 1. A perfect positive correlation is
represented by a correlation coefficient of 1, a perfect
negative correlation is represented by −1, and no
correlation is represented by 0. Some observations from

the heat map matrix in Figure 2 are:
• A moderate positive correlation between temperature
and barometric pressure (0.24).
• A weak negative correlation between temperature and
visibility (-0.00).
• A strong positive correlation between wind speed and
barometric pressure (0.13). • A weak negative correlation
between wind speed and visibility (-0.21).
• A weak positive correlation between barometric
pressure and visibility (0.03).
Figure 3 is a heatmap matrix, which shows the correlation
between the features of the second dataset. The features
are wind direction angle, wind speed rate, sky ceiling
height, visibility distance, air temperature, air temperature
dew point, and air pressure at sea level. Some
observations from the heat map matrix in Figure 3 are:
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Fig. 3: Heat Map of the Second Dataset’s Ocean and Atmosphere Parameter Correlation Matrix.

• Wind direction angle has a weak positive correlation
with sky ceiling height (0.17).
• Wind direction angle has a weak positive correlation
with atmospheric sea level pressure (0.04).
• Wind speed rate has a weak negative correlation with
sky ceiling height (-0.07).
• Wind speed rate has a very weak negative correlation
with visibility distance (-0.02).
• Sky ceiling height has a moderate positive correlation
with air temperature (0.23).
• Sky ceiling height has a moderate positive correlation
with air temperature dew point (0.23).
• Air temperature has a perfect positive correlation with
air temperature dew point (1.00). This is likely because
the data was collected at a single time or location, where

the temperature and dew point would be very similar.
• Visibility distance has a weak positive correlation with
atmospheric sea level pressure (0.01).

3.2 Min-Max Normalization

During preprocessing, the affecting factors’ values are
adjusted to a specified limit using the Min-Max
normalization. The goal of this most basic type of
normalization is to adjust every variable to lie in the
interval [0,1]. Equation (1) shows that for every value in
the set of observed values of x, the variable Z is modified
to a new value within the interval [0,1] [45].

Zi =
xi −Min

Max−Min
.
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Fig. 4: Architecture of CNN-BRNN Model.

3.3 The proposed and Reference Models

3.3.1 CNN-BRNN

CNNs primarily rely on a supervised learning procedure
that is motivated by the way people naturally focus on
visuals. Since CNNs do not require any kind of feature
extraction preparation, they are preferred over other
machine learning models. CNNs belong to a class of deep
neural networks that includes convolutional, non-linear
activation, and max-pooling layers. One of CNN’s
essential layers is the convolutional layer, is where
convolution is executed. Kernels are used in the
convolutional layer to process the incoming data. The
convolution of every and each output of the convolutional
layer yields feature maps [46,47]. The process of
convolution can be illustrated as illustrated in Eq. (1).

s(i, j) = (X ∗W)(i, j)+ b =
nin

∑
k=1

(Xk ∗Wk(i, j)+ b). (1)

where nin represents the tensor’s final dimension number
or input indices, Xk denotes the source index of kth, the
kth sub-convolution matrix is represented by Wk, and
s(i, j) indicates the specific element value in the outcome
matrix associated with the convolution kernel W . The
Rectified Linear Unit (ReLU) function, defined as
f (x) = max(0,x), is frequently used to represent the
non-linear layers output. ReLU function sets the value of
any negative input to 0, while leaving positive values
unchanged [48]. The BRNN consists of both a forward
RNN and a backward RNN. The BRNN does reverse
feature processing based on the sequencing data’s forward
feature processing. This property can comprehensively
account for the bidirectional correlation between factors
[49,50]. The initial input sequence data unit x

j
embededi1

was fed into the forward operation’s initial RNN cell,

while the final input sequence data unit (x j
embededi4

) was

fed into the second RNN for the reverse operation. The

output hidden layer sequence (h j
i1,h

j
i2,h

j
i3,h

j
i4)was created

by combining the outcomes of the forward and reverse
calculations. The operational procedure of BRNN was
mathematically defined by Eq.(3-5).

h
(
it j( f )) = tanh(W1x

j
embededit

+W2h
j

i(t−1)
), (2)

h
( j(b))
it = tanh(W1x

j

embededit
+W2h

j

i(t−1)
, (3)

h
j
it = h

( j( f ))
it ⊗ h

j(b)
it . (4)

where ⊗ represents the concatenation operation, h
( j( f ))
it

and h
j(b)
it indicate the hidden outputs of the tth forward

and backward RNN cell. Due to the strong bidirectional
dependency in the the sample data’s feature sequence, it is
very easy to understand the interaction between the
different variables [50]. The design of CNN-BRNN
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Fig. 5: Learning and testing curve. The mean squared absolute error as a function of the running epochs for the CNN-BRNN model

used in forecasting climate temperature.

architecture is demonstrated in Figure 4 that are based on
the given configuration:
Input Layer: The input to the model is a sequence of
vectors, where each vector has a length of 14 for the first
dataset and 23 for the second dataset. The input shape is
(1, 14, 1) for the first dataset and (1, 23, 1) for the second
dataset.
Convolutional Layers: 128 filters with a kernel size of 10
and make up the first convolutional layer. 64 filters with a
kernel size of 7 comprise the second convolutional layer.
16 filters with a kernel size of 5 make up the third
convolutional layer. All convolutional layers use the
ReLU activation function.
Max-Pooling Layer: After the third convolutional layer, a
max-pooling layer with 2x2 size is applied to reduce
spatial dimensions of the input.
BRNN Layer: max-pooling layer’s output is utilized in a
bidirectional recurrent neural network layer with 256
hidden units. The BRNN layer uses the LSTM cell.

Fully Connected Layer: A fully connected layer of 64
neurons receives the output of the BRNN layer and
applies the ReLU activation function.
Output Layer: The linear activation function is used in the
output layer and consists of one neuron.
The sigmoid function is utilized as the output layer’s
activation function. The model’s batch size is 64 with
0.001learning rate, Adam optimizer, 48-time steps, and
50 epochs. The pseudocode of the proposed CNN-BRNN
model is described in Algorithm 1. The strength of the
proposed method is that, by incorporating CNN and
BRNN, the model exploits the strengths of both
architectures. The CNN efficiently extracts spatial
features, while the BRNN component captures temporal
dependencies, leading to a comprehensive understanding
of the data and improving the process of the prediction.
The weakness of the proposed method is that the model is
computational complexity, because incorporating CNN
and BRNN requires more processing power and large

c© 2024 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1354 F. Aljuaydi et al.: A Deep Learning Prediction Model to Predict Sustainable ...

Fig. 6: Actual temperature vs estimated temperature for CNN-BRNN.

Fig. 7: Future temperature prediction until 2030 using the CNN-BRNN model.

memory. Also, due to the model complex, this can lead to
overfitting.
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Fig. 8: The learning and testing curves. The mean squared absolute error as a function of the running epochs for the CNN-BRNN model

used in forecasting climate sea level pressure.

Table 3: Evaluation metrics for assessing the proposed approach.

Metric Name Metric Abbreviation Value

Mean Absolute Error MAE 1
n ∑

n
i=1 |Prei −Acti|

Mean Square Error MSE 1
n ∑

n
i=1(Prei −Acti)

2

Root Mean Square Erro RMSE

√

1
n ∑

n
i=1(Prei −Acti)2

Median Absolute Error MedAE median(|Pre1 −Act1|, ..., |Pren−Actn|)

Coefficient of determination R2 R2 = 1− ∑
n
i=1(Acti−Prei)

2

∑
n
i=1(∑

n
i=1(Acti)−Acti)2

3.3.2 Random Forest (RF) Regressor

Using a collection of trees is the optimal method for
enhancing the predictive accuracy of decision trees.
Random Forest refers to a set of regression trees that are
constructed in a random manner. The Random Forest
Regressor is well-suited for real-time applications across
several areas, including language modeling [52],
bioinformatics [53], species distribution modeling [54],
and ecological modeling [55]. The dataset is divided into

subgroups and several decision trees are trained. The final
outcomes are determined by majority voting, where the
outcomes are averaged. Thus, when compared to
XGBoost and ANN, RF was demonstrated to be the most
effective methodology through bootstrap aggregation and
replacement techniques [56].
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Fig. 9: Actual atmospheric sea level pressure vs predicted atmospheric sea level pressure for CNN-BRNN performance.

Table 4: Hyperparameters for the five traditional machine learning regression models.

Models Hyperparameters

RF Trees number in the random forest is No. of estimators = 10.

Knn KNN Neighbors number is No.neighbors= 5.

The ”distance” weight function is used, which assigns weights to neighbors based on their distance.

SVR The tolerance for stopping criteria during training is Tol = 0.001.

The regularization parameter is C = 1. The kernel is ”rbf” (Radial Basis Function).

DR The training set prediction is set to mean, so Strategy = “mean”.

GB The learning rate for gradient boosting is 0.00001. The number of boosting stages is 50.

The maximum depth of the individual regression estimators is 2.

Table 5: The proposed CNN-BRNN model and the regression models outcomes for predicting the temperature using the first dataset.

Model MSE MAE MedAE RMSE R2

CNN-BRNN 1.27×10−05 0.0022 0.0014 0.0034 99.61%

RF 0.0024 0.0066 0.0051 0.0072 95.17%

KNN 0.0030 0.0070 0.0058 0.0079 94.76%

SVR 0.0041 0.0077 0.0061 0.0082 92.59%

GB 0.0046 0.0079 0.0065 0.0085 91.26%

DR 0.0050 0.0083 0.0067 0.0090 90.88%

Table 6: The proposed CNN-BRNN model and the regression models outcomes for predicting atmospheric sea level pressure using the

second dataset.

Model MSE MAE MedAE RMSE R2

CNN-BRNN 0.0103 0.0818 0.0639 0.1019 98.61%

RF 0.0355 0.0950 0.0735 0.2478 94.29%

KNN 0.0388 0.0976 0.0779 0.2731 93.56%

SVR 0.0421 0.1829 0.0833 0.3677 93.22%

GB 0.0458 0.2271 0.0869 0.3919 92.71%

DR 0.0510 0.2627 0.0919 0.4318 91.98%
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Fig. 10: The learning and testing curves. The mean absolute error as a function of epochs number for the CNN-BRNN model used in

forecasting climate visibility distance prediction.

Table 7: The proposed CNN-BRNN model and the regression models outcomes for predicting visibility distance using the second

dataset.

Model MSE MAE MedAE RMSE R2

CNN-BRNN 0.0100 0.0807 0.0688 0.1009 98.73%

RF 0.0428 0.0973 0.0769 0.2861 94.20%

KNN 0.0449 0.0990 0.0812 0.3414 93.39%

SVR 0.0534 0.2624 0.0856 0.3859 92.96%

GB 0.0559 0.2811 0.0885 0.4192 92.70%

DR 0.0591 0.3183 0.0912 0.4468 92.06%

3.3.3 K-Nearest Neighbor (KNN) Regressor

KNN is an instant-based learning approach where the
function is assessed, and all computations are deferred
until the classification stage. For regression issues, the
variable’s value can be conveyed to regular KNN values
using the same procedure. This method may be employed
to assess the significance of contributions made by

neighboring individuals, with closer neighbors having a
greater influence on the average outcome compared to
more distant ones. In a regression issue, the prediction is
ascertained by computing The mean of the results of the
nearest neighbors [57].
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Fig. 11: Actual visibility distance vs predicted visibility distance for CNN-BRNN performance.

Table 8: The proposed CNN-BRNN model and the regression models outcomes for predicting air temperature dew point using the

second dataset.

Model MSE MAE MedAE RMSE R2

CNN-BRNN 0.0098 0.0798 0.0681 0.0999 98.67%

RF 0.0348 0.0925 0.0733 0.2486 94.88%

KNN 0.0378 0.0951 0.0756 0.2751 94.62%

SVR 0.0413 0.0979 0.0791 0.3159 94.29%

GB 0.0553 0.1265 0.0825 0.3568 94.02%

DR 0.0579 0.1645 0.0858 0.3811 93.75%

3.3.4 Support Vector Regressor (SVR)

The support vector machine is a prevalent data mining
technology utilized for classification and pattern
identification. SVM has notable characteristics such as
significant performance in dealing with non-linear data,
enhanced efficacy in high-dimensional domains, and the
capability to generalize [58]. In order to assess the linear
relationship between the multi-dimensional inputs and the
one-dimensional output, the Support Vector Regression
(SVR) method seeks to transform the input data into a
high-dimensional feature space and identify the best
hyperplane. This allows for solving non-linear problems
in a space with many dimensions [59]. The ideal
hyperplane is determined only by a restricted training
data set referred as the support vectors. These support
vectors are the sample data that meet the boundary
requirement [60]. Incorporating an explanation of kernel
functions and their role in SVR enhances the
understanding of how the model operates and its ability to
handle complex data relationships. In SVR, the process of
converting input data into a high-dimensional feature

space and identifying an optimal hyperplane to assess the
linear relationship between multi-dimensional inputs and
a one-dimensional output is facilitated by the use of
kernel functions. Kernels are mathematical functions that
allow SVR to implicitly map the input data into a space
with more dimensions, where it might be more easily
separated or approximated by a hyperplane. Commonly
used kernels in SVR include polynomial, linear, sigmoid
kernels, and radial basis function (RBF) [61]. Among
these, the RBF kernel is particularly popular due to its
capacity to represent intricate, nonlinear relationships
between input and output variables. The input data points
are mapped onto a higher-dimensional space, where a
linear relationship could be more obvious, using a kernel
that computes the similarity between them in the original
space. By leveraging appropriate kernels, SVR effectively
models nonlinear relationships in the data while still
benefiting from the mathematical framework of linear
regression in the higher-dimensional feature space.
Through this procedure, SVR is able to determine which
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Fig. 12: The learning and testing curves as a function of the mean absolute error in epochs number of the running epochs for the

CNN-BRNN model used in forecasting the presence of dew in the air temperature climate.

hyperplane best fits the training set and has the best
generalization to new data points [62].

3.3.5 Gradient Boosting (GB) Regressor

GB is an ML algorithm [63] that builds a strong classifier
for regression and classification applications by
combining many weaker classification techniques,
frequently decision trees. The system is constructed
incrementally, similar to previous methods of boosting,
and is made more generalized by making the most of a
suitable cost function. In GB approach, misclassified
cases in one phase are assigned greater importance with
high weight for the subsequent step. The advantages of
GB encompass rapid processing and high predictive
accuracy. This strategy has a strong resemblance to
Adaptive Boosting, but with the disadvantage of bad
influence on outliers and overwhelmed by noisy data [?].

3.3.6 Gradient Boosting (GB) Regressor

DR technique is often regarded as a standard method
because to its reliance on straightforward criteria to
accomplish prediction. The foundation for forecasting can
be derived from either user-determined constants or the
median, quantile and mean, of the training set. It
functioned as a benchmark for assessing other models. In
order to utilize dummy parameters, it is necessary to
transform nominal data. The dummy parameter serves as
a numerical indication for different subsamples, in
regression analysis. A dummy variable is used to indicate
the presence of more than unique treatment groups in the
research design. A dummy variable is used to assign a
binary value of 1 to subjects that belong to the interest
group while subjects in the comparative group are
assigned a value of 0 [31,64].
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Fig. 13: Actual air temperature dew point vs predicted air temperature dew point for CNN-BRNN performance.

Fig. 14: Future air temperature dew point prediction until 2030 using the CNN-BRNN model.

3.3.7 Evaluation metrics

The proposed CNN-BRNN model is evaluated using
performance measurements [25,26,65] as illustrated in
Table 3. where n denotes the dataset sample size, and
Acti, prei are the ith actual and predicted values.

4 Experimental and Results

Jupyter Notebook version 6.4.6 is used for executing the
experiments in this paper. It is a powerful environment for
creating, conducting, and recording experiments. It

supports several computer languages, including Python
3.8. All experiments are conducted on the same platform,
with Intel Core i5 processor, 16 GB storage capacity, and
Microsoft Windows 10 PC. In these experiments, we
introduce a deep learning model named CNN-BRNN, and
its performance is compared against five traditional
machine learning models: RF, KNN, SVR, GB, and DR.
To evaluate the models, we employed five metrics that are
explained in Table 3. The experiments are conducted
using two datasets, one for predicting future temperatures
up to 2030 and another for predicting three climate
predictions —namely, atmospheric sea level pressure,
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Fig. 15: Future visibility distance until 2030 using the CNN-BRNN model.

Fig. 16: Future atmospheric seal level pressure until 2030 using the CNN-BRNN model.

visibility distance, and air temperature dew point. These
predictions are made using the proposed model. The
topology of the proposed CNN-BRNN model comprises
an input layer, three convolutional layers, single
max-pooling layer, single bidirectional recurrent neural
network layer, fully connected layer and one output layer.
There are 128 filters in the first convolution layer, and the
kernel size is 10. The second convolutional layer consists
of 64 filters and a kernel size of seven. The third
convolutional layer consists of 16 filters and a kernel size
of five. The 2x2 max-pooling layer is used to minimize
the input’s spatial dimensions. There are 256 hidden units

in the BRNN layer. A fully connected layer of 64 neurons
receives the output of the BRNN layer and applies the
ReLU activation function. In the output layer, the sigmoid
function is used as the activation function. The optimizer
used for the model is Adam optimizer; the batch size is
64; the number of epochs is 50; the learning rate is 0.001.
Benchmarking the proposed CNN-BRNN model against
the five classical ML regression models (RF, SVR, KNN,
GB, and DR) yields comparable performance results.
Hyper parameter values for these models are presented in
Table 4, outlining the specific details for each regression
model employed in this research. Table 5 presents the
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Algorithm 1 Pseudocode of CNN-BRNN

1: Initialize the CNN-BRNN architecture.

2: for iteration = 1 to the number of iterations do

3: Initialize the training data population.

4: for batch = 1 to the number of batches do

5: // Forward Pass

6: Initialize the input array for each convolutional layer.

7: for i = 1 to 3 do

8: Apply convolution operation to the first

convolutional layer using 128 filters and a kernel size of 10,

the second layer using 64 filters and a kernel size of 7, and

the third convolutional layer using 16 filters and a kernel

size of 5.

9: Apply activation function (ReLU).

10: if Max Pooling is enabled for the current layer

then

11: Apply max pooling operation with a step size

of 2 and a pool size of 2.

12: end if

13: end for

14: Flatten the output of the convolutional layers.

15: Pass the flattened output to the BRNN layer with 256

hidden units.

16: Pass the output of the BRNN layer to the dense layer

with 64 neurons.

17: Apply activation function (ReLU).

18: Pass the dense layer’s output to the output layer.

19: Update the weights and biases of the network using

the Adam optimizer.

20: // Backward Pass

21: Compute the loss between the actual and the

predicted output.

22: Compute the loss function’s gradients in relation to

the weights and biases.

23: Adjust the network’s weights and biases using the

gradients.

24: end for

25: end for

26: // Test the model’s accuracy

27: for each test sample in the test dataset do

28: // Forward Pass

29: Pass the test sample to the input layers of the CNN-

BRNN architecture.

30: Perform the same operations as during the training phase

for each layer in the network.

31: Calculate the predicted output.

32: Compare the expected output with the actual output for

the test sample.

33: end for

34: Return the proposed CNN-BRNN architecture accuracy.

performance evaluation outcomes for the CNN-BRNN
model and five traditional ML regression models (RF,
SVR, KNN, GB, and DR) in predicting temperature for
the first dataset, using metrics defined in Table 3. The
CNN-BRNN model fared better than the other regression
models, with the lowest MAE, MSE, RMSE, MedAE,
and the highest R2 at 0.0022, 1.27x10-05, 0.0034, 0.0014,

and 99.61%, respectively. In contrast, the DR model
exhibited the least favorable results, with higher values
for MSE (0.0050), MAE (0.0083), MedAE (0.0067),
RMSE (0.0090), and R2 (90.88%). These metrics results
assert outperformance predictive performance of the
proposed CNN-RNN model compared to the other
models. Figure 5 demonstrates the learning and testing
curves consist of two plots. The left curve illustrates the
mean absolute error as a function of epochs number. On
the other side, the right curve depicts the mean squared
absolute error as a function of the running epochs for the
CNN-BRNN model used for predicting the temperature
using the first dataset. It is evident from these curves that
this model generalizes its learned experience well.
Consequently, the performance of the suggested
CNN-BRNN model with both the expected and real
temperatures is shown in Figure 6. It is notoriously
obvious from Figure 6 that this model generalized the
unseen data reliably which reveals the accurate prediction
of temperature readings. Table 6 outlines the findings of
the CNN-BRNN model’s performance evaluation along
with those of five conventional ML regression models
(KNN, RF, SVR, GB, and DR) in predicting atmospheric
sea level pressure based on wind speed rate and air
temperature for the second dataset. The performance
metrics reported in Table 3 are used to evaluate these
models. The CNN-BRNN model outperformed the other
regression models, obtaining the greatest R2 and the
lowest MAE, MSE, MedAE, and RMSE at 98.61%,
0.0818, 0.0103, 0.0639, and 0.1019, respectively. In
contrast, the DR model exhibited less favorable results,
with higher values for MSE (0.0510), MAE (0.2627),
MedAE (0.0919), RMSE (0.4318), and R2 (91.99%).
These findings highlight the effectivness of the proposed
CNN-BRNN model in predicting atmospheric sea level
pressure in comparison to traditional regression models.
Figure 7 shows the future prediction of temperature to
2030 using the CNN-BRNN model. Figure 8
demonstrates the learning and testing curves consist of
two plots. The left curve illustrates the mean absolute
error as a function of the epochs number. The right curve
depicts the mean squared absolute error as a function of
the running epochs for the CNN-BRNN model used for
predicting the atmospheric sea level pressure using the
second dataset. The proposed CNN-BRNN model’s
performance is shown in Figure 9 using the actual
atmospheric sea level pressure and the predicted
atmospheric sea level pressure. As demonstrated in Figure
9 this model generalized the unseen data reliably which
indicates the accurate estimation of temperature values.
Table 7 presents the outcomes of performance evaluation
for the CNN-BRNN model alongside five traditional
machine learning regression models (RF, KNN, SVR,
GB, and DR) in predicting visibility distance based on air
temperature, wind speed rate, and atmospheric sea level
pressure for the second dataset. The evaluation utilized
various performance metrics defined by Table3. In
comparison to the other regression models, the
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CNN-BRNN model performed better, obtaining the
lowest MAE, MSE, MedAE, RMSE, and the greatest R2
at 0.0807, 0.0100, 0.0688, 0.1009, and 98.73%,
respectively. Conversely, the DR model displayed less
favorable results, with higher values for MSE (0.0591),
MAE (0.3183), MedAE (0.0912), RMSE (0.4468), and
R2 (92.06%). These results highlight the effectiveness of
the proposed CNN-BRNN model in predicting visibility
distance compared to traditional regression models.
Figure 10 demonstrates the learning and testing curves,
which consist of two plots. The left curve illustrates the
mean absolute error as a function of epochs number. In
contrast, the right curve depicts the mean squared
absolute error as a function of the running epochs for the
CNN-BRNN model used to predict the visibility distance
using the second dataset. Figure 11 illustrates the the
proposed CNN-BRNN model performance using the
actual visibility distance and the predicted visibility
distance. Figure 11 illustrates the visibility distance
values were accurately predicted. Table 8 presents the
outcomes of the performance assessment for the
CNN-BRNN model and five traditional machine learning
regression models (RF, KNN, SVR, GB, and DR) in
predicting air temperature dew point based on air
temperature, wind speed rate, atmospheric sea level
pressure, and visibility distance for the second dataset.
Table 3 provides an explanation of the performance
metrics that were used in the evaluation. In comparison to
the other regression models, the CNN-BRNN model
performed better, obtaining the lowest MAE, MSE,
MedAE, RMSE, and the greatest R2 at 0.0798, 0.0098,
0.0681, 0.0999, and 98.67%, respectively. In contrast, the
DR model displayed less favorable results, with higher
values for MSE (0.0579), MAE (0.1645), MedAE
(0.0858), RMSE (0.3811), and R2 (93.75%). These
findings emphasize the effectiveness of the CNN-BRNN
model in predicting air temperature dew point compared
to traditional regression models. Figure 12 demonstrates
the learning and testing curves consist of two plots. The
left curve illustrates the mean absolute error as a function
of epochs number. While the right curve depicts the mean
squared absolute error as a function of the running epochs
for the CNN-BRNN model used for predicting the air
temperature dew point using the second dataset. Figure 13
illustrates the performance of the proposed CNN-BRNN
model using the actual air temperature dew point and the
predicted air temperature dew point. Figure 13 is fitted to
a line which revealed the accurate prediction of the air
temperature dew point values. Using the future prediction
results of temperature up to 2030 (as explained in Figure
7), an additional experiment was executed to predict the
air temperature dew point using the proposed
CNN-BRNN model. The results of this experiment are
detailed in Figure 14. Furthermore, another experiment
was conducted to predict the visibility distance up to
2030, based on the future prediction results of
temperature which explained in Figure 7 and the air
temperature dew prediction which is explained in Figure

14. The outcomes of this experiment are presented in
Figure 15. Lastly, a final experiment was carried out to
forecast the atmospheric sea level pressure up to 2030,
utilizing the future prediction results of temperature that
is explained in Figure 7, air temperature dew which is
explained in Figure 14, and visibility distance that is
explained in Figure 15. The results of this experiment are
highlighted in Figure 16. The obtained results shows that
the CNN-BRNN model predicts that the temperature in
May 2030 in Saudi Arabia will average 45 degrees,
compared to the current average of 25 degrees. Therefore,
this anticipated result projects an increase of 20 degrees
in the spring season of 2030. In the second scenario, it is
evident from Figure 14 that the CNN-BRNN model
predicts that the average rate of the air temperature dew
point prediction will increase on the interval May 2026 to
May 2030 in Saudi Arabia compared to the interval May
2019 to May 2023. In the third scenario, it is obvious
from Figure 15 that the CNN-BRNN model predicts that
the average air visibility distance will decrease
abnormally in the Saudi Arabia from May 2026 to May
2030 compared to the period from May 2019 to May
2025. Finally, in the final scenario, it is evident from
Figure 16 that the CNN-BRNN model predicts that the
average atmospheric sea level pressure will decrease in
the Saudi Arabia from May 2024 to May 2028 compared
to the period from May 2019 to May 2023. Then, it will
increase to be close to the average normal level.

5 Conclusion

The goal of sustainable development is to satisfy present
demands without sacrificing the capacity of future
generations to satisfy their own. It entails taking into
account how our actions affect the environment and
making choices that advance long-term well-being. This
paper discussed a deep learning model that predicts
temperature, air temperature dew point, visibility
distance, and air pressure at sea level. These factors are
crucial for implementing a sustainable climate change
adaptation plan and contributing to the achievement of
Vision 2030’s production and energy efficiency goals.
The study aimed to combine various ocean-atmospheric
factors using ML and DL techniques to anticipate climate
changes in temperature, atmospheric sea level pressure,
visibility distance, and air temperature dew point.
Evaluation metrics were employed to assess the models’
effectiveness. When compared to five other ML
regressors (Support Vector, Random Forest, K-Nearest
Neighbor, Gradient Boosting, and Dummy regressor),
CNN-BRNN outperforms them. The deep learning model
that is utilized in this work is a combination of BRNN
and CNN, trained on four future climate predictions using
two datasets. The results demonstrate that integrating
ocean and atmospheric data through a hybrid CNN and
BRNN approach enhances climate change prediction
across all future climate predictions.
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