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Abstract: This study introduces the truncated Unit Chris-Jerry distribution. It investigates its fundamental characteristics, including

moments, moment-generating functions, characteristic functions, incomplete moments, and various statistical measures including order

statistics, mean residual lifetimes, mean previous lifetime, and entropy. It exhibits the characteristics of a hazard failure rate function that

is on the rise. Various estimation approaches are briefly covered, including maximum likelihood, least squares, weighted least squares,

maximum product of spacings method, Cramer-Von-Mises method, Anderson-Darling methods, right-tail Anderson-Darling method,

and percentile-based estimations. A simulation study was performed to demonstrate the practical utility of the proposed distribution.

Also, the Bayesian procedure to estimate the unknown parameter is applied by using the Markov chain Monte Carlo technique and the

distribution was applied to two sets of real data.

Keywords: Truncated distributions; Lifetime distributions; moments; Classical estimation methods; Bayesian procedure. Real data

sets.

1 Introduction

Truncated distributions find diverse applications across
various scientific domains, including specific
communication networks, economics, hydrology,
materials science, and physics. A conditional distribution
emerges as a truncated distribution when the domain of
the parent distribution is restricted to a smaller population
region. Truncation implies the exclusion of events beyond
a predetermined threshold or outside a specific range,
making it impossible to observe or document occurrences
in those areas. In the context of reliability, truncated data
is acceptable and prevalent, particularly when dealing
with small values of the variable of interest. This is
notably relevant to the study of failure rates in products.
In instances of truncation, information about items
beyond the defined constraints is unattainable. For
instance, manufacturing truncation occurs when a subset
of objects is selected from a larger population for
examination, wherein items that did not meet established
criteria have been excluded. Numerous truncated
distributions have been identified, with one notable
example being the generalized exponential distribution

introduced by Abid [1]. [2] estimated the mean residual
life function using the local linear fitting technique. [3]
employed the Alpha power transformation to modify the
Kumaraswamy distribution, leading to the introduction of
the alpha power Kumaraswamy distribution. Also,
Ahmed et al. [4] introduced a truncated variant of the
Birnbaum-Saunders (BS) distribution, highlighting its
superior performance in modeling financial loss
information from a business-oriented bank compared to
the conventional BS model. Furthermore, Aldahlan et al.
[5] explored the truncated version of the Cauchy power
family. Algarni et al. [6] examined the truncated version
of the inverse Lomax-G family. Moreover, [7] introduced
a generalization of the truncated inverse
Weibull-generated family of distributions, incorporating a
new shape parameter by applying a power transform.
Furthermore, Almarashi et al. [8] are specialists in
probability distributions. Almetwally et al. [9] discussed
the truncated Cauchy power and the Weibull-G clan,
indicating these investigations’ potential utility and
interest in population research and other fields involving
truncated distributions. Conversely, Bantan et al. [11]
conducted a study on inverted truncated
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Kumaraswamy-generated distributions, organizing them
into families. Moreover, Chesean et al. [16] employed the
truncated composite approach on the Burr X distribution,
leading to the development of a novel truncated Burr X
generated family. Cohen [17] and Patel [29] outlined the
characteristics of a truncated Poisson distribution, and
they calculated parameter estimators along with their
asymptotic deviations. Cohen focused on the case of a
single truncation, while Patel investigated Gaussian
distributions with two truncations. Genc [18] investigated
the truncated inverted generalized exponential distribution
in their study. [39] introduced the generalized power
Akshaya distribution, and its parameters were estimated
using both conventional and Bayesian approaches. [19]
introduced a novel truncated distribution, termed the
upper-truncated Lomax distribution, which is related to
the Lomax distribution. Hassan et al. [20] introduced the
truncated Lomax-G family power Lomax distribution,
and in a related work, [21] proposed the power truncation
Lomax-G family. Additionally, Hassan et al. [22]
discussed the truncated Weibull Frechet distribution in
their work. Furthermore, Jayakumar and Sankaran [23]
deliberated on the distribution of negative binomials.
Additionally, Kantar and Usta [24] explored the Weibull
distribution. Onyekwere and Obulezi [27] examined the
Marshall-Olkin Chris-Jerry distribution including its
applications. Additionally, Onyekwere and Obulezi [28]
introduced a Chris-Jerry distribution, and they presented
the two parameters of Chris-Jerry distribution with
Chinedu et al. [43]. Nadarajah [33] discussed various
truncated distributions, including the t-distribution and
inverted distributions. Moreover, Nadarajah explored the
beta distribution and the Levy distribution as two distinct
types of distributions. Shapiro [34] studied the sum of
independent truncated random variables. Singh et al. [35]
introduced a version of Lindley distribution. It discusses
its statistical features and demonstrates its superior
modeling compared to Weibull, Lindley, and exponential
distributions based on actual data. Stevens [36]
investigated the truncated normal distribution and [45]
presented the truncated Weibull–exponential distribution.
[38] presented both classical and Bayesian estimation
methods for the Akshaya distribution parameter.
ZeinEldin et al. [40] explored the exponentiated truncated
inverse Weibull-generated family of distributions. Also,
Ramadan et al. [42] introduced the unit half logistic
geometric distribution and Gomaa et al. [41] presented
the unit alpha-power Kum-modified size-biased Lehmann
type II distribution.

The subsequent sections of this paper are organized as
follows: Section 2 is dedicated to the derivation of the
new distribution. Section 3 focuses on the derivation of
various useful characteristics. In Section 4, classical
estimation methods, including the classical estimation
method, are introduced. Section 5 proposes the
application of the Bayesian technique for parameter
estimation. Section 6 presents a simulation study to
demonstrate the flexibility of the distribution. Section 7

showcases the application of the distribution to two types
of real data, illustrating its versatility.

2 The Truncated Unit Chris Jerry (TUCJ)

Distribution

The probability density function (pdf) and cumulative
distribution function (cdf) of the random variable Y which
follows the Chris Jerry (CJ) distribution, as presented by
Onyekwere and Obulezi [28], are expressed as follows:

fCJ(y;θ ) =
θ 2

θ + 2
(1+θy2)e−θy,y > 0, (1)

and

FCJ(y;θ ) = 1−

[

1+
θy
(

θy+ 2
)

θ + 2

]

e−θy, x > 0, θ > 0.

(2)
Many authors used the truncated approach to introduce a
new generating family of distributions, as in Refs [6], [7],
[48], [49], [11], [46], and [47]. A random variable X is
said to follow the right truncated unit Chris-Jerry (TUCJ)
distribution if its (pdf) can be given by:

fTUCJ(x;θ ) =
fCJ(x)

∫ 1
0 fCJ(x)d x

,

but

∫ 1
0 fCJ(x)d x =

∫ 1

0

θ 2

θ + 2
(1+θx2)e−θx

=
θ 2

θ + 2

[

∫ 1

0
e−θxd x+

∫ 1

0
θx2e−θxd x

]

=
θ 2

θ + 2

[

−1

θ
(e−θ − 1)+

1

θ 2

(

2− e−θ(2+ 2θ +θ 2)
)

]

= e−θ (eθ −θ − 1).

Finally, fTUCJ(x;θ ) can be given as

fTUCJ(x;θ ) =
θ 2(1+θx2)eθ(1−x)

(θ + 2)(eθ −θ − 1)
, θ > 0,0 < x < 1.

(3)

According to Equation (3), the pdf of the TUCJ
distribution has two shapes (decreasing and U-shaped, see
Figure (1)).

The cdf related to Equation (3) is given by:

FTUCJ(x;θ ) =
FCJ(x;θ )−FCJ(0;θ )

FCJ(1,θ )−FCJ(0,θ )
.

FTUCJ(x;θ ) =
θx(θx+2)eθ

(θ +2)
(

(θ +1)eθx −eθ
) ,θ > 0, x ∈ (0,1). (4)
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Fig. 1: The pdf plots of TUCJ distribution at different values of

θ .

Depending on pdf (3) and cdf (4), the survival and hazard
rate functions are given respectively by:

F̄TUCJ(x;θ ) = 1−FTUCJ(x;θ )

= 1−
θx(θx+ 2)eθ

(θ + 2)((θ + 1)eθx − eθ )
,

and

h TUCJ(x;θ) =
fTUCJ(x;θ)

F̄TUCJ(x;θ)

=
eθ (−1+ eθ−θ)θ 2(1+θx2)

(−2+ eθ−θ)(−eθ x(θ +1)(θ +2)+ eθ (2+θ +θx(2+θx)))
.

Figure (2) shows the TUCJ distribution’s cdf and the
survival function respectively at various θ values.

Additionally, the reversed and cumulative reversed
hazard rate functions are obtained respectively as follows:

τ TUCJ(x;θ ) =

θ 2(1+θx2)eθ (1−x)

(θ+2)(eθ−θ−1)

θx(θx+2)eθ

(θ+2)((θ+1)eθx−eθ )

=
e−xθ θ (−eθ + exθ (1+θ )(1+θx2)

(−1+ eθ−θ )x(2+θx))
,

(5)

and

H TUCJ(x;θ ) =− ln F̄TUCJ(x;θ )

= ln

(

(θ + 2)
(

(θ + 1)eθx − eθ
)

θx(θx+ 2)eθ +(θ + 2)((θ + 1)eθx − eθ )

)

.
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Fig. 2: The cdf and survival function plots of the TUCJ

distribution at various values of θ .

Figure (3) illustrates the hazard rate and reversed
hazard functions of the TUCJ distribution at various
values of θ . It’s clear that the hazard rate function is
increasing function at different values of θ and the
reversed hazard rate function is decreasing.

3 Fundamental Characteristics

This section explores various statistical features of the
TUCJ distribution. These characteristics include
quantiles, moments, quantile-producing process, and
incomplete moments function, which are considered
sequentially.

3.1 Moments and related metrics

As moments play a crucial role in statistical analysis,
their calculation is essential. The moments of the TUCJ
distribution are then obtained as follows:

µ ′
r = E(xr) =

∫ 1

0
xr θ 2(1+θx2)eθ(1−x)

(θ +2)(eθ −θ −1)
d x

=
eθ θ−r (θΓ [1+ r]+Γ [3+ r]−θΓ [1+ r,θ ]−Γ [3+ r,θ ])

(

−1+eθ −θ
)

(2+θ )
.

(6)
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Fig. 3: The hazard and reversed hazard functions plot of the

TUCJ distribution at various values of θ .

The first four moments and the variance of the TUCJ
distribution can be written as:

µ ′
1 =

eθ (−6−θ +θΓ [2,θ ]+Γ [4,θ ])

θ (−1+ eθ +θ )(2+θ )
, (7)

µ ′
2 =

eθ (−2(12+θ )+θΓ [3,θ ]+Γ [5,θ ])

(1− eθ +θ )(2+θ )θ 2
, (8)

µ ′
3 =

eθ (−6(2θ +θ )+θΓ [4,θ ]+Γ [6,θ ])

(1− eθ +θ )(2+θ )θ 3
, (9)

µ ′
4 =

eθ (−24(3θ +θ )+θΓ [5,θ ]+Γ [7,θ ]

(1− eθ +θ )(2+θ )θ 4
, (10)

and

var = µ ′
2 −
(

µ ′
1

)2

=
eθ (−eθ (−6−θ +θΓ [2,θ ]+Γ [4,θ ])2)

(1−eθ +θ )2(2+θ )2θ 2
+

eθ ((2+θ )(1−eθ +θ )(−2(12+θ )+θΓ [3,θ ]+Γ [5,θ ]))

(1−eθ +θ )2(2+θ )2θ 2
.

(11)

3.2 Moment generating function

Consider X following the truncated unit Chris-Jerry
distribution. The moment-generating function of X is:

µx(t) = E(et x) =

∫ 1

0
et x fTUCJ(x;θ )d x

=

∫ 1

0
et x θ 2(1+θx2)eθ(1−x)

(θ + 2)(eθ −θ − 1)
d x

=
θ 2(eθ ((t −θ )2 + 2θ ))

(−1+ eθ−θ )(2+θ )(−t+θ )3

−
θ 2(eθ (et(t2(1+θ )− 2tθ (2+θ )+θ (1+θ )(2+θ )))

(−1+ eθ−θ )(2+θ )(−t+θ )3
.

(12)

3.3 Measures of incomplete moments and

inequality

In many cases, partial intervals are utilized to evaluate
statistical domains, particularly in the measurement of
income inequality through various distributions like the
Pietra and Lorenz curves, income quintiles, and Gini
coefficients. An incomplete Chris-Jerry truncated moment
is employed to derive the resulting distribution:

φs(t) =
∫ t

0
xs θ 2(1+θx2)eθ(1−x)

(θ + 2)(eθ −θ − 1)
d x = eθ tr(tθ )−r×

(θΓ [1+ r]+Γ [3+ r]−θΓ [1+ r,θ r]−Γ [(3+ r), tθ ])

(−1+ eθ−θ )(2+θ )
.

3.4 Entropy

Entropy serves as a measure of the uncertainty linked to
the distribution of a random variable X . The entropy of a
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random variable X is defined as:

Iδ (x) =
1

1−δ
log[

∫ 1

0
f (x)δ dx] =

1

1−δ
log

∫ 1

0
(

θ 2(1+θx2)eθ(1−x)

(θ +2)(eθ −θ −1)

)δ

dx

=
1

1−δ
logAδ

[

∫ ∞

0
(1+θx2)δ e−δ θxdx−

∫ ∞

1
(1+θx2)δ e−δ θx dx

]

=
1

1−δ
logAδ

( 2

δ

∫ ∞

0
x

e−θxδ dx−
[

(1+θx2)
e−θδ x

−θδ

]∞

1
−

2

δ

∫ ∞

1
2x−θxδ dx

)

=
1

1−δ
logAδ

( 2

δ 2 θ 2
−
[

(1+θx2)

e−θxδ

−θ δ

]∞

1
−

2

δ
e−θδ (θ δ +1)

θδ 2

)

=
1

1−δ
logAδ

[ 2

θ 2 δ 3
−

( (1+θ )e−θδ

θ δ
−

2

δ
e−θδ (θδ +1)

θδ 2

)]

.

3.5 Mean Residual Life Function (MRL)

The mean residual life function for the TUCJ distribution
is defined as:

m(x) = E(x−X/X ≤ x) =
1

1−F(x)

∫ 1

x
(1−F(t))dt

=
1

1− θx(θx+2)eθ

(θ+2)((θ+1)eθ x−eθ )

∫ 1

0

(

1−
θ t(θ t +2)eθ

(θ +2)
(

(θ +1)eθ t −eθ
)

)

dt (13)

=
1

θ (2+θ )
(

1−
θx(θx+2)eθ

(θ+2)((θ+1)eθ x−eθ )

)

× (−θ (2+θ )(−1+x+ logθ − log(1+θ )+

xθ (2+xθ )log(1−
e(θ−xθ)

1+θ
)

)

(14)

+
1

θ (2+θ )
(

1−
θx(θx+2)eθ

(θ+2)((θ+1)eθ x−eθ )

)

.

(

2(1+θ )Polylog[2,
1

1+θ
]−2(1+xθ )Polylog[2,

e(θ−xθ)

1+θ
]

)

+
1

θ (2+θ )
(

1− θx(θx+2)eθ

(θ+2)((θ+1)eθ x−eθ )

)

.

(

+2Polylog[3,
1

1+θ
]−2Polylog[3,

e(θ−xθ)

1+θ
]

)

.

3.6 Mean past lifetime function

In practical scenarios where systems are not continuously
monitored, there is a need to understand the history of
these systems, particularly when various components
have experienced failures. Assume one element with a
lifespan denoted as x has failed at or before time x, where
x ≥ 0. Consider the conditional random variable
(x − X | X ≤ x). This conditional random variable
represents the time elapsed since the component failed,
given that its lifespan is less than or equal to x.
Consequently, the mean previous lifetime (MPL) of the
component can be denoted as:

K(x) = E(x−X/X ≤ x) =
1

F(x)

∫ x

0
F(t)dt

=
1

θx(θx+2)eθ

(θ+2)((θ+1)eθ x−eθ )

∫ x

0

θ t(θ t +2)eθ

(θ +2)
(

(θ +1)eθ t −eθ
)dt

=
e−θ

(

−e−θ +exθ (1+θ )
)

(

xθ (2+xθ )log(1− e(θ−xθ )

1+θ )
)

xθ 2(2+xθ )

−
2(1+xθ )Polylog[2, e(θ−xθ )

1+θ ]+2
(

Polylog[2, eθ

1+θ ]
)

xθ 2(2+xθ )

+
2
(

Polylog[3, eθ

1+θ ]
)

−2Polylog[3, e(θ−xθ )

1+θ ]

xθ 2(2+xθ )
,

where Polylog[a,b] = ∑∞
k=1

bk

ka .

4 Methods of Estimation

In this section, we will discuss the maximum likelihood
estimation (MLE) procedure, least squares estimation
(LSE), weighted least square method, maximum product
of spacing estimation (MPS), Cramer-Von-Mises
estimation (CVME), Anderson-Darling estimation
(ADE), Right tail Anderson-Darling estimation (RTADE)
and Percentile estimation (PE) estimate the unknown
parameter.

4.1 Maximum likelihood estimation

To estimate its parameters, we consider using the
distribution. Let x1,x2, . . . ,xn represent a sample of n

values selected from the random variables X1,X2, . . . ,Xn,
which denote the lifespan of the data. Consequently, the
likelihood function L is formulated as:

L =
n

∏
i=1

f (xi;θ ) =
n

∏
i=1

θ 2(1+θx2
i )e

θ(1−xi)

(θ + 2)(eθ −θ − 1)
. (15)
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In this case, the log-likelihood function is expressed
as:

ln(L) = 2n lnθ +
n

∑
i=1

ln(1+ x2
i θ )+

n

∑
i=1

θ (1− xi)

− n

[

ln(θ + 2)+ ln(eθ −θ − 1)
]

.

As a result, the first and second Log likelihood
function derivatives concerning θ are as follows:

∂ lnL

∂θ
=

2n

θ
+

n

∑
i=1

x2
i

1+θx2
i

+
n

∑
i=1

(1− xi)−

n

(

1

θ + 2
+

eθ − 1

eθ −θ − 1

)

, (16)

∂ 2 lnL

∂θ 2
=

−2n

θ 2
+

n

∑
i=1

x4
i

(1+θx2
i )

2

− n

(

−1

(θ +2)2
+

eθ (eθ −θ −1)− (eθ −1)2

(eθ −θ −1)2

)

. (17)

4.2 Estimation using least squares and the

weighted least squares

Swain et al. [37] introduced least squares and weighted
least squares estimators for calculating the parameters of
distributions. In this study, a similar method is employed
for the TUCJ distribution technique. The least squares
TUCJ estimator for the parameter θ is obtained by
minimizing the distribution.

n

∑
j=1

[

F(x j)−
j

n+ 1

]2

.

About the unknown parameter θ , assume F(X j) is the
distribution function of the ordered random variables,
where X1,X2, ...Xn is an n-th random sample from F(·).
Consequently, in this example, the least square estimator

of θ , denoted as θ̂LSE , can be obtained by minimizing:

n

∑
j=1

[ θx(θx+ 2)eθ

(θ + 2)((θ + 1)eθx − eθ )
−

j

n+ 1

]2

.

4.3 Cramer-Von-Mises estimation (CVME)

The CVME method is derived by minimizing the
discrepancy between the cumulative and empirical
distribution functions, as summarized below:

CMV (θ ) =
1

12n
+

n

∑
i=1

(

F(x(i);θ )−
2i− 1

2n

)2

, (18)

The first derivative with respect to θ is expressed as:

∂CMV (θ )

∂θ
= 2

n

∑
i=1

(

F(x(i);θ )−
2i− 1

2n

)

F
′

θ (x(i);θ ) = 0

= 2
n

∑
i=1

(

θx(θx+ 2)eθ

(θ + 2)((θ + 1)eθx − eθ )
−

2i− 1

2n

)

×

θ 2(1+θx2)eθ(1−x)

(θ + 2)(eθ −θ − 1)
= 0.

(19)

The value θ̂ of θ minimizes Equation (19), and this can be
analytically solved using various mathematical programs.

4.4 Maximum product of spacings

The Maximum Product of Spacings (MPS) estimation
method, pioneered by Cheng and Amin [14] and
separately by Ranneby [32], provides an alternative
approach to Maximum Likelihood (ML) estimation. They
explored various properties of MPS estimators,
demonstrating that MPS offers consistent and
asymptotically efficient estimates in scenarios where ML
estimators may face challenges. This is particularly
evident when the likelihood function lacks an upper
bound, in situations involving heavy-tailed distributions
with unspecified scale and location parameters, as
discussed by [30], and in the context of mixture
distributions. Consequently, the MPS method overcomes
some drawbacks associated with the ML method while
retaining nearly all its properties in large samples [15].
Consider an ordered sample X(1),X(2), . . . ,X(n) of size n

from the TUCJ distribution. The uniform spacings for this
ordered sample are given by:

Di(θ ) = F(x(i)|θ )−F(x(i−1)|θ ); i = 1, . . . ,n+ 1. (20)

where F(x(0)|θ ) = 0, F(x(n+1)|θ ) = 1 and ∑n+1
i=1 Di(θ )= 1.

Then, the product spacings function can be expressed as:

G(θ ) =

(

n+1

∏
i=1

Di(θ )

)1/n+1

. (21)

The logarithm of the product spacing is

logG =
1

n+ 1

n+1

∑
i=1

log
[

F(x(i)|θ )−F(x(i−1)|θ )
]

. (22)

The MPS estimator, θMPS, of θ is obtained by solving the
non-linear equation ∂ logG/∂θ = 0 numerically as it has
no analytical solution. The residual methods such as
Anderson-Darling estimation (ADE), Right tail
Anderson-Darling estimation (RTADE) and Percentile
estimation (PE) are discussed by [38], [39] and [43].
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5 Bayesian estimation method

In this section, Bayesian estimation (BE) is used to
estimate the parameter θ , assumed to be independent and
following a gamma prior distribution with parameters a

and b as follows:

g(u;a,b) =
ba

Γ (a)
ua−1e−ub, u,a,b > 0. (23)

Subsequently, the joint prior density function of θ is
expressed as:

g(θ ,α) =
n

∏
i=1

g(θ ) ∝ (θ )a−1e−θb. (24)

The joint posterior distribution function, as per the
Bayesian procedure, is provided by:

g(θ |x) =
g(θ )L(x)
∫

g(θ )L(x)
∝ g(θ )L(x). (25)

Substituting from Equations (15) and (24) into Equation
(25), we get

g(θ |x) ∝ (θ )a−1. (26)

The Markov Chain Monte Carlo (MCMC) method [12] is
employed to numerically summarize the posterior
distribution without the need to calculate the normalized
constant.

6 Simulation Study

The performance evaluation of estimators considers
varying sample sizes n. A numerical analysis assesses the
performance of estimates for the TUCJ model, focusing
on biases and mean square errors (MSE). The simulation
utilizes R and Open Bugs programs. The algorithm for
generating random samples from the TUCJ distribution
using the inversion method is outlined as follows:

Random samples (X1,X2, . . . ,Xn) of sizes
n = 25,50,75,100,200, and 300 are generated from the
TUCJ distribution. Parameter values θ = 2,1.5,0.5, and
0.25 are considered. Estimates of the TUCJ model are
evaluated based on these parameter values and sample
sizes. Biases and mean squared errors (MSEs) of the
estimates are computed across different parameter values.
Empirical results are presented in Tables 1 to 4.

The tables from the simulation study (Tables 1 to 4)
enable the following conclusions to be drawn.

–The findings from Tables (1-4) demonstrate the
stability of the TUCJ distribution, as indicated by the
small bias and root mean square error (RMSE)
observed for its parameters.

–With increasing sample size, there is occasionally a
reduction in bias and RMSE across all estimations.

–This suggests that different estimation techniques
produce reliable bias and RMSE results for large
sample sizes.

–The MPSE estimation method provides superior
metrics compared to the LSE, WLSE, CVME, ADE,
and RTADE approaches.

–As the sample size increases, the bias and RMSE
values of all estimators decrease, indicating enhanced
accuracy in estimating model parameters.

–LSE, WLSE, CVME, ADE, and RTADE exhibit
consistently lower bias than other parameters across
various sample sizes.

–All sample sizes exhibit a positive bias in the
estimators.

–From Tables (1-4), it is observed that the WLSE, LSE,
CVME, ADE, RTADE, MLE, and Bayesian methods
consistently yield smaller values, indicating accurate
bias and RMSE results for large sample sizes.

Figures (4), (5), (6), and (7) show the trace and the
posterior density plots for various values of θ and various
sample sizes when the number of iterations is 20000.
These figures are generated using the OpenBUGS
software program.

Fig. 4: The trace and the density plots of θ = 2 when the sample

size = 200.
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Table 1: Results of simulation study for θ = 2

θ = 2

N Name MLE MPS LSE WLSE CVME ADE RADE PE BE

25

Mean 1.9158 2.1614 2.1215 2.1098 2.1242 2.1237 2.0582 2.4975 1.9768

RBias 0.0421 0.0807 0.0608 0.0549 0.0621 0.0619 0.0291 0.2488 0.0116

MSE 1.6387 1.6054 1.4252 1.4038 1.4598 1.3789 1.4346 0.9311 1.1586

RMSE 1.2801 1.2671 1.1938 1.1848 1.2082 1.1743 1.1977 0.9650 1.0764

50

Mean 1.9496 1.9975 1.9978 1.9900 1.9988 1.9973 1.9970 2.2724 1.9005

RBias 0.0252 0.0012 0.0011 0.0050 0.0006 0.0013 0.0015 0.1362 0.0497

MSE 0.8952 1.0138 0.8718 0.8598 0.8844 0.8591 0.8568 0.5363 0.7045

RMSE 0.9461 1.0069 0.9337 0.9273 0.9404 0.9269 0.9256 0.7323 0.8394

75

Mean 1.9556 1.9954 1.9719 1.9671 1.9692 1.9553 1.9421 2.1647 1.8100

RBias 0.0222 0.0023 0.0141 0.0165 0.0154 0.0224 0.0290 0.0824 0.0950

MSE 0.5754 0.6371 0.6193 0.6023 0.6388 0.6196 0.6601 0.3593 0.5260

RMSE 0.7586 0.7982 0.7870 0.7761 0.7992 0.7871 0.8125 0.5994 0.7253

100

Mean 1.9639 1.9932 1.9847 1.9797 1.9852 1.9745 1.9549 2.1201 1.8030

RBias 0.0181 0.0034 0.0077 0.0101 0.0074 0.0127 0.0226 0.0600 0.0985

MSE 0.4363 0.4797 0.4441 0.4325 0.4489 0.4339 0.4941 0.2913 0.4282

RMSE 0.6605 0.6926 0.6664 0.6577 0.6700 0.6587 0.7029 0.5397 0.6544

200

Mean 1.9860 1.9621 1.9668 1.9646 1.9676 1.9603 1.9437 1.9711 1.8478

RBias 0.0070 0.0189 0.0166 0.0177 0.0162 0.0199 0.0281 0.0145 0.0761

MSE 0.1884 0.1901 0.1723 0.1646 0.1726 0.1675 0.1724 0.1487 0.2407

RMSE 0.4341 0.4360 0.4150 0.4057 0.4155 0.4093 0.4152 0.3856 0.4906

300

Mean 1.9896 1.9697 1.9645 1.9653 1.9651 1.9629 1.9521 1.9509 1.8587

RBias 0.0052 0.0152 0.0177 0.0173 0.0174 0.0185 0.0239 0.0246 0.0706

MSE 0.1122 0.1181 0.1254 0.1178 0.1255 0.1197 0.1231 0.1256 0.1746

RMSE 0.3350 0.3436 0.3541 0.3432 0.3542 0.3460 0.3508 0.3544 0.4179

Table 2: Results of simulation study for θ = 1.5
θ = 1.5

N Name MLE MPS LSE WLSE CVME ADE RADE PE BE

25

Mean 1.4460 1.7069 1.6848 1.6733 1.6815 1.6777 1.6454 2.1516 1.6236

RBias 0.0360 0.1379 0.1232 0.1155 0.1210 0.1184 0.0969 0.4344 0.0824

MSE 1.5281 1.4533 1.3083 1.2927 1.3432 1.2893 1.2668 1.0533 1.0530

RMSE 1.2362 1.2055 1.1438 1.1370 1.1590 1.1355 1.1255 1.0263 1.0261

50

Mean 1.4232 1.5092 1.5172 1.5087 1.5155 1.5121 1.5192 1.9343 1.5184

RBias 0.0512 0.0061 0.0115 0.0058 0.0104 0.0081 0.0128 0.2895 0.0123

MSE 0.9753 0.9559 0.8502 0.8432 0.8616 0.8503 0.8503 0.6064 0.6579

RMSE 0.9876 0.9777 0.9220 0.9183 0.9282 0.9221 0.9221 0.7787 0.8111

75

Mean 1.4210 1.4738 1.4850 1.4766 1.4827 1.4685 1.4600 1.7759 1.3970

RBias 0.0526 0.0175 0.0100 0.0156 0.0116 0.0210 0.0267 0.1839 0.0686

MSE 0.6722 0.6796 0.6107 0.6017 0.6204 0.6032 0.6492 0.3822 0.4675

RMSE 0.8199 0.8244 0.7815 0.7757 0.7876 0.7767 0.8057 0.6183 0.6837

100

Mean 1.4353 1.4675 1.4773 1.4691 1.4751 1.4618 1.4436 1.6950 1.3675

RBias 0.0432 0.0217 0.0152 0.0206 0.0166 0.0255 0.0376 0.1300 0.0883

MSE 0.5169 0.5395 0.4871 0.4827 0.4950 0.4894 0.5415 0.3069 0.3869

RMSE 0.7190 0.7345 0.6979 0.6948 0.7035 0.6995 0.7359 0.5540 0.6220

200

Mean 1.4601 1.4199 1.4485 1.4450 1.4481 1.4408 1.4147 1.5230 1.3650

RBias 0.0266 0.0534 0.0343 0.0367 0.0346 0.0395 0.0569 0.0153 0.0900

MSE 0.2580 0.2798 0.2211 0.2159 0.2224 0.2181 0.2440 0.1488 0.2437

RMSE 0.5080 0.5290 0.4703 0.4646 0.4716 0.4670 0.4940 0.3857 0.4937

300

Mean 1.4667 1.4375 1.4447 1.4369 1.4444 1.4342 1.4285 1.5189 1.3388

RBias 0.0222 0.0417 0.0369 0.0421 0.0371 0.0439 0.0477 0.0126 0.1074

MSE 0.1721 0.1942 0.1711 0.1854 0.1721 0.1885 0.1744 0.1059 0.1969

RMSE 0.4148 0.4407 0.4137 0.4305 0.4149 0.4342 0.4177 0.3255 0.4437

7 Applications and Goodness of Fit

In this section, we propose evaluating the goodness of fit of
the TUCJ distribution to real lifetime data and comparing
it with several one- and two-parameter distributions.

7.1 Data set I

In this section, we show real data analysis to demonstrate
the utility of our process. The data set is used by Kumari

Table 3: Results of simulation study for θ = 0.5
θ = 0.5

N Name MLE MPS LSE WLSE CVME ADE RADE PE BE

25

Mean 0.7280 0.9802 1.0710 1.0362 1.0462 1.0330 1.0577 1.5578 1.1030

RBias 0.4559 0.9603 1.1421 1.0725 1.0924 1.0661 1.1153 2.1155 1.2060

MSE 1.3115 1.3400 1.2295 1.2372 1.2488 1.2227 1.2274 1.7488 1.2117

RMSE 1.1452 1.1576 1.1088 1.1123 1.1175 1.1057 1.1079 1.3224 1.1008

50

Mean 0.6384 0.8139 0.8363 0.8295 0.8283 0.8338 0.8638 1.3491 0.9739

RBias 0.2769 0.6277 0.6726 0.6590 0.6567 0.6675 0.7276 1.6983 0.9479

MSE 0.8313 0.7503 0.7246 0.7023 0.7285 0.7116 0.7777 1.1252 0.7696

RMSE 0.9118 0.8662 0.8512 0.8380 0.8535 0.8436 0.8819 1.0608 0.8773

75

Mean 0.5660 0.7293 0.7651 0.7485 0.7585 0.7469 0.7684 1.2299 0.8030

RBias 0.1320 0.4587 0.5303 0.4970 0.5169 0.4938 0.5368 1.4599 0.6059

MSE 0.6122 0.4986 0.5078 0.4899 0.5107 0.4820 0.5355 0.7427 0.4605

RMSE 0.7824 0.7061 0.7126 0.6999 0.7146 0.6942 0.7318 0.8618 0.6786

100

Mean 0.5279 0.6725 0.6866 0.6730 0.6747 0.6687 0.6931 1.1191 0.7487

RBias 0.0559 0.3450 0.3732 0.3461 0.3494 0.3374 0.3861 1.2382 0.4974

MSE 0.5224 0.4314 0.4287 0.4201 0.4352 0.4170 0.4508 0.6300 0.3563

RMSE 0.7228 0.6568 0.6547 0.6482 0.6597 0.6457 0.6714 0.7938 0.5969

200

Mean 0.4694 0.5384 0.5348 0.5319 0.5259 0.5295 0.5452 0.8833 0.6782

RBias 0.0613 0.0769 0.0695 0.0638 0.0518 0.0590 0.0905 0.7666 0.3564

MSE 0.3488 0.2386 0.2476 0.2374 0.2525 0.2402 0.2343 0.2989 0.2315

RMSE 0.5906 0.4885 0.4976 0.4872 0.5025 0.4901 0.4841 0.5467 0.4812

300

Mean 0.4488 0.4750 0.5254 0.5061 0.5211 0.5175 0.5275 0.7724 0.5991

RBias 0.1024 0.0500 0.0507 0.0122 0.0422 0.0350 0.0550 0.5448 0.1982

MSE 0.2789 0.1945 0.1818 0.1804 0.1832 0.1760 0.1816 0.1832 0.1482

RMSE 0.5281 0.4410 0.4263 0.4248 0.4280 0.4195 0.4261 0.4280 0.3850

et al. (2019) [26]. The information shows how many
hours, on average, a fleet of thirteen Boeing 720 jet
planes’ air conditioning systems fail. According to
Canavos and Tsokos[13], exponential distributions
provide a reasonably accurate representation of the failure
time distribution for the air cooling systems on each
plane. The planes ”7913” and ”7914” have been
considered for our illustrative needs. The information is
displayed as follows:
0.0046,0.0184,0.0507,0.0737,0.0829,0.1106,0.1429,
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Table 4: Results of simulation study for θ = 0.25
θ = 0.25

N Name MLE MPS LSE WLSE CVME ADE RADE PE BE

25

Mean 0.5313 0.7762 0.9791 0.9528 0.9655 0.9467 0.9734 1.4797 1.0367

RBias 1.1250 2.1049 2.9163 2.8112 2.8619 2.7869 2.8934 4.9188 3.1467

MSE 1.3543 1.3211 1.3952 1.3913 1.4006 1.3741 1.4086 2.1533 1.4488

RMSE 1.1637 1.1494 1.1812 1.1795 1.1835 1.1722 1.1869 1.4674 1.2037

50

Mean 0.4505 0.6075 0.7566 0.7510 0.7471 0.7521 0.7745 1.1977 0.8986

RBias 0.8019 1.4302 2.0264 2.0038 1.9883 2.0082 2.0981 3.7909 2.5945

MSE 0.8548 0.7072 0.8150 0.7882 0.8153 0.8005 0.8901 1.3452 0.9594

RMSE 0.9246 0.8410 0.9028 0.8878 0.9030 0.8947 0.9435 1.1598 0.9795

75

Mean 0.3702 0.5311 0.6794 0.6587 0.6722 0.6508 0.6996 1.0857 0.7182

RBias 0.4809 1.1242 1.7175 1.6346 1.6889 1.6031 1.7985 3.3430 1.8727

MSE 0.6216 0.4794 0.5733 0.5475 0.5719 0.5395 0.6220 0.9421 0.5786

RMSE 0.7884 0.6924 0.7572 0.7399 0.7562 0.7345 0.7887 0.9706 0.7606

100

Mean 0.3572 0.5140 0.5968 0.5783 0.5898 0.5815 0.6054 0.9733 0.6628

RBias 0.4287 1.0562 1.3874 1.3132 1.3594 1.3258 1.4215 2.8933 1.6512

MSE 0.5200 0.4144 0.4730 0.4572 0.4727 0.4538 0.5125 0.7985 0.4467

RMSE 0.7211 0.6437 0.6878 0.6762 0.6875 0.6736 0.7159 0.8936 0.6683

200

Mean 0.2886 0.3960 0.4344 0.4294 0.4293 0.4313 0.4388 0.7313 0.5915

RBias 0.1546 0.5838 0.7375 0.7176 0.7173 0.7253 0.7552 1.9253 1.3660

MSE 0.3377 0.2218 0.2468 0.2372 0.2464 0.2375 0.2476 0.4012 0.3047

RMSE 0.5811 0.4709 0.4968 0.4870 0.4964 0.4873 0.4976 0.6334 0.5520

300

Mean 0.2704 0.3408 0.3883 0.3706 0.3834 0.3715 0.4079 0.6418 0.5031

RBias 0.0814 0.3631 0.5531 0.4822 0.5337 0.4859 0.6318 1.5672 1.0125

MSE 0.2614 0.1621 0.1803 0.1728 0.1801 0.1741 0.1883 0.2781 0.1901

RMSE 0.5113 0.4027 0.4246 0.4157 0.4244 0.4172 0.4340 0.5274 0.4360

Fig. 5: The trace and the density plots of θ = 1.5 when the

sample size = 100.

0.1797,0.2120,0.2350,0.2488,0.2903,0.3134,0.3548,
0.3687,0.3779,0.4470,0.4885,0.5115,0.6498,0.6544,
0.7512,0.8802,0.9493,0.9954. Let (n) be the sample
size, and (k) represent the number of parameters. Some

statistics like, −2lnL, AIC = −2lnL + 2k + 2k(k+1)
n−k−1

,

CAIC = −2lnL + k
(

1+ lnn
n

)

, BIC = −2lnL + K lnL,
HQIC = −2lnL + 2K ln(lnn), K-S, and P-value for this
data are calculated to assess differences among various
distributions (including TUCJ, Chris-Jerry (CJ), truncated

Fig. 6: The trace and the density plots of θ = 0.5 when the

sample size = 50.

Fig. 7: The trace and the density plots of θ = 0.25 when the

sample size = 25.

moment exponential (TME), Beta, Exponential(exp), Bur
XII, and gamma distributions), and the corresponding
statistics are presented in Table (5).
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Table 5: Some statistics for data set I for various distributions.
Model θ̂ α̂ −2lnL AIC CAIC BIC HQIC K-S P-value

TUCJ 2.98 - 4.74 2.74 2.57 1.52 2.41 0.0806 0.9924

CJ 4.40 - 0.73 2.73 2.91 3.95 3.07 0.1183 0.8355

TME 0.21 - 4.12 6.12 6.29 7.34 6.47 0.1361 0.6931

exp 2.66 - 1.05 3.05 3.22 4.27 3.39 0.1113 0.8829

beta 0.68 0.98 4.17 0.17 0.38 2.27 0.51 0.1304 0.7408

Bur XII 1.30 4.00 1.87 5.87 6.42 8.31 6.55 0.0850 0.9866

gamma 1.17 0.32 0.69 4.69 5.24 7.13 5.37 0.0849 0.9867

In Figure (8), the empirical cdf, pdf, and the (P-P) plots
for data set I are illustrated across different distributions.
The TUCJ distribution is identified as the most suitable fit
for data set I, as indicated by the information presented in
Table (5) and Figure (8).

Fig. 8: The empirical cdf, pdf, and (P-P) plots for data set I for

various distributions.

Table 6: Bayesian and non-Bayesian estimates of the TUCJD’s

parameters for the first real data set.

Method
Parameter

Estimated value Standard Error

MLE 2.9769 1.0176

MPS 2.8916 0.9994

LSE 3.1146 2.3131

WLSE 3.0926 0.2048

CVM 3.1229 2.3004

ADE 3.0392 1.0380

RTADE 2.9823 1.4375

BE 2.7183 0.7222

The Bayes Estimates (BE) and Weighted Least
Squares Estimates (WLSE) performed better than the
others, as evidenced in Table 6. This is attributed to these
estimates having the lowest standard errors. Table 6
presents the standard errors (Std. Error) for classical and
Bayesian estimates of the parameters for TUCJD.

7.2 Data set II

The data set below includes 30 measurements of the
tensile strength of polyester fibers; see Mazuchli et al.
[44].
0.023,0.032,0.054,0.069,0.081,0.094,0.105,0.127,0.148,
0.169,0.188,0.216,0.255,0.277,0.311,0.361,0.376,0.395,
0.432,0.463,0.481,0.519,0.529,0.567,0.642,0.674,0.752,
0.823,0.887,0.926.

This data is used before again by [10]. Table (7)
summarizes some statistics and compares some
distributions. Figure (9) illustrates the empirical cdf, pdf,

Table 7: Some statistics for data set II for various distributions.
Model θ̂ α̂ −2lnL AIC CAIC BIC HQIC K-S P-value

TUCJ dist. 3.19 - 6.45 4.45 4.31 3.05 4.00 0.0596 0.9997

CJ dist. 4.50 - 0.60 1.40 1.54 2.80 1.84 0.1250 0.6902

TME dist. 0.20 - 3.14 1.14 1.00 0.26 0.69 0.1319 0.6261

exp 2.73 - 0.33 1.67 1.81 3.07 2.12 0.1272 0.6701

beta 0.97 1.62 6.61 2.61 2.17 0.19 1.71 0.0669 0.9979

Bur XII 1.45 4.51 2.05 1.95 2.40 4.76 2.85 0.1037 0.8710

gamma 1.49 0.25 2.88 1.12 1.56 3.92 2.02 0.1028 0.8776

and the (P-P) plots for data set II across different
distributions.

The TUCJ distribution emerges as the most
appropriate fit for dataset II, as evident from the details
presented in Table (7) and Figure (9).
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Fig. 9: The empirical cdf, pdf, and (P-P)-plots for data set II for

various distributions.

Table 8: Bayesian and non-Bayesian estimates of the TUCJD’s

parameters for the second real data set.

Method
Parameter

Estimated value Standard Error

MLE 3.1943 0.9225

MPS 3.1123 0.9081

LSE 3.1117 2.0668

WLSE 3.1005 0.1610

CVM 3.1229 2.0556

ADE 3.1251 0.9254

RTADE 3.2266 1.2281

BE 3.6565 0.033

The Bayes Estimates (BE) and Weighted Least
Squares Estimates (WLSE) performed better than the
others, as evidenced in Table 8. This is attributed to these
estimates having the lowest standard errors. Table 8
presents the standard errors (Std. Error) for classical and
Bayesian estimates of the parameters for the TUCJD.

The TTT plots for the generated random

samples and the real data sets:

Using the R program, we generate three random samples
from the quantile function of the TUCJD with sample size
n = 30 at θ = 0.5,1,1.5 respectively. The generated data
sets are given as the following:
The first data set at θ = 0.5 is

x1 = 0.89,0.22,0.17,0.76,0.90,0.69,0.43,0.24,0.53,
0.03,0.62,0.02,0.72,0.73,0.29,0.85,0.48,0.62,0.98,0.10,
0.57,0.21,0.66,0.35,0.85,0.32,0.65,0.44,0.28,0.26,

the second data set at θ = 1 is
x2 = 0.76,0.49,0.72,0.25,0.50,0.33,0.83,0.56,0.72,
0.48,0.54,0.35,0.56,0.35,0.04,0.41,0.59,0.60,0.46,0.24,
0.02,0.52,0.32,0.73,0.25,0.42,0.13,0.10,0.20,0.13,

and the third data set at θ = 0.5 is

x3 = 0.66,0.30,0.31,0.10,0.26,0.82,0.32,0.09,0.05,
0.23,0.60,0.37,0.63,0.07,0.45,0.33,0.72,0.27,1.00,0.59,
0.25,0.18,0.25,0.59,0.53,0.36,0.98,0.50,0.04,0.94.

Figure (10) shows an increasing hazard rate function
to the truncated unit Chris-Jerry distribution for the three
generating random samples and the real data sets.

8 Conclusion

A novel life distribution termed the truncated unit
Chris-Jerry (TUCJ) distribution, is introduced and
thoroughly examined in this study. The distribution’s
characteristics are derived, including moments,
moment-generating function, and order statistics. The
TUCJ distribution exhibits an increasing hazard rate
function. Various estimation techniques such as
Maximum Likelihood Estimators (MLEs), Least Squares
Estimators (LSEs), Weighted Least Squares Estimators
(WLSEs), Conditional Variance Moment Estimators
(CVMEs), Approximate Distribution Estimators (ADEs),
and Robust Truncated Approximate Distribution
Estimators (RTADEs) are derived and applied. Bayesian
inference is explored using squared error loss function,
with parameter simulations conducted using classical and
Bayesian methods. The proposed TUCJ distribution
demonstrates superior performance compared to other
fitted distributions namely CJ, TME, exponential, beta,
Burr XII, and gamma distributions based on fitness
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Fig. 10: The TTT plots for the three generated and the two real

data sets.

metrics (K-S and P-value) and performance indices (-2ln
L, AIC, CAIC, BIC, and HQIC).
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