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Abstract: To provide better fits than the modified Chris-Jerry distribution and some of its known extensions, this study introduces an

inverse power modified Chris-Jerry distribution as a generalization of the two parameters of the Chris-Jerry distribution. The essential

characteristics of the suggested distribution, including the moments, order statistics, Rényi entropy, stress-strength reliability, moments,

and moment-generating function, have been determined. We determine the maximum likelihood estimators of the unknown parameters

in the proposed distribution. The simulation study is carried out by producing random samples to estimate distribution parameters. We

examine applications to real datasets, where the new distribution is shown to provide a better fit than other distributions.
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1 Introduction

Many scholars have worked over the past few decades to
propose a distribution that can model real-time data sets
with the best fit, and flexibility has been employed. In
many fields, including the biological sciences, life testing
issues, survey sampling, engineering sciences, etc.,
inverse distributions have significant applications. Many
statistical distributions have lately been presented in
research as alternatives to existing distributions.
Generating distributions seek to provide the literature
with a more flexible distribution than rivals when
representing real-world data and statistical features. In
this respect, several authors want to propose a novel
distribution to add novelty to the literature. This paper
introduces the inverse power-modified Chris-Jerry
distribution and its distributional features. Some of the
papers relating to this research are given below.

The Chris-Jerry distribution is a very simple and
flexible model, having features for accommodating
various types. Besides providing a suitable model for
typical income and wealth data through some more
flexible and generalized variants of the classical
Chris-Jerry distribution, these are found to be very useful

in various problems related to life testing, survival
analysis, telecommunication, actuarial science, and
economics. The use of the Chris-Jerry distribution as a
model for analyzing various sci-economic phenomena is
not new in the statistical literature. In fact, the Chris-Jerry
distribution and its generalizations give a very flexible
family of heavy-tailed distributions that may be used to
model income distributions as well as a wide range of
other distributions associated with social and economic
problems. For more extensive discussion on the use of
these models in the context of income distributions, see
Villasenor and Arnold [8], Pal et al. [26] and Ali et al.
[27]. It was demonstrated that the Chris-Jerry distribution
outperformed some well-known Lindley classes of
distributions and was more adaptable, see [10]- [14] and
[24] for details.

Owing to the difficulty in predicting new parameters
that are added by extending current distributions,
choosing distributions requires careful consideration of
parameter parsimony. Consequently, the need to enhance
the one parameter C-JD is what drives the investigation,
such that:

• By adding a shape parameter to the C-JD with one
parameter, a modified C-J distribution is produced.
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• The parameters of the proposed distribution are
tractable using conventional and Bayesian estimates, even
with additional parameters.

• Better adaptability and features of the existing
distributions.

• The distributions with more favorable fits than the
one-parameter C-JD are Weibull, Gamma, Lomax, Burr
III, Exponentiated Inverse Exponential, and Generalized
Inverse Exponential.

Many writers have devoted their work to inverted
distributions and their uses. Numerous continuous
distributions, including the Burr [1], Gamma [2], Weibull
[3], Exponentiated Inverse Exponential (EIE) [4] , Lomax
[5] and Chris-Jerry distribution (C-JD) [7] have been used
to model real-time data sets. The modified Chris-Jerry
distribution (MCJD) developed by Chinedu et al. [6] is
among these two-parameteres Chris-Jerry distribution.
For the modified Chris-Jerry distribution distribution with
parameters λ and β , the probability density function
(pd f ) and cumulative distribution function (cd f ) of a
random variable X are provided by:

g(x;λ ,β ) =
β 2

λ β + 2

(

λ +β x2
)

e−β x;x > 0,β > 0,λ > 0,

(1)
and

G(x,λ ,β ) = 1−
β

β λ + 2

(

β 2x2 + 2β x+β λ + 2
)

e−β x;

x > 0,β > 0,λ > 0, (2)

where λ and β are the shape and scale parameters,
respectively.

The support of y = x−
1
α as (0,∞) is then obtained by

solving for y at x = 0 and x = ∞, respectively. Assuming
that y = x−α represents the observed value of Y , then x =

y−
1
α and ( dx

dy
=−

1
α y−

1
α −1 ).

The inverse scheme’s goal is to evaluate data with a
potentially non-monotone HRF, i.e., which could be
present in unimodal forms, bathtubs, or upside-down
bathtubs (UBT). This is due to the fact that a monotone
hazard rate may not be present in many applications, such
as cancer and mortality studies. The identification of the
heavy-tail qualities is also added by this kind of change.
As a result, long-tailed and non-monotone hazard rate
models must be created. Numerous issues pertaining to
econometrics, biological sciences, survey sampling,
engineering sciences, medical research, and life testing
can benefit from the use of inverted distributions.

This paper is arranged to investigate the proposed
inverse power modified Chris-Jerry ( IPMC-J )
distribution. The reliability, hazard rate, cumulative
hazard, and reversed hazard of the proposed distribution
are obtained in Section 2. Properties of the IPMC-J
distribution, such as moments, moment-generating

functions, distributions of order statistics, and R´enyi
entropy, are obtained in Section 3. In Section 4, the
maximum likelihood estimates of the distribution
parameters are introduced, and the approximate

confidence interval estimators of
(

α̂, β̂ and λ̂
)

and their

asymptotic distribution for the IPMC-J distribution are
presented. The simulation research produces random
samples that follow the IPMC-J distribution in Section 5.
In Section 6, we present a real-world example of infant
mortality rate data to demonstrate our model’s value.
Finally, the conclusions are given in Section 7.

2 Inverse Power Modified Chris-Jerry

Distribution

The random variable X of the modified C-J distribution
defined in Eq. (1) supposes that another random Y is
related to X by the inverse power function

Y = g(x) = x
−1
α . The derivation of the pd f of the inverse

modified C-J distribution finds the distribution of the
random variable Y . Mathematically, the distribution is
determined the pd f by solving Eq. (1), we obtain

f (y;α,β ,λ ) =
αβ 2

β λ + 2
y−α−1

(

λ +β y−2α
)

e−β y−α
. (3)

Also, the cd f of the IPMC-J distribution can be given
as

F (y;α,β ,λ ) =
β 2y−2α + 2β y−α +β λ + 2

β λ + 2
e−β y−α

. (4)

It’s interesting to note that the IPMC-J distribution,
which can be used to depict failure rates for bathtub and
upside-down bathtub forms, as well as datasets with
heavy-tailed data, gives greater flexibility than the
modified C-J distribution. Noteworthy is the fact that the
IPMC-J distribution presented in this study is known as a
heavy-tailed distribution since it has polynomial tails for
every value of α,β and λ also known as the heavy-tailed
parameter in this distribution, which regulates how
quickly the upper tail decays. As the value of α increases,
the upper tail’s decay rate drops. As α falls in value, the
tail gets heavier.

Figures 1 and 2 show the pd f and cd f functions of the
IPMC-J distribution for different values of α,β and λ .

3 Reliability Analyses

This section displays the survival, hazard rate, reversed
hazard, and cumulative hazard functions of the IPMC-J
distribution with three parameters. These functions are
useful for analyzing reliability.
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Fig. 1: Plot of the pdf of IPMC-J distribution for parameters α,β
and λ .

Fig. 2: Plot of the cdf of IPMC-J distribution for parameters α,β
and λ .

3.1 Survival function

Let Y be a continuous random variable. Assuming that the
IPMC-J distribution of parameters α, β and λ allows us to
define the survival function of Y as follows:

S (y;α,β ,λ ) = 1−F (y;α,β ,λ )

= 1−
β 2y−2α + 2β y−α +β λ + 2

β λ + 2
. (5)

The survival function, sometimes referred to as the
reliability function, shows the likelihood of living to be y

years old or older. Reliability theory and survival analysis
are important in the investigation of S(y). It is crucial for
characterizing component systems or for figuring out how
reliable a system.

Fig. 3: Survival function of the of IPMC-J distribution for

parameters α,β and λ .

3.2 Hazard rate function

The hazard rate function of a statistical distribution can be
found mathematically by dividing the survival function
S(y) by the probability density function f (y). Thus, the
hazard rate function of the distribution is defined as
follows:

h(y;α,β ,λ ) =
f (y;α,β ,λ )

S (y;α,β ,λ )

=
αβ 2 y−α−1

(

λ +β y−2α
)

β λ + 2 [β 2y−2α + 2β y−α +β λ + 2]
. (6)

Figures (3) and (4), respectively, depict the behavior
of S(y) and h(y) for various values of α, β and λ for the
IPMC-J distribution. It appears that the hazard rate
function is always decreasing. As α increases, its shape
gets less peaked, and as β and λ increase, it becomes
more peaked.

3.3 Reversed hazared rate function

Reliability analysis and maintenance management both
benefit from the use of the reversed hazard rate (RHR)
function, see [29]-[33]. It is especially helpful for
evaluating left-censored lifespan statistics, hidden
failures, and waiting times. For significant statistical
distributions, the RHR function is demonstrated to be a
declining function, which qualifies it for use in
maintenance engineering applications. The reversed
hazard rate, which is the ratio of the probability density
function (pd f ) to the cumulative distribution function
(cd f ), is the mathematical representation of the hazard
rate function of a statistical distribution. It is provided by
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Fig. 4: Hazard rate function of the of IPMC-J distribution for

parameters α,β and λ .

and expands the idea of hazard rate to a reverse time
direction.

hr(y) =
f (y)

F (y)
=

(

αβ 2
)

y−α−1
(

λ +β y−2α
)

β 2y−2α + 2β y−α +β λ + 2
. (7)

The probability of an immediate past failure, provided
that the unit has already failed at time y, defined by h(y),
is described by the reversed hazard hr(y).

3.4 Cumulative hazared rate function

In lifetime data analysis, the cumulative hazard rate
function is an essential concept, [34]. It offers a means of
calculating the total risk of an event happening up until a
specific moment in time. Additionally, the inverted hazard
rate function is discussed, which is especially helpful for
left-censored observations and lives with reversed time
scales [35]. The cumulative hazard rate (chr) is defined as
follows:

H (y) = − ln [1−F (y)]

= − ln

[

1−
β 2y−2α + 2β y−α +β λ + 2

β λ + 2

]

. (8)

4 Properties of the IPMC-J Distribution

In this section, the IPMC-J distribution statistical and
mathematical characteristics are explained. These
characteristics are crucial, particularly when using the
distribution to analyze data from real-world sources.

4.1 Moments

Some of a model’s most crucial characteristics like
kurtosis, skewness, and dispersion are described by the
moments of distributions. As a result, the IPMC-J
distribution distribution is the kth moment provided by

µ ′

k = E
(

yk
)

=

∞
∫

0

yk f (y) dy,

then

µ ′

k =
αβ 2

β λ + 2

∞
∫

0

yk−α−1
(

λ +β y−2α
)

e−β y−α
dy

=
αβ 2

β λ + 2

∞
∫

0

[

λ yk−α−1e−β y−α
+β yk−3α−1e−β y−α

]

dy.

(9)

Putting β y−α = z, y−α = Z
β then y= z

−
1
α β

1
α and dz

dy
=

−
1
α β

1
α y−

1
α −1into Eq. (9).

By using the Gamma function, we obtain as

µ ′

k =
β 2

β λ + 2

[

−λ β k−αΓ

(

−k+α

α

)

+β k−2αΓ

(

−k+ 2α

α

)]

. (10)

When k = 1,2,3 and 4 are substituted into Eq. (10), the
first four moments of the IPMC − J distribution are
obtained as

µ ′

1 = β 2

β λ+2

[

−λ β−β−1Γ
(

α+1
α

)

−β−2α−1Γ
(

2α−1
α

)]

,

α > 1, (11)

µ ′

2 = β 2

β λ+2

[

−λ β−β−2Γ
(

α+2
α

)

−β−2α−2Γ
(

2α−2
α

)]

,

α > 2, (12)

µ ′

3 = β 2

β λ+2

[

−λ β−β−3Γ
(

α+3
α

)

−β−2α−3Γ
(

2α−3
α

)]

,

α > 3, (13)

and

µ ′

4 = β 2

β λ+2

[

−λ β−β−4Γ
(

α+4
α

)

−β−2α−4Γ
(

2α−4
α

)]

,

α > 4. (14)

In partical, the first moment µ ′

1 is the mean (µ) , while

the variance can be written as σ2 = µ ′

2 − (µ ′

1)
2
.
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4.2 Moments generating function

The moment-generating function (mg f ) of a statistical
distribution can also be used to determine many of its
traits and characteristics, in addition to moments. Let Y

represent a random variable with three parameters. With
parameters α, β and λ , the IPMC− J distribution has the
following moment-generating function (mg f ) :

MY (t) = E(ety) =

∞
∫

0

ety f (y)dy. (15)

Using the series expansion ety =
∞

∑
0

(

tyk

k!

)

, then

Eq. (15) becomes

MY (t) =
∞

∑
k=0

tk

k!
E
(

yk
)

. (16)

By using the result of the Moment in the Eq. (10) , then

MY (t) =
∞

∑
k=0

tk

k!

β 2

β λ + 2
[−λ β k−αΓ

(

−k+α

α

)

+β k−2αΓ

(

−k+ 2α

α

)

]. (17)

4.3 Order statistics

Assume that Y1,Y2,Y3......Yn is a random sample of size n

drawn from the IPMC− J distribution with cd f F(y) and
pd f f (y). Next, order statistics are indicated
by Y(1),Y(2),Y(3).....,Y(n),

where Y(n) = max
(

Y(1),Y(2),Y(3).....,Y(n)
)

and

Y(1) = min
(

Y(1),Y(2),Y(3).....,Y(n)
)

.

The kth order statistics of pd f is obtained as

fy
(k)

(y;α,β ,λ ) =
n!

(k− 1)!(n− k)!

× fIPMC−J (y;α,β ,λ )

× [FIPMC−J (y;α,β ,λ )]k−1

[1−FIPMC−J (y : α,β ,λ )]n−k

=
n!

(k− 1)!(n− k)!

n−k

∑
i=0

(

n− k

i

)

(−1)i

[F (y)]k+i−1
f (y) . (18)

where fIPT PC−J (y;α,β ,λ ) and FIPT PC−J (y;α,β ,λ )
are defined in Eq. (3) and Eq. (4), respectively. If k = n in
Eq. (18) , the pdf of the nth order statistic Y(n) IPMC-J
distribution is given as

fk=n (y;α,β ,λ ) =
n!

(k− 1)!(n− k)!

nαβ 2

β λ + 2

n−k

∑
i=0

(

n− k

i

)

(−1)i
y−α−1

(

λ +β y−2α
)

e−β y−α

[

1−
β 2y−2α + 2β y−α +β λ + 2

β λ + 2

]

k+i−1

. (19)

If k = n in Eq. (19) the pd f of the nth order statistic
Y(n) for the IPMC-J distribution as

fY(n) (y,α,β ,λ ) =
nαβ 2

β λ + 2
y−α−1

(

λ +β y−2α
)

e−β y−α

[

β 2y−2α + 2β y−α +β λ + 2

β λ + 2

]k−1

. (20)

For k= 1 in Eq. (20) , the pd f of the first order statistic
Y(1), for the IPMC-J distribution as

fY(1) (y,α,β ,λ )
nαβ 2

β λ + 2
y−α−1

(

λ +β y−2α
)

×

[

1−
β 2y−2α + 2β y−α +β λ + 2

β λ + 2

]n−k

e−β y−α
. (21)

4.4 Rényi Entropy

A helpful method for figuring out how much information
(or uncertainty) a random sample holds about the parent
population is entropy. A high entropy number suggests
that the data are more unpredictable. The concept of
entropy is essential to many disciplines, such as
economics, communication theory, physics, probability
and statistics, and so forth. Among the different types of
entropy are the Rényi, Shannon, and Tsallis entropies.
This work took into consideration the widely used Rényi
entropy. The Rényi entropy is given as follows as

Rω (y) =
1

1−ω
log

∞
∫

0

f ω (y)dy. (22)

For ω → 1, we have the special case of Shannon
Entropy Rω(y). The specific case of Shannon Entropy
Rω(y) exists for ω → 1.

Then,

Rω (y) =
1

1−ω
log[

(

αβ 2
)

ω

(β λ + 2)ω
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∞
∫

0

(

y−α−1
(

λ +β y−2α
)

e−β y−α
)ω

dy]. (23)

By using Binomial expansion, (a+ b)ω =
ω

∑
i=0

(ω

i

)

aω−ibi.

Therefore, we obtain as

Rω (y) =
1

1−ω
log[

αω−1β 2ω

(β λ + 2)ω

ω

∑
i=0

(

ω

i

)

ωλ ω−1

β i−(ω+2i)α−ω+1Γ

(

(ω + 2i)−
ω + 1

α

)

]. (24)

4.5 Odds function

Odds functions are constructed for discrete lifetime
distributions in lifetime data analysis, offering insights
into aging features and reliability ideas [36]. As a result,
odds functions are essential for many different
applications, including data analysis, decision-making,
and model interpretability, see [37]-[39].

The odds function of IPMC-J distribution is given as

O (y;α,β ,λ )=
F (y)

1−F (y)
=
(

β 2y−2α + 2β y−α +β λ + 2
)

[(β λ + 2)eβ y−α
−
(

β 2y−2α + 2β y−α +β λ + 2
)

]−1
.

(25)

5 Stress–Strength Reliability Analysis

A system’s strength is determined by its reliability.
Therefore, when the system is under more stress, it breaks
down and becomes untrustworthy. Assume that, there are
two distinct continuous random variables,
X ∼ IPMC − J(α,β1,λ1) and Y ∼ IPMC − J(α,β2,λ2),
the stress and strength of the system. The stress-strength
reliability can obtained as follows:

R =

∞
∫

0

f1 (y)F2 (y)dy, (26)

then, by using the Gamma function, obtain as

R =
β 2

1

(λ1β1 + 2)((λ2β2 + 2))








(

λ1β 2
2 +β2λ2β1 + 2β1

)

(β1 +β2)
−3 Γ (3)

+(2β2λ1)(β1 +β2)
−2 Γ (2)

+(2λ1 +β2λ2λ1) (β1 +β2)
−1 Γ (1)+

(2β1β2) (β1 +β2)
−4 Γ (4)+

(

β1β 2
2

)

(β1 +β2)
−5 Γ (5)









.

(27)

This completes the proof.

6 Maximum Likelihood Estimation

The maximum likelihood approach is more commonly
used in estimation theory to find the parameters of
statistical distributions since it has consistency,
asymptotic efficiency, and invariance properties (Casella
and Berger [26]).

Let (Y1,Y2,Y3.......Yn) random samples of size n with
joint pd f f (y

1
,y

2
,y

3
.......yn), then the likelihood function

of the random sample as

L(α,β ,λ ) =
n

∏
i=1

αβ 2

β λ + 2
y−α−1

i

(

λ +β y−2α
i

)

e−β y−α
i

=

(

αβ 2
)n

(β λ + 2)n e
−β

n

∑
i=1

y−α
i

n

∏
i=1

y−α−1
i

(

λ +β y−2α
i

)

.

(28)

By taking log -likelhood function on both sides,

lnL = n lnα + 2n lnβ − n ln(β λ + 2)−β
n

∑
i=1

y−α
i

−(α + 1)
n

∑
i=1

lnyi +
n

∑
i=1

ln
(

λ +β y−2α
i

)

. (29)

Taking the partial derivatives of Eq. (29) with respect
α, β and λ respectively. The maximum likelihood

estimates (α̂, β̂ and λ ) of parameters α, β and λ are
acquired by resolving these nonlinear equation

systems ∂
∂α lnL = 0, ∂

∂β lnL = 0 and ∂
∂λ lnL = 0.

∂ lnL

∂α
=

n

α
+β

n

∑
i=1

y−α
i lnyi −

n

∑
i=1

lnyi − 2
n

∑
i=1

β y−2α
i lnyi

λ +β y−2α
i

,

(30)

∂ lnL

∂β
=

2n

β
−

nβ

β λ + 2
−

n

∑
i=1

y−α
i +

n

∑
i=1

y−2α
i

λ +β y−2α
i

(31)

and

∂ lnL

∂λ
=

−nβ

β λ + 2
+

n

∑
i=1

1

λ +β y−2α
i

. (32)

The maximum likelihood estimates of α , β and λ are
acquired by the nonlinear system’s Eqs. (30) - (32). To
numerically maximize the log-likelihood function,
nonlinear optimization procedures like the quasi-Newton
algorithm are typically more practical.

The (1− ζ )100% confidence interval for the
parameters α , β and λ can be presented as

(α̂L, α̂U ) = α̂ ±Z
1−

ζ
2

√

var (α̂),

(

β̂L, β̂U

)

= β̂ ±Z
1−

ζ
2

√

var

(

β̂
)

and
(

λ̂L, λ̂U

)

= λ̂ ±Z
1−

ζ
2

√

var
(

λ̂
)

,
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where α̂, β̂ and λ̂ are the maximum likelihood
estimates of α, β and λ , Z

1−
ζ
2

is the percent of the

standard normal distribution and

var (α̂) , var
(

β̂
)

and var
(

λ̂
)

are the asymptotic

variances of maximum likelihood estimates computed
utilizing the inverse of the information matrix as follows
as

I−1 =









−∂ 2 lnL
∂α2

∂ 2 lnL
∂α∂β

∂ 2 lnL
∂α∂λ

∂ 2 lnL
∂β ∂α

−∂ 2 lnL
∂β 2

∂ 2 lnL
∂β ∂λ

∂ 2 lnL
∂λ ∂β

∂ 2 lnL
∂λ ∂α

−∂ 2 lnL
∂λ 2









−1

=











var (α̂) cov
(

α̂, β̂
)

cov
(

α̂, λ̂
)

cov
(

β̂ , α̂
)

var
(

β̂
)

cov
(

β̂ , λ̂
)

cov

(

λ̂ , β̂
)

cov

(

λ̂ , α̂
)

var

(

λ̂
)











−1

. (33)

6.1 Confidence intervals

A crucial statistical tool for estimating unknown
quantities with a given degree of certainty is a confidence
interval. They support the interpretation of study findings
by offering a range of tenable values for the parameter of
interest, see [40].

The log-likelihood formulae listed in Eqs. (30)-(32)
do not solve closed form. Consequently, this subsection
examines the estimations of the unknown parameters
α, β and λ . Explicit construction of their matching
confidence intervals is not possible. Finding the
approximate confidence intervals for α, β and λ is
obtained necessary. To find the Fisher information matrix,
we must first acquire the second-order partial derivatives
in this regard. Consequently,

∂ 2 lnL

∂α2
=−

n

α2

−2
n

∑
i=1

β y−2α
i (lnyi)

2
[

2y−2α
i −

(

λ +β y−2α
i

)]

(

λ +β y−2α
i

)2
, (34)

∂ 2 lnL

∂α∂β
=

n

∑
i=1

y−α
i lnyi

−2
n

∑
i=1

(

λ +β y−2α
i

)

y−2α
i lnyi −β

(

y−2α
i

)2
lnyi

(

λ +β y−2α
i

)2
, (35)

∂ 2 lnL

∂α∂λ
=

n

∑
i=1

β y−2α
i ln(yi)

(

λ +β y−2α
i

)2
, (36)

∂ lnL

∂β 2
=

−2n

β 2
+

λ 2n

(β λ + 2)2
−

n

∑
i=1

y−2α
i

(

λ +β y−2α
i

)2
, (37)

∂ 2 lnL

∂β ∂λ
=

−2n

(β λ + 2)2
−

n

∑
i=1

y−2α
i

(

λ +β y−2α
i

)2
(38)

and

∂ 2 lnL

∂λ 2
=

β 2n

(β λ + 2)2
−

n

∑
i=1

(

λ +β y−2α
i

)2
. (39)

The expressions defined in Eqs. (34)-(39) are used to
find the Fisher information.

7 Simulation

The simulation research is carried out by producing
random samples that follow the IPMC-J distribution using
the relation F (y) = u, where u is an observation from the
uniform (0,1) and F(y) is the cumulative distribution
function of the IPMC-J distribution. For (α,β , λ ) =
(0.50,0.15,1.75),(0.05,0.50,1.07),(0.50,0.20,1.57) and
(0.15,0.75,1.25), 1000 replications of the simulation
experiment were conducted using sample sizes of
30,50,70,90 and 100. The following indicators are

calculated: the α̂, β̂ and λ̂ bias values of the parameters
α , β and λ are given as

bias(α) = 1
M

M

∑
i=1

(α̂i −α) ,

bias(β ) = 1
M

M

∑
i=1

(

β̂i −β
)

,

and

bias(λ ) = 1
M

M

∑
i=1

(

λ̂i − λ̂
)

.

The MSE of α̂, β̂ and λ̂ of the parameters α,β and λ
are given as

MSE (α̂) = 1
M

M

∑
i=1

(α̂i −α)2
,

MSE
(

β̂
)

= 1
M

M

∑
i=1

(

β̂i −β
)2

,

and

MSE
(

λ̂
)

= 1
M

M

∑
i=1

(

λ̂i − λ̂
)2

.

Table 1 displays the average estimators of the
parameters α, β and λ , the mean square error (MSE), and

the bias values of α̂ , β̂ and λ̂ of the parameters
α, β and λ . The results demonstrate that the estimated
parameters values are close to the assumed parameter
values, demonstrating the consistency feature.

The bias values go smaller and the MSE of the
parameters reduces with increasing sample size.

8 Practical Data Examples

In this section, we investigate the capability of the
IPMC-J distribution by fitting distributions, namely, the
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Burr, Gamma, Weibull, Exponentiated Inverse
Exponential (EIE), Lomax, Chris-Jerry distribution (C-J)
and two-parameter Chris -Jerry (TPC− J) distributions.
The APMC-J distribution explains much more flexibility
than the corresponding distributions. By making use of a
real data set, we illustrate the applicability of the IPMC-J
distribution among a set of classical and recent
distributions, based on a set of goodness-of-fit statistics.
We estimate the model parameters by using the maximum
likelihood method. We compare the goodness-of-fit of the
models with the Akaike Information Criterion (AIC),
consistent Akaike information criterion (CAIC) and
Bayesian Information Criterion (BIC) goodness -of-fit
statistics.

Further, we get the Kolmogorov-Smirnov (K-S)
statistic with its corresponding P-value. In general, the
model has the smaller values of these statistics and the
largest value of the P-value is the best model to fit the
data.

8.1 Infant mortality rate data

This subsection suggests and compares the IPMC-J
distribution’s goodness of fit to real-world data with
several one- and two-parameter distributions. This data
set provides an overview of the infant mortality rate per
1000 live births for a select few countries in 2021 as
reported by
https://data.worldbank.org/indicator/SP.DYN.IMRT.IN.

This actual collection of data is displayed in Table 2.

Here, we contrast the fit goodness of the IPMC-JD
with the Exponentiated Inverse Exponential (EIE)
distribution by [4], Weibull distribution[3], Burr III
distribution by [1], Gamma distribution[2], the C-JD by
[7], TPC-J distribution by [6] , and Lomax distribution[5],
as shown in Table 3. The negative log-likelihood is one of
the fitness indicators taken into account. (-L), the
corrected AIC (CAIC), the Akaike information criterion
(AIC), and the Bayesian information criterion (BIC).

From Table 3, Estimates of parameters for the
distributions fitted to Infant mortality data. From Table 4,
the smallest values of the K − S, AIC, BIC and CAIC and
the largest value of p-value are obtained for the IPMC-J
distribution. So, we conclude that the IPMC-J distribution
provides the best fit among the compared distributions.

Figure 5 confirms this result where the estimated
densities function for the compared distributions of the
data set are plotted based on the density function of each
distribution. Figure 5 shows the empirical pdf for the
simulated data. Distributions listed in Table 3 also show
that the IPMC-J distribution is the best fit for the real data.

Figure 6 shows the Kaplan-Meier curve for the
simulated data and the survival functions of the
distributions mentioned in Table 3, also shows that the
IPMC-J distribution is the best fit for the data.

Fig. 5: Plots of the estimated IPMC-J distribution for Infant

mortality data.

Fig. 6: Plots of Kaplan Meier curve for the simulated data and

the survival functions of some distributions for Infant mortality

data.

9 Conclusion

In this article, we introduce a more flexible extension of
the two-parameter Chris-Jerry distribution called the
Inverse-Powe Modifed Chris-Jerry (IPMC-J) distribution
that provides more accuracy and flexibility in fitting
medicine data. The new model was generated based on
the inverse-power transformation technique. The hazard
rate function of the IPMC-J distribution can have the
following forms depending on its shape parameters,
monotonically increasing, decreasing, and upside-down
bat hub-shaped hazard rates. Therefore, it can be used
quite effectively in analyzing lifetime data. Some of its
basic mathematical properties are derived. The three
parameters of the IPMC-J distribution are estimated using
maximum likelihood estimation. The behavior and
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Table 1 : Estimators, MSEs and bias values for the parameteres α , β and λ .

Parameter n MSE(α̂) MSE(β̂ ) MSE(λ̂ ) Bias(α̂) Bias(β̂ ) Bias(λ̂ )

α = 0.50 30 0.0003557 0.0003084 8.146550 0.0047202 0.0042445 7.3695600

β = 0.15 50 0.0003060 0.0002396 6.132770 0.0126014 0.0091972 6.6029900

λ = 1.75 70 0.0001853 0.0001545 0.775334 −0.000845 −0.0009980 −0.040887

90 0.0001000 0.0000840 1.423040 0.0045374 0.00412950 0.1170710

100 0.0000868 0.0000790 1.729790 −0.0017976 −0.0011575 −0.0919157

α = 0.05 30 0.0001215 0.0232254 1.148600 0.0109744 0.14828900 0.5559340

β = 0.50 50 0.0001413 0.0235758 2.348340 0.0118177 0.14930900 −3.992540

λ = 1.07 70 0.0001288 0.0209457 0.195803 0.0113149 0.14281800 0.1928090

90 0.0001354 0.0232107 0.366303 0.0115994 0.15083700 0.3150840

100 0.0001309 0.0223750 0.387787 0.0114153 0.14755800 0.2782180

α = 0.50 30 0.0004379 0.0005573 4.378540 0.0053517 0.00568020 5.4028000

β = 0.20 50 0.0003872 0.0004346 2.854780 0.0143894 0.01247000 1.3795600

λ = 1.57 70 0.0002234 0.0002775 0.476575 −0.0008067 −0.00131076 −0.0352325

90 0.0001242 0.0001517 1.232360 0.0050389 0.00554890 0.0369444

100 0.0001047 0.0001412 0.585013 −0.0020347 −0.0015614 0.0540577

α = 0.15 30 0.0001489 0.0091008 0.645818 0.0042791 0.02403890 0.2389210

β = 0.75 50 0.0001612 0.0074070 0.643710 0.0100127 0.05441500 0.0974150

λ = 1.25 70 0.0000655 0.0043887 0.123471 0.0002705 −0.0039742 −0.0229941

90 0.0000306 0.0018752 0.181995 0.0016959 0.01826740 0.1328190

100 0.0000334 0.0021133 0.240623 −0.0012389 −0.0067700 0.0463389

Table 2: Infant mortality data.

56 10 22 3 69

6 7 11 4 4

19 13 7 27 12

3 4 11 84 27

25 6 35 14 11

12 6

Table 3: Estimates of parameters for the

distributions fitted to Infant mortality data

Estimates

Model α β λ
IPMC-J(α,β ,λ ) 1.31 16.07 2.39

TPCJ(β ,λ ) 399.51 0.06

Burr III(β ,λ ) 9.50 0.04

EIE(β ,λ ) 0.42 6.66

Weibull (β ,λ ) 0.90 8.90

Gamma(β ,λ ) 1.80 9.74

Lomax(β ,λ ) 232.81 13.37

C-J(β ) 0.15

performance of these estimators are explored using
simulation results. The flexibility and practical
importance of the IPMC-J distribution were explored
empirically using real-life datasets. It is shown that the
IPMC-J distribution has a fit compared to the
two-parameter Chris-Jerry distribution and other
competing models.
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Table 4: The statistics of model selection criteria for the

distributions fitted to Infant mortality data

Model -L AIC BIC CAIC W∗ A∗ K −S P−value

IPMC-J(α,β ,λ ) 102.66 207.33 208.62 207.49 0.047 0.30 0.11 0.8477

TPCJ(β ,λ ) 106.16 216.31 218.90 216.81 0.11 0.75 0.16 0.5345

Burr III(β ,λ ) 119.08 242.16 244.75 242.66 0.04 0.26 0.36 0.0021

EIE(β ,λ ) 103.88 211.76 214.36 212.26 0.08 0.50 0.17 0.4187

Weibull (β ,λ ) 106.11 231.36 233.95 231.86 0.13 0.82 0.32 0.0084

Gamma(β ,λ ) 105.76 217.90 220.49 218.40 0.13 0.82 0.18 0.3436

Lomax(β ,λ ) 106.17 216.33 218.92 216.83 0.11 0.71 0.16 0.5158

C-J(β ) 112.39 226.77 228.07 226.93 0.17 1.10 0.28 0.0260
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Distribution with Applications to Real-Life Data. Appl.

Math. Inf. Sci, 17(1), 109-124, 2023.

[12] Khalifa, Eman H., Dina A. Ramadan, Hana N. Alqifari,

and Beih S. El-Desouky. Bayesian Inference for Inverse

Power Exponentiated Pareto Distribution Using Progressive

Type-II Censoring with Application to Flood-Level Data

Analysis. Symmetry 16, 3: 309, 2024.

[13] Elnagar, Kariema A., Dina A. Ramadan, and Beih S.

El-Desouky. Statistical Inference to the Parameter of the

Inverse Power Ishita Distribution under Progressive Type-II

Censored Data with Application to COVID-19 Data. Journal

of Mathematics 2022, 1 (2022), 7704167.

[14] Khalifa, E.H.; Ramadan, D.A.; El-Desouky, B.S. A

new three-Parameters Inverse Power Exponentiated Pareto

Distribution: Properties and its Applications. J. Fac. Sci.

2022, 36, 2022.

[15] Obulezi, O.J.; Anabike, I.C.; Oyo, O.G. and Igbokwe,

C.P. Marshall-Olkin Chris-Jerry Distribution and its

Applications. Int. J. Innov.Sci. Res. Technol., 8, 522–433,

2023.

[16] Shukla, K.K. Pranav distribution with properties and its

applications. Biom. Biostat. Int. J., 7, 244–254, 2018.

[17] Shanker, R.; Shukla, K.K.; Shanker, R. and Pratap, A. A

generalized Akash distribution. Biom. Biostat. Int. J., 7, 18–

26, 2018.

[18] Shanker, R. Sujatha distribution and its Applications. Stat.

Transit. New Ser., 17, 391–410, 2016.

[19] Bjerkedal, T. (1960). Acquisition of Resistance in Guinea

Pies infected with Different Doses of Virulent Tubercle

Bacilli. Am. J. Hyg. 1960,72, 130–148.

[20] Yahaya, A. and Abdullahi, J. Theoretical Study of

Four-Parameter Odd-Generalized Exponential-Pareto

Distribution. Ann. Stat.Theory Appl. ASTA., 2, 103–114,

2019.

[21] Enogwe, S.U.; Nwosu, D.F.; Ngome, E.C.; Onyekwere,

C.K. and Omeje, I.L. Two-parameter Odoma distribution

with applications. J.Xidian Univ., 14, 740–764, 2020.

[22] Abouammoh, A.M. and Alshingiti, A.M. Reliability

estimation of generalized inverted exponential distribution.

J. Stat. Comput.Simul., 79, 1301–1315, 2009.

[23] Shukla, K.K. and Shanker, R. Shukla distribution and its

Application. Reliab. Theory Appl., 14, 46–55, 2019.

[24] Umeh, E. and Ibenegbu, A. A Two-Parameter Pranav

Distribution with Properties and Its Application. J. Biostat.

Epidemiol., 5,74–90, 2019.

[25] Shukla, K.K. Inverse Ishita Distribution: Properties and

Applications. Reliab. Theory Appl., 16, 98–108, 2021.

[26] Casella, G. and Berger, R. L. Statistical Inference,

Brooks/Cole Publishing Company, Cal ifornia, 1990.

[27] Singh, S.K., Singh, U. and Kumar, M. Bayesian inference

for exponentiated Pareto model with application to Bladder

cancer remission time. Statistics in Transition, 15, 3, 403-

426, 2014.

[28] Ali, M. M., Pal, M., and Woo, J. S. Some exponentiated

distributions. Communications for Statistical Applications

and Methods, 14, 1, 93-109, 2007.

c© 2024 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 18, No. 6, 1261-1271 (2024) / www.naturalspublishing.com/Journals.asp 1271

[29] D., Desai., V., Mariappan., Milind, Sakhardande. Nature

of Reversed Hazard Rate: An Investigation. International

journal of performability engineering, 7(2):165, 2011.

[30] Paduthol, Godan, Sankaran., V., L., Gleeja., T., M.,

Jacob. Nonparametric Estimation of Reversed Hazard Rate.

Calcutta Statistical Association Bulletin, 59:55-68, 2007.

[31] Tirthankar, Ghosh., Dilip, Roy., Nimai, Kumar, Chandra.

Reliability Approximation through the Discretization of

Random Variables using Reversed Hazard Rate Function.

7(4):735-739, 2013.

[32] Asok, K., Nanda., Prasanta, Paul. Tests for Reversed Hazard

Rate Function. Calcutta Statistical Association Bulletin,

54:181-194, 2003.

[33] Block, H. W., Savits, T. H., and Singh, H. The reversed

hazard rate function. Probability in the Engineering and

informational Sciences, 12(1), 69-90, 1998.

[34] Satyanshu, K., Upadhyay. Hazard Rate Function. Wiley

Encyclopedia of Operations Research and Management

Science, 2010.

[35] Henry, W., Block., Thomas, H., Savits., Harshinder, Singh.

The Reversed Hazard Rate Function. Probability in the

Engineering and Informational Sciences, 12(01):69-90,

1998.

[36] N., Unnikrishnan, Nair., Paduthol, Godan, Sankaran.

Odds Function and Odds Rate for Discrete Lifetime

Distributions. Communications in Statistics-theory and

Methods, 44(19):4185-4202, 2015.

[37] Carlos, Brás-Geraldes., Carlos, Brás-Geraldes., Ana, Luı́sa,

Papoila., Ana, Luı́sa, Papoila., Patrı́cia, Xufre. Odds ratio

function estimation using a generalized additive neural

network. Neural Computing and Applications, 32(8):3459-

3474, 2020.

[38] F, Thomas, Bruss. Odds -theorem and monotonicity.

Mathematica Applicanda, 47(1):25-43, 2019.

[39] F, Thomas, Bruss., Guy, Louchard. The Odds-algorithm

Based on Sequential Updating and its Performance.

Advances in Applied Probability, 41(1):131-153, 2009.

[40] Charles, R., Marshall. Confidence intervals on stratigraphic

ranges. Paleobiology, 16(1):1-10, 1990.

Mohammad Yahia
Awajan is a Phd student
at Mansoura University’s
Faculty of Science in
Egypt. He graduated
from Al-Hussein Bin
Talal University. Faculty
of Science in 2017 with a BA
in Mathematics and statistics.

He graduated from UMT University of Malaysia Faculty
of Science in 2023 with a M.Sc in Mathematics. His
research focuses on distributions, bivariate distributions,
statistical inference, Bayesian statistics and censoring
samples.

Dina Ahmed Ramadan
is an Assistant Professor
of Mathematical Statistics
at Mathematics Department
Faculty of Science Mansoura
University Cairo Egypt.
She received Ph. D. from
Faculty of Science Mansoura
University Egypt in 2016.
Her areas of research where

she has several publications in the international journals
and conferences include: Statistical inference, Theory of
estimation, Bayesian inference, Theory of reliability,
censored data, Life testing, competing risk, masked data
and Distribution theory.

Beih El-Sayed
El-Desouky received M. Sc
in 1979 and Ph. D. in 1984
in Statistical Mathematics,
Dept. of Math., Aswan
University, Egypt. Prof.
of Mathematical Statistics
and Combinatorics, Dep. of
Math., Mansoura University,

Egypt.

c© 2024 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Inverse Power Modified Chris-Jerry Distribution
	 Reliability Analyses
	 Properties of the IPMC-J Distribution
	Stress–Strength Reliability Analysis
	Maximum Likelihood Estimation
	Simulation
	Practical Data Examples
	Conclusion

