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Abstract: In this paper, a new general recurrence relation of hypergeometric series is derived using distribution function of upper
record statistics. The result can be extended easily to k-records statistics. A characterization is given on the basis of this recurrence
relation.
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1 Introduction

There are several situations where only those observations
are considered which have values larger (smaller) than a
specific observation available in the data, hence these
observations are retained and the rest of the observations
are discarded. This specific observation is generally
referred to as a record.

A record value may be defined as an observation in a
sequence below or above which all the observations are
smaller or larger. Consider a record in a sequence of data;
if all the observations have values above the value of this
record observation, then the said observation is an “upper
record”. For example, in the Olympic records of hammer
throwing, the maximum distance, to which an athlete
throws the hammer, will be considered as an upper record.
Now only those distances will form the upper record
sequence whose values are larger than this maximum
distance. On the other hand, if all the observations have
values below the value of the record observation, then this
record observation is called a “lower record”. For
example, in the progression of Olympic records for 100
meters women’s free style swimming, the minimum time
to cover the distance will be considered as a lower record
and only those times will form the lower record sequence
whose values are below this minimum time.

There are such situations where record value data
naturally occurs. [13] observes that in some hydrological
and material testing situation only record values are

stored. He also presents similar form of data set which
arises in real-time machine monitoring.

Consider a sequence of random variables
{X1,X2,X3, ...} from a distribution functionF (x). Let
Yn = max(min){X1,X2,X3, ...,Xn, forn≥ 1} , thenYj is an
upper (lower) record value of{Xn : n≥ 1} if Yj >Yj−1 for
j > 1 orYj <Yj−1 for j > 1 . It is evident from the above
definition of the record values thatY1 is an upper as well
as a lower record value.

The concept of record values and record statistics is
first introduced by [7] and later developed by [8] in
connection with gambling problems. [2], [3] and [10] give
a comprehensive and in-depth study of record values and
record statistics. Many authors derive recurrence relations
of moments of record statistics for different distributions.
[9] develop some useful relationships of record statistics
for Inverse Rayleigh Distribution with Gamma
Distribution and recurrence relationships of moments.
[14] proposes recurrence relations between the single
moments of record values from the modified Weibull
distribution as well as between the double moments. [5]
establish relations for single and product moments of
record values from Gumbel distribution. [4] also develop
the recurrence relations for single and product moments
of record statistics for Lomax distribution. Various
authors derive the recurrence relations for k-th record
values for different distributions; see details [11], [12],
[6].

The hypergeometric confluent functions are
extensively used in wide range of practical problems such
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as networks, wave analysis, finance etc. In this article, we
deal with a recurrence relation of hypergeometric series
using record statistics from the absolute continuous
distribution and a characterization based on this
recurrence relation.

2 Recurrence Relation of Hypergeometric
Series Using Record Statistics

Let F(x) and f (x) be the cumulative distribution and
probability density functions, respectively, of the
sequence of identical and independently distributed
random variablesX1,X2, .... Denote the upper record
statistics byXU (n),n ≥ 1 from the sequence{Xn;n≥ 1}.
We use the notationsR(x) = − ln(1 − F(x)) and
H(x) = − lnF(x). Now, denote the distribution function
and the probability density function ofXU (n) by Fn(x)
and fn(x) respectively, then it is known that

Fn(x) = P(XU (n)≥ x)

=

R(x)
∫

−∞

yn−1e−y

(n−1)!
dy, −∞ < y<+∞, (1)

fn(x) =
Rn−1(x)
(n−1)!

f (x), −∞ < y<+∞. (2)

(1), on integration by parts, gives

1−Fn (x) = e−R(x)
n−1

∑
j=0

Rj(x)
j!

. (3)

From the relation R(x) = − ln(1 − F(x)), we get
F (x) = 1−e−R(x), and consequently,f (x) = R′(x) e−R(x).
Subtituting this in (2), we get

fn (x) =
Rn−1(x)R′(x)e−R(x)

(n−1)!
, −∞ < x< ∞. (4)

This is another form of the pdf for the upper record values.
For brevity, in what follows, we will writeR for R(x).

Theorem 1. Let {Xn,n> 1} be a sequence of
independent and identically distributed non-negative
continuous random variables with a common cumulative
distribution function F(x) and probability density
function f(x). Then the following recurrence relation
holds

R 1F1 (2;n+2;R) = (n+1) [n− (n−R)

1F1 (1;n+1;R)],

where

1F1 (a;b;x) = 1+
a
b

x+
a(a+1)
b(b+1)

x2

2!

+
a(a+1)(a+2)
b(b+1)(b+1)

x3

3!
+ ...

is the hypergeometric series.

Proof. From (3), we have

1−Fn (x) = e−R
n−1

∑
j=0

Rj

j!

= e−R
[

1+R+
R2

2!
+ ...+

Rn−1

(n−1)!

]

= e−R[eR−
Rn

n!
{1+

R
(n+1)

+
R2

(n+1)(n+2)
+ ...}]

= e−R
[

eR−
Rn

n! 1F1 (1;n+1;R)

]

= 1−
Rne−R

n! 1F1 (1;n+1;R) . (5)

Differentiating both sides of (5) with respect tox, we get

− fn (x) = −
nR′Rn−1e−R

n! 1F1 (1;n+1;R)

+
R′Rne−R

n! 1F1 (1;n+1;R)

−
Rne−R

n! 1F ′
1 (1;n+1;R) . (6)

Using (4) in (6), we obtain

−
Rn−1R′e−R

(n−1)!
= −

R′Rn−1e−R

n!

[n1F1 (1;n+1;R)

−R1F1 (1;n+1;R)

+
R1F ′

1 (1;n+1;R)
R′

]. (7)

Simplifying (7), we get

1F ′
1 (1;n+1;R) =

[n− (n−R) 1F1 (1;n+1;R)]R′

R
. (8)

But we also know that

1F1 (1;n+1;R) = 1+
R

(n+1)
+

R2

(n+1)(n+2)
+ ...

Differentiating both sides of above equation with respect
to x, we get

1F ′
1 (1;n+1;R) =

R′

(n+1)
+

2RR′

(n+1) (n+2)

+
3R2R′

(n+1) (n+2) (n+3)
+ ...

=
R′

(n+1)
[1+

2R
(n+2)

+
3R2

(n+2) (n+3)
+ ...]

=
R′

(n+1) 1F1 (2;n+2;R) . (9)
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Equating (8) and (9), we get

R1F1 (2;n+2;R) = (n+1) [n− (n−R)

1F1 (1;n+1;R)]. (10)

(10) can also be rewritten as

1F1 (2;n+2;R) = [(n+1) 1F1 (1;n+1;R)

−n1F1 (1;n+2;R)]. (11)

Remarks
1.Following the above arguments, we can easily show

that the result of Theorem 1 is also true if we use the
lower record statistic withR replaced byH(x).

2.The so-calledk− records for(k≥ 1) (see, for example
[10]) are the natural extension of records. The result
for k-th record is given by
k R1F1 (2;n+2;kR) = (n+1) [n− (n−kR)

1F1 (1;n+1;kR)].

3 Characterization

Theorem 2. Suppose the recurrence relation in
Theorem1 holds and let R=x, then the recurrence relation
in Theorem1 is a special case of the recurrence relation
for the Incomplete Gamma function, i.e.

γ (n,x) = n−1xn e−x
1F1 (1;n+1;x) ,

x≥ 0,n 6= 0,−1,−2, ...

Proof. The Incomplete Gamma functionγ (n,x) is
defined by

γ (n,x) =
x

∫

0

tn−1e−t dt. (12)

Then (12) can also be expressed in infinite series form as

γ (n,x) =
∞

∑
k=0

(−1)k

k!
xn+k

n+k

= n−1xn e−x
1F1 (1;n+1;x) .

This gives (10) as

1F1 (2;n+2;x) = n (n+1) x−n−1ex

[x γ (n,x)− γ (n+1,x)] . (13)

We know the recurrence relation

γ (n+1,x) = nγ (n,x)−x−ne−x
, (14)

and substituting this in (13), we get

x1F1 (2;n+2;x) = n (n+1)
[

x−nex (x−n) γ (n,x)+1
]

. (15)

Also we have from (10)

x1F1 (2;n+2;x) = (n+1)

[n− (n−x)1F1 (1;n+1;x)] . (16)

Equating (15) and (16), we get the desired result

γ (n,x) = n−1xn e−x
1F1 (1;n+1;x) ,

x≥ 0, n 6= 0,−1,−2, ... (17)

4 Conclusion

Researchers are taking keen interest in record values data
as it occurs in many real life situations. In statistical
modeling, e.g. in reliability analysis, life time studies,
testing the strength of materials etc., the realizations of
many experiments come up in records set of observations,
therefore the use of record statistics is necessary. In this
article we derived a new form of the probability
distribution for the upper values and subsequently we
derived a new recurrence relation in hypergeometric
confluent function terms which is useful in characterizing
some functions such as gamma function. This recurrence
relation can be still more useful if we assume that
R(x) = x and apply some additional conditions such that
it follows some given distribution. Another application of
the recurrence relation could be to find similar results for
the entropy of the records, or likewise for some other
functions.
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