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Abstract: This research comprehensively examines the impact of incorporating pollution into a stochastic Gilpin-Ayala
model with patches. The critical contribution of this study lies in expressing the conditions under which species extinction
or persistence occurs based on pollution parameters. Consequently, including pollution effects in the analysis of ecological
systems enables a more accurate assessment of contaminated environments. Our results emphasize the importance of
considering pollution as a crucial factor in ecological systems, providing valuable insights into the complexities of some
polluted environments. Finally, we present a few computational simulations to validate the results developed over the
length of this article.
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1 Introduction

The detrimental effects of pollution on the
environment are well-documented and encompass
various forms, such as air, water, and soil pollution.
Industrial activities release hazardous substances
and emissions into the air, leading to the
degradation of air quality. Similarly, agricultural
practices involving pesticides, fertilizers, and other
chemicals can contaminate water bodies and soil,
posing severe threats to aquatic life and terrestrial
ecosystems. This pressing issue has compelled
scientists to undertake an in-depth analysis of
population viability in contaminated environments
to understand species’ ability to persist or face
extinction. In this context, scientific researchers are
actively studying the impacts of pollution on
different species and their capacity to adapt and
survive in contaminated conditions. By conducting
comprehensive investigations and experiments,
scientists aim to unravel the intricate relationships
between various environmental stressors and their
consequences for populations. Assessing population
survival in contaminated environments involves
examining factors such as reproductive success,
genetic diversity, physiological responses, and
behavioral adaptations. Researchers evaluate the

reproductive capabilities of species under polluted
conditions to determine their ability to maintain
viable population sizes. Furthermore, assessing
genetic diversity provides insights into the adaptive
potential of populations in polluted environments, as
reduced genetic variation can limit their ability to
respond to changing conditions. To comprehensively
understand the impact of pollution, scientists
meticulously investigate the physiological responses
exhibited by various species. The main objective is
to determine the tolerance thresholds of these
species and uncover the mechanisms they employ to
alleviate the adverse effects of contaminants
effectively. Additionally, behavioral adaptations,
such as altered feeding habits, migration patterns, or
nesting behaviors, are studied to determine whether
species can adjust their behaviors to cope with
polluted environments. The ultimate goal of these
scientific endeavors is to comprehensively understand
the ecological consequences of pollution and its
potential implications for species persistence or
extinction. Such knowledge is crucial for developing
effective conservation strategies, implementing
pollution control measures, and advocating for
sustainable development practices. The researchers
in [1,2,3] have suggested deterministic population
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models with toxin effects. In reality, stochastic
models hold significant advantages due to the
pervasive presence of randomness and uncertainty in
real-life situations. These models provide more
insightful results compared to deterministic models.
Consequently, numerous scholars have dedicated
their efforts to investigating the impact of
randomness on models (see, e.g., [4,5,6,7,8,9,10,11,
12,13,14,15,16,17] and the references cited therein).
As the growth of species is inevitably influenced by
environmental noise, many authors have studied
stochastic population models in polluted
environments (see, e.g., [18,19,20,21]). For example,
Z. Geng and M. Liu [21] considered a stochastic
single-species Gilpin-Ayala model with a toxin effect.










dx=
(

x(t)(r0 − l0c0(t) −k0x
θ0(t))

)

dt+α0x(t)dB1(t)

+β0x
1+θ0(t)dB2(t) +γ0x(t)c0(t)dB3(t),

dc0 = (kce(t) − (g+m)c0(t))dt,
dce = (−hce(t) +u(t))dt,

(1.1)
where x(t) represents the population size at time t,
r0 > 0 and k0 are the population’s growth rate and
self-competition coefficient without toxicants, θ0 is a
positive constant, l0 > 0 is the response of the
population to the contaminant in the organism,
k > 0 is the net rate of uptake of toxic substances
the organism from the natural world, g > 0 and
m > 0 indicate the rate of toxicant egestion and
detoxification of the organism, respectively. The
parameter h > 0 signifies the rate of toxicant
volatilization in the environment, c0(t) and ce(t)
indicate toxicant concentrations in the organism and
in the environment, respectively. The continuous
positive bounded function u(t) defined on [0,+∞)
represents the exogenous rate of pollutant entry
from the environment, α0, β0 and γ0 represent the
white noise intensity for r0, k0 and l0, respectively,
B1, B2 and B3 are independent standard Brownian
motions. On the other hand, dispersal frequently
happens among patches in ecological ecosystems [4,
22]. Therefore, we will consider the impact of
dispersal phenomena in this research. To this end,
we study a stochastic diffusion system containing
two patches with a toxic effect.


























































dx1 =
[

x1(r1 − l1c0(t) −k1x
θ1
1 ) + ε12(x2 −x1)

]

dt

+

n
∑

i=1

(

α1ix1 +β1ix
1+θ1
1 +γ1ix1c0(t)

)

dBi,

dx2 =
[

x2(r2 − l2c0(t) −k2x
θ2
2 ) + ε21(x1 −x2)

]

dt

+

n
∑

i=1

(

α2ix2 +β2ix
1+θ2
2 +γ2ix1c0(t)

)

dBi,

dc0 = [kce(t) − (g+m)c0(t)]dt,
dce = [−hce(t) +u(t)]dt,

(1.2)
where xi is the population density of a species in the
ith patch, ri and ki are the population growth rate

and self-competition coefficient in the ith patch,
respectively, θi is a positive constant in the ith
patch, li is the response of the population to the
contaminant in the organism in the ith patch,
εi,j > 0 is a positive dispersal rate for the species
from the jth patch to the ith patch (i 6= j). This
coefficient represents the net migration rate from the
jth patch to the ith patch, which is proportional to
the difference in population densities (xi −xj) in
each patch (see, e.g., [23,24] and the references cited
therein). The vectors αi = (αi1,αi2, ...,αin),
βi = (βi1,βi2, ...,βin) and γi = (γi1,γi2, ...,γin) stand
for the white noise intensity on ri, ki and li. Let
(Ω,F ,{Ft}t≥0,P) be a complete probability space
with a filtration {Ft}t≥0 satisfying the standard

conditions and let B(t) = (B1(t),B2(t), ...,Bn(t))T

be a Brownian motion in n-dimensions used for
modeling the inter-correlation between the noises on
ri, ki and li.

2 Persistence

Lemma 1([18]). If 0<k≤ g+m and lim
t→∞

supu(t) ≤
h, then 0 ≤ c0(t)< 1, 0 ≤ ce(t)< 1 for all t≥ 0.

To begin with, we assume that 0 < k ≤ g +m and
lim

t→∞
supu(t) ≤ h. Since the last two equations of the

model (1.2) are linear with respect to c0(t) and ce(t),
we will only study the first two equations of model
(1.2).















































dx1 =
[

x1(r1 − l1c0(t) −k1x
θ1
1 ) + ε12(x2 −x1)

]

dt

+

n
∑

i=1

(

α1ix1 +β1ix
1+θ1
1 +γ1ix1c0(t)

)

dBi,

dx2 =
[

x2(r2 − l2c0(t) −k2x
θ2
2 ) + ε21(x1 −x2)

]

dt

+

n
∑

i=1

(

α2ix2 +β2ix
1+θ2
2 +γ2ix1c0(t)

)

dBi.

(2.1)
By the same procedure as in the proof of [24], we
obtain the existence and the positivity of x1 and x2.

Theorem 1. For any (x1(0),x2(0)) ∈R
2
+, there exists

a unique solution (x1,x2) to the model (2.1) in R
2
+.

Lemma 2([25]). Let t, a, b and c be non-negative
constants, then for any Mt, t ≥ 0 local martingale
vanishing at time 0, we have

P

[

sup
06t6a

(

Mt − b

2
[Mt,Mt]

)

> c

]

6 exp(−bc),

where [Mt,Mt] is the quadratic variation of Mt.
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Let us denote

ξ1 =
r1 − l1 − ε12 − 1

2
‖α1 +γ1‖2

k1+< α1 +γ1,β1 >+
1

2
‖β1‖2

,

and

ξ2 =
r2 − l2 − ε21 − 1

2
‖α2 +γ2‖2

k2+< α2 +γ2,β2 >+
1

2
‖β2‖2

.

Theorem 2. For any (x1(0),x2(0)) ∈ R
2
+,

(i) If

(

r1 − l1 − ε12 − 1

2
‖α1 +γ1 +β1‖2 −k1

)

> 0,

then

limsup
t→∞

x1(t) ≥ ξ

1

2θ1
1 . (2.2)

(ii) If

(

r2 − l2 − ε21 − 1

2
‖α1 +γ2 +β2‖2 −k2

)

> 0,

then

limsup
t→∞

x2(t) ≥ ξ

1

2θ2
2 .

Proof. It is sufficient to demonstrate (i).
For p ∈ N

∗, let

Ap =











limsup
t→∞

x1(t)< ξ

p

2pθ1 + 2
1











,

and

A=











limsup
t→∞

x1(t)< ξ

1

2θ1
1











.

Since

ξ1 > 1, (2.3)

thus

P(A) = P





⋃

p∈N∗

Ap



 = lim
p→∞

P(Ap) . (2.4)

Suppose that (2.2) is not true.
So, from (2.4), we get P(A)> 0 and then there exists
p0 ∈ N

∗ such that, for p≥ p0, we have P(Ap)> 0.
Hence, for p ≥ p0 and for every ζ ∈ Ap, there is a
T (ζ)> 0 such that

x1(t) < ξ

p

2pθ1 + 1
1 for t≥ T (ζ). (2.5)

Now, by Itô formula, we get

log(x1(t)) = log(x1(0)) +Mt +

∫ t

0

[

(r1 − l1c0(s)

−k1x
θ1
1 (s)

)

+
ε12 (x2(s) −x1(s))

x1(s)
(2.6)

−1

2

n
∑

i=1

(

α1i +β1ix
θ1
1 (s) +γ1ic0(s)

)2
]

ds,

where Mt is a local martingale vanishing at t = 0,
defined by

Mt =

∫ t

0

n
∑

i=1

(

α1i +β1ix
θ1
1 (s) +γ1ic0(s)

)

dBi(s).

Applying Lemma 2, we have for any ε sufficiently
small and any integer q ≥ 1

P

[

sup
0≤t≤q

(

−Mt − ε

2
[Mt,Mt]

)

>
2

ε
logq

]

≤ 1

q2
,

where

[Mt,Mt] =

∫ t

0

n
∑

i=1

(

α1i +β1ix
θ1
1 (s)

+γ1ic0(s))2
ds (2.7)

Since

∞
∑

q=1

1

q2
converges, the Borel-Cantelli lemma

implies that there is a Ω1 ⊂ Ω with P(Ω1) = 1 such
that for all ζ ∈ Ω1, there exists an integer q1(ζ)
verifying

Mt ≥ −2

ε
logq− ε

2
[Mt,Mt] ,

for q ≥ q1(ζ), 0 ≤ t≤ q. (2.8)

Thus, it follows from (2.6), (2.7), and (2.8) that for
ζ ∈Ω1, q ≥ q1(ζ) and 0 ≤ t≤ q

log(x1(t))≥log (x1(0))− 2

ε
log(q)

+

∫ t

0

[

r1 − l1 − ε12 − 1 + ε

2
‖α1 +γ1‖2

−
(

k1 + (1 + ε)〈α1 +γ1,β1〉
)

x
θ1
1 (s)

−1 + ε

2
‖β1‖2

x
2θ1
1 (s)

]

ds.
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Using (2.3) and (2.5), we obtain for p≥ p0,
ζ ∈Ap ∩Ω1, q ≥ q1(ζ) ∧T (ζ) and T (ζ) ≤ t≤ q

log(x1(t)) ≥ log (x1(0)) − 2

ε
log(q)

+

∫ t

0

(

r1 − l1 − ε12 − 1 + ε

2
‖α1 +γ1‖2

)

ds

−
∫ T

0
[k1 + (1 + ε)〈α1 +γ1,β1〉

+
1 + ε

2
‖β1‖2

x
θ1
1 (s)

]

x
θ1
1 (s)ds

−
∫ t

T

[k1 + (1 + ε)〈α1 +γ1,β1〉

+
1 + ε

2
‖β1‖2

]

ξ

2pθ1

2pθ1 + 1
1 ds. (2.9)

From (2.9), one can easily verify for p≥ p0,
ζ ∈Ap ∩Ω1, and t large enough such that [t] ≥ q1(ζ),
where [t] is the biggest integer smaller than t, that we
have

1

t
log(x1(t)) ≥ 1

t
log(x1(0)) − 2

ε[t]
log ([t] + 1)

+

(

r1 − l1 − ε12 − 1 + ε

2
‖α1 +γ1‖2

)

−1

t

∫ T

0
[k1 + (1 + ε)〈α1 +γ1,β1〉

+
1 + ε

2
‖β1‖2

x
θ1
1 (s)

]

x
θ1
1 (s)ds

− t−T

t
[k1 + (1 + ε)〈α1 +γ1,β1〉

+
1 + ε

2
‖β1‖2

]

ξ

2pθ1

2pθ1 + 1
1 . (2.10)

Letting t → ∞ and ǫ → 0, and using the following
inequality

yρ < 1 +ρ(y− 1), y ≥ 0, 0 ≤ ρ≤ 1,

with

y = ξ1, ρ=
2pθ1

2pθ1 + 1
.

For p≥ p0, ζ ∈Ap ∩Ω1 and [t] ≥ q1(ζ), we get

limsup
t→∞

1

t
log(x1(t)) ,

≥
(

r1 − l1 − ε12 − 1

2
‖α1 +γ1‖2

)

×
(

k1+< α1 +γ1,β1 >+
1

2
‖β1‖2

)

×
[

1 +
2pθ1

2pθ1 + 1
(ξ1 − 1)

]

,

≥
(

r1 − l1 − ε12 − 1

2
‖α1 +γ1‖2

)

−
(

k1+< α1 +γ1,β1 >+
1

2
‖β1‖2

)

− 2pθ1

2pθ1 + 1

(

r1 − l1 − ε12 − 1

2
‖α1 +γ1‖2

)

+
2pθ1

2pθ1 + 1

(

k1+< α1 +γ1,β1 >+
1

2
‖β1‖2

)

,

≥
(

r1 − l1 − ε12 − 1

2
‖α1 +γ1 +β1‖2 −k1

)

×
(

1 − 2pθ1

2pθ1 + 1

)

,

> 0.

Hence, lim
t→∞

x1(t) = ∞. But this contradicts (2.5).

(ii) It is identical to (i).

3 Extinction

Theorem 3. For every (x1(0),x2(0)) ∈ R
2
+, the

solution of system (2.1) obey

lim
t→∞

sup
1

t
log

(

x1(t)

ε12
+
x2(t)

ε21

)

6M − 1

2
m2 a.s.,

(3.1)
where

M = max

{

r1 − l1 inf
t≥0

c0(t),r2 − l2 inf
t≥0

c0(t)

}

,

m=

[

min

(

α1i +γ1i inf
t≥0

c0(t),α2i +γ2i inf
t≥0

c0(t)

)]

1≤i≤n

.

Moreover, if M − 1

2
m2 < 0, then the extinction of the

species in (2.1).
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Proof. Using Itô’s formula, we obtain

d log

(

x1(t)

ε12
+
x2(t)

ε21

)

,

=
1

x1(t)

ε12
+
x2(t)

ε21

(

x1(t)

ε12

(

r1 − l1c0(t) −k1x
θ1
1 (t)

)

+
x2(t)

ε21

(

r2 − l2c0(t) −k2x
θ2
2 (t)

)

)

dt

− 1

2

(

x1(t)

ε12
+
x2(t)

ε21

)2

n
∑

i=1

(

x1(t)

ε12
(α1i

+β1ix
θ1
1 (t) +γ1ic0(t)

)

+
x2(t)

ε21

(

α2i +β2ix
θ2
2 (t)

+γ2ic0(t)))2
dt+

1

x1(t)

ε12
+
x2(t)

ε21

n
∑

i=1

(

x1(t)

ε12
(α1i

+β1ix
θ1
1 (t) +γ1ic0(t)

)

+
x2(t)

ε21
(α2i

+β2ix
θ2
2 (t) +γ2ic0(t)

))

dBi. (3.2)

Integrating we get

log

(

x1(t)

ε12
+
x2(t)

ε21

)

− log

(

x1(0)

ε12
+
x2(0)

ε21

)

,

=

∫ t

0

1

x1(s)

ε12
+
x2(s)

ε21

(

x1(s)

ε12
(r1 − l1c0(s)

−k1x
θ1
1 (s)

)

+
x2(s)

ε21

(

r2 − l2c0(s) −k2x
θ2
2 (s)

)

)

ds

−
∫ t

0

1

2

(

x1(s)

ε12
+
x2(s)

ε21

)2

n
∑

i=1

(

x1(s)

ε12
(α1i

+β1ix
θ1
1 (s) +γ1ic0(s)

)

+
x2(s)

ε21

(

α2i +β2ix
θ2
2 (s)

+γ2ic0(s)))2
ds+ Mt , (3.3)

with the local martingale

Mt =

∫ t

0

1

x1(s)

ε12
+
x2(s)

ε21

n
∑

i=1

(

x1(s)

ε12
(α1i

+β1ix
θ1
1 (s) +γ1ic0(s)) +

x2(s)

ε21
(α2i

+β2ix
θ2
2 (s) +γ2ic0(s))

)

dBi(s),

Now, for ǫ sufficiently small, according to Lemma 2
we have for each k > 1

P

(

sup
06t6k

[

Mt − ǫ

2
[Mt,Mt]

]

>
2log(k)

ǫ

)

6
1

k2
,

where

[Mt,Mt] =

∫ t

0

1

(
x1(s)

ε12
+
x2(s)

ε21
)2

n
∑

i=1

(

x1(s)

ε12
(α1i

+β1ix
θ1
1 (s) +γ1ic0(s)

)

+
x2(s)

ε21
(α2i +β2ix

θ2
2 (s) +γ2ic0(s))

)2

ds.

Using the Borel-Cantelli lemma, there is a Ω1 ⊂ Ω
with P(Ω1) = 1 such that for all ζ ∈ Ω1 an integer
k1(ζ) such that

Mt 6
2log(k)

ǫ
+
ǫ

2
[Mt,Mt], for 06 t6 k , k> k1(ζ).

(3.4)

Hence, it derives from (3.4) and (3.3) that for ζ ∈Ω1,
k > k1(ζ) and 0 6 t6 k

log

(

x1(t)

ε12
+
x2(t)

ε21

)

,

6

∫ t

0

1

x1(s)

ε12
+
x2(s)

ε21

(

x1(s)

ε12

(

r1 − l1c0(s) −k1x
θ1
1 (s)

)

+
x2(s)

ε21

(

r2 − l2c0(s) −k2x
θ2
2 (s)

)

)

ds

−
∫ t

0

1 − ǫ

2(
x1(s)

ε12
+
x2(s)

ε21
)2

n
∑

i=1

(
x1(s)

ε12
(α1i +β1ix

θ1
1 (s)

+γ1ic0(s)) +
x2(s)

ε21
(α2i +β2ix

θ2
2 (s) +γ2ic0(s)))2ds

+log

(

x1(0)

ε12
+
x2(0)

ε21

)

+
2log(k)

ǫ
, (3.5)

which implies

log

(

x1(t)

ε12
+
x2(t)

ε21

)

,

6

∫ t

0

1

x1(s)

ε12
+
x2(s)

ε21

(

x1(s)

ε12
(r1 − l1c0(s))

+
x2(s)

ε21
(r2 − l2c0(s))

)

ds

−
∫ t

0

1 − ǫ

2(
x1(s)

ε12
+
x2(s)

ε21
t)2

n
∑

i=1

(

x1(s)

ε12
(α1i

+γ1ic0(s)) +
x2(s)

ε21
(α2i +γ2ic0(s))

)2

ds

+log

(

x1(0)

ε12
+
x2(0)

ε21

)

+
2log(k)

ǫ
. (3.6)
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Therefore, it is simple to conclude from (3.6) that

log

(

x1(t)

ε12
+
x2(t)

ε21

)

,
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(
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)

+
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ǫ
.

Let ζ ∈Ω1 and t large enough that the biggest integer
smaller than t proves that [t] > k1(ζ). We have from
(3.7) that
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This yields
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t→∞
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t
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Letting ǫ−→ 0 gives

lim
t→∞
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1

t
log
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4 Stationary distribution

The following theorem establishes a sufficient
condition for a stationary distribution.

Theorem 4. Let n≥ 4. If α1, α2, β1, β2, γ1 and γ2

are linearly independent,
(

r1 − l1 − ε12 − 1

2
‖α1 +γ1‖2

)

> 0, and
(

r2 − l2 − ε21 − 1

2
‖α2 +γ2‖2

)

> 0, then, the solution

(x1(t),x2(t)) admits a unique ergodic stationary
distribution.

Proof. Consider the open-bounded subset

D =

(

1

µ
,µ

)

×
(

1

µ
,µ

)

⊂ R
2
+, (4.1)

where µ is a positive constant. Since α1, α2, β1, β2,
γ1 and γ2 are linearly independent, then

w1 ,
[

α1rx1(t) +β1rx
1+θ1
1 (t) +γ1rx1c0(t)

]

1≤r≤n
,

and

w2 ,
[

α2rx2(t) +β2rx
1+θ2
2 (t) +γ2rx2c0(t)

]

1≤r≤n
,

are also linearly independent.
Hence, the diffusion matrix Γ , namely
(Γij)1≤i,j≤2 = (<wi,wj >)1≤i,j≤2 is positive

definite. Thus, the ellipticity condition in [26] is
verified (see Chapter 3 of [26]). Now, consider the
following positive functions

ψ1(x1) =
1

2
log2(x1), ψ2(x2) =

1

2
log2(x2),

ψ3(x1,x2) = ε21x1 + ε12x2,

and

ψ(x1,x2) = ψ1(x1) +ψ2(x2) +ψ3(x1,x2).

According to the Itô formula, we have

Lψ1(x1) = log(x1)
[
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(

x2
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− 1
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+
1

2
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(
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1 +γ1rc0

)2

.

Using log(x1) ≤ x1 and rearranging yields

Lψ1(x1) 6

(

r1 − l1c0 − ε12 − 1

2
‖α1 +γ1c0‖2

)

log(x1)

+ε12x2 −k1x
θ1
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+
1

2

(
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θ1
1

)

x
θ1
1

×(1 − log(x1)). (4.2)

Similarly, we have

Lψ2(x2) 6

(

r2 − l2c0 − ε21 − 1

2
‖α2 +γ2c0‖2

)

log(x2)

+ε21x1 −k2x
θ2
2 log(x2) +

1

2
‖α2 +γ2c0‖2

+
1

2

(

2< (α2 +γ2c0) ,β2 >+‖β2‖2x
θ2
2

)

x
θ2
2

×(1 − log(x2)), (4.3)

and

Lψ3(x1,x2) = ε21

(

r1x1 − l1c0x1 −k1x
1+θ1
1

)

+ε12

(

r2x2 − l2c0x2 −k2x
1+θ2
2

)

. (4.4)

From (4.2), (4.3) and (4.4), we have

Lψ(x1,x2) 6 χ1(x1) +χ2(x2), (4.5)

where

χ1(x1) =

(

r1 − l1c0 − ε12 − 1

2
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)

log(x1)

+
1

2

(
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1

)

x
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1

×(1 − log(x1)) −k1x
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1 log(x1) + (ε21r1 + ε21

−ε21l2c0)x1k1ε21x
1+θ1
1 +

1

2
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and

χ2(x2) =

(

r2 − l2c0 − ε21 − 1

2
‖α2 +γ2c0‖2

)

log(x2)

+
1

2

(

2< (α2 +γ2c0) ,β2 >+‖β2‖2x
θ2
2

)

x
θ2
2

×(1 − log(x2)) −k2x
θ2
2 log(x2) + (ε12r2 + ε12

−ε12l1c0)x2 −k2ε12x
1+θ2
2 +

1

2
‖α2 +γ2c0‖2.

Hence

χ1(x1) ∼
x1−→∞

−1

2
‖β1‖2x

2θ1
1 log(x1) −k1ε21x

1+θ1
1 ,

χ1(x1) ∼
x1−→0

(

r1 − l1 − ε12 − 1

2
‖α1 +γ1‖2

)

log(x1),

χ2(x2) ∼
x2−→∞

−1

2
‖β2‖2x

2θ2
2 log(x2) −k2ε12x

1+θ2
2 ,

and

χ2(x2) ∼
x2−→0

(

r2 − l2 − ε21 − 1

2
‖α1 +γ2‖2

)

log(x2).

Since [r1 − l1 − ε12 − 1

2
‖α1 +γ1‖2]> 0,

and

[r2 − l2 − ε21 − 1

2
‖α1 +γ2‖2]> 0,

then

lim
x1→+∞

χ1(x1) = lim
x1→0

χ1(x1) = lim
x2→+∞

χ2(x2)

= lim
x2→0

χ2(x2) = −∞.

Thus, from (4.5), (4.1) and for µ large enough, we get

Lψ(x1,x2) ≤ −1 for all (x1,x2) ∈Dc.

Hence, the proof is completed.

5 Simulations

We have the following discrete system using the Euler
classical scheme developed in [27].
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x1(k+ 1) = x1(k) + (x1(k)(r1 − l1c0(k)

−k1x
θ1
1 (k)

)

+ ε12(x2(k) −x1(k))
)

h

+

n
∑

i=1

(

α1ix1(k) +β1ix
1+θ1
1 (k)

+γ1ix1(k)c0(k))
√
hηi,

x2(k+ 1) = x2(k) + (x2(k)(r2 − l2c0(k)

−k2x
θ2
2 (k)

)

+ ε21(x1(k) −x2(k))
)

h

+

n
∑

i=1

(

α2ix2(k) +β2ix
1+θ2
2 (k)

+γ2ix2(k)c0(k))
√
hηi,

where ηi (i = 1,2, ...) are independent random
variables distributed on N (0,1). So, we take

c0(t) = 0.1 + 0.05sin(t).

Example 1. Set x1(0) = 0.7, x2(0) = 0.8, r1 = 0.7,
r2 = 0.7, l1 = 0.2, l2 = 0.1, k1 = 0.2, k2 = 0.3,
α1 = 0.12, α2 = 0.15, γ1 = 0.08, γ2 = 0.09, β1 = 0.05,
β2 = 0.06, θ1 = 1, θ2 = 1, ε12 = 0.35 and ε21 = 0.4.
This gives

r1 − l1 − ε12 − 1

2
‖α1 +γ1β1‖2 −k1 > 0,

and

r2 − l2 − ε21 − 1

2
‖α2 +γ2 +β2‖2 −k2 > 0.

The persistence condition of Theorem 2 is satisfied.
The simulations in Fig.1 well support these findings.
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Fig. 1: Trajectories of x1 and x2 of system (2.1) with
parameter values in Example 1.

Example 2. Set x1(0) = 0.1, x2(0) = 0.2, r1 = 0.06,
r2 = 0.05, l1 = l2 = 1, k1 = 0.7, k2 = 0.8, α1 = 0.5,
α2 = 0.51, γ1 = 0.05, γ2 = 0.1, β1 = 0.95, β2 = 0.85,
θ1 = 0.5, θ2 = 0.6, ε12 = 0.9 and ε21 = 0.8. This gives

M − 1

2
m2 = −0.09125< 0.

As a result, the extinction condition of Theorem 3 is
verified. Simulations in Fig.2 confirm these findings.
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Fig. 2: Trajectories of x1 and x2 of system (2.1) with
parameter values in Example 2.

Example 3. Set x1(0) = 0.7, x2(0) = 0.8, r1 = 0.4,
r2 = 0.5, l1 = 0.1, l2 = 0.15, k1 = 0.4, k2 = 0.3, α1 =
0.15, α2 = 0.2, γ1 = 0.05, γ2 = 0.1, β1 = 0.15, β2 = 0.3,
θ1 = 0.85, θ2 = 0.95, ε12 = 0.1 and ε21 = 0.15.
This gives

r1 − l1 − ε12 − 1

2
‖α1 +γ1‖1 = 0.18> 0,

and

r2 − l2 −ε21 − 1

2
‖α2 +γ2‖2 = 0.155> 0. Consequently,

the stationary distribution condition of Theorem 4 is
verified.
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Fig. 3: Estimation Kernel density of (x1,x2) with
parameter values in Example 3.

6 Conclusion

This study comprehensively integrated pollution into
a stochastic Gilpin-Ayala model with patches,
providing novel insights into species dynamics within
contaminated environments. We identified the
conditions under which species extinction or
persistence occurs, highlighting the critical role of
pollution in shaping ecological outcomes. Finally,
computational simulations establish the theoretical

results, further validating the model’s efficacy. These
findings underscore the necessity of incorporating
pollution as a central element in ecological
frameworks. This paves the way for more accurate
predictions and effective conservation strategies in a
world increasingly impacted by environmental
contaminants.
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