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Abstract: This research aims to explore the complex stability of Fractional Variable Order Discrete Time Systems by introducing

new stability criteria. To achieve this, we utilize the properties of Volterra convolution-type systems and the Z-transform methodology.

We validate these criteria through practical numerical experiments, showing their usefulness in real-world engineering and scientific

applications.
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1 Introduction

In recent decades, there is no doubt that non-integer calculus has emerged as a robust and versatile mathematical
framework. It has not only expanded the horizons of ancient mathematical models but has also brought a new dimension
to modern mathematical modeling in theoretical particle physics, biochemistry, physical chemistry, and computational
science which is based on symmetrical systems [1,2,3,4,5,6]. This innovative approach has proven to be instrumental in
a wide array of dynamical models and real-world applications [7,8]. One of the areas where non-integer calculus has
made a significant impact is in economics, as demonstrated by the work of Machado [9]. Additionally, the field of robot
manipulators has greatly benefited from non-integer calculus. By incorporating fractional-order functional operators into
their models, researchers have been able to design more sophisticated and precise control systems for robots. This has
led to advancements in robotics and automation, enhancing the capabilities of robotic manipulators in various industries
[10]. Non-integer calculus has also been instrumental in the field of diffusion modeling [11]. Fractional-order derivatives
and integrals have provided a more accurate representation of diffusion processes in various scientific and engineering
applications. This has led to improved models for predicting the spread of substances, heat, or information through
different mediums. In the realm of biology, non-integer calculus has paved the way for a deeper understanding of
complex biological systems. By incorporating fractional calculus into biological models, researchers have been able to
capture the intricate and non-linear dynamics of biological processes [12,13]. This has implications for fields such as
epidemiology, ecology, and physiology. Non-integer calculus encompasses both its discrete and continuous forms,
relying on fractional-order functional operators for fundamental concepts like derivatives, integrals, and differences. This
framework enables the creation of sophisticated mathematical models that can accurately represent systems with
exceptionally rich and complex dynamics. It has, in essence, opened up a world of possibilities for researchers and
scientists, allowing them to tackle problems that were previously considered too intricate to model accurately. However,
it’s important to emphasize that to gain a thorough grasp of this specific realm within calculus, a detailed and thorough
exploration is essential. Non-integer calculus is a rapidly evolving field, and it requires a deep dive into its principles and
applications to fully appreciate its potential and impact on various scientific and engineering disciplines.

Variable-order fractional operators have become indispensable tools across a wide spectrum of disciplines, including
physics, engineering, and signal processing, as underscored in [14]. Their significance lies in their ability to serve as a
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modeling solution for systems and phenomena marked by ever-changing levels of complexity and memory [15]. These
operators offer an exceptionally adaptable and versatile approach for capturing the nuanced dynamics and behaviors
of systems in which the fractional order dynamically adapts to shifting conditions and inputs. As a result, they have
evolved into invaluable assets for the exploration and understanding of dynamic systems that exhibit variable or adaptive
characteristics. Their versatile nature has opened up new horizons in research, allowing for more precise and responsive
modeling in complex and dynamic scenarios.

It is widely recognized that there exist numerous definitions of fractional variable-order operators, with variations
arising from the manipulation of the order through various functions and modifications. In the context of this paper, our
primary focus will be on a specific operator. This particular operator was derived by simplifying the difference fractional
order operator, representing it explicitly, and subsequently altering the order using a function.

In this investigation, we explore the stability analysis of Fractional Variable-order Dynamic Systems. We undertake
this study due to the recent proliferation of models falling under this category. Given that stability stands as one of the
paramount dynamic behaviors, it has assumed great significance to develop theoretical foundations for its examination in
an attempt to generalize the results found in the constant order cases [16,17,18]. In pursuit of this goal, we utilize both
the Z-transform technique and the final-value theorem as integral components of our investigation. The results acquired
are then validated through numerical simulations conducted with a specialized MATLAB program.

The following sections of this paper will be organized in the following manner: Section 2 delivers an elucidation of
the core principles and concepts associated with the fractional difference systems with variable order. Section 3 delves
into the meticulous examination of the stability of linear systems. Section 4 encompasses the thorough validation of our
results through numerical means. Lastly, Section 5 encapsulates the key conclusions that emerge from this study.

2 Preliminaries

In this section, we’ll begin by providing a foundational overview of discrete fractional calculus, setting the stage for
a deeper exploration of the topic. Discrete fractional calculus deals with discrete analogs of fractional derivatives and
integrals. It plays a crucial role in understanding complex dynamic systems with irregularities or variable characteristics.

To delve into this subject, we will elucidate the concept of the fractional operator with a variable order, which
represents a fundamental aspect of our investigation. This operator assumes a key role in our study, allowing us to model
and analyze systems where the order of differentiation varies with time or other parameters. By defining this operator in
its explicit form, we lay the groundwork for a more in-depth examination of its properties and applications within the
context of fractional discrete-time systems with variable order. This foundational step is pivotal in unraveling the
intricate dynamics of such systems.

Definition 1.[19] Assume η > 0. In this case, the η fractional sum of u : Na → R with respect to t:

∆−η
a u(t) =

1

Γ (η)

t−η

∑
s=a

(t − s− 1)(η−1)u(s), for t ∈ Na+η , (1)

where Na = {a,a+ 1,a+ 2, · · ·} and t(η) =
Γ (t+1)

Γ (t+1−η) .

Definition 2.[19] When 0 < η ≤ 1, the Caputo fractional discrete-time operator of η-order is defined as follows:

C∆ η
a u(t) =







∆
−(1−η)
a ∆u(t) = 1

Γ (1−η)

t−(1−η)

∑
s=a

(t − s− 1)(−η)∆u(s), 0 < η < 1

∆u(t), η = 1

∀t ∈ Na+1−η , (2)

In our analysis, we consider the case where the parameter ”a” is set to zero, a choice made for the sake of simplicity
and without any loss of generality. This particular setting simplifies the mathematical expressions while still preserving
the generality and relevance of our findings. With ”a” set to zero, we transition to a notation where we represent the
fractional discrete time operator as C∆

η
0 by C∆ η . By further simplifying the expressions and making use of Pascal’s rule,

we can express this fractional discrete time operator in a more concise and structured form as in [16]:

(C∆
η
0 u)(t + 1−η) = u(t + 1)+

t

∑
s=0

(−1)t−s+1
(

η
t−s+1

)

u(s)+ (−1)t
(

η−1
t+1

)

u(0),

= u(t + 1)+ (−1)t+1
(

η
t+1

)

∗ u(t)+ (−1)t
(

η−1
t+1

)

u(0).

This simplification is a crucial step in our analysis, as it brings us to a point where we can express the fractional discrete
time operator in an explicit form. This explicit representation is pivotal for our research, as it enables us to formulate a
precise and well-defined definition for the variable-order discrete time operator, which is a central concept in our study.
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Definition 3.Let η : Z → (0,1]. Then, the Caputo fractional variable-order discrete time operator with order function

η (.) is defined by:

C∆ η(t)u(t + 1−η(t)) = u(t + 1)+ (−1)t+1
(η(t)

t+1

)

∗ u(t)+ (−1)t
(η(t)−1

t+1

)

u(0),

= u(t + 1)+
t

∑
s=0

(−1)t−s+1
(η(t−s)

t−s+1

)

u(s)+ (−1)t
(η(t)−1

t+1

)

u(0),
(3)

In this work, our focus turns to the examination of the stability characteristics of discrete systems featuring variable
orders. To accomplish this, we will embark on a detailed analysis of a specific system. To set the stage for our investigation,
let us consider the following system as our subject of study:

C∆ η(t)u(t + 1−η(t)) = h(u(t)) , t ∈N0, (4)

with initial condition u(0) = u0 ∈ Rn, where η (.) : N0 → [0,1], h : N0 → R is a state function and h = (h1,h2, ...,hn)
t :

Rn →Rn a continuously differentiable function, and suppose h(0) = 0 (all cases can be transferred to be 0 the equilibrium
point).

This system will serve as the foundation upon which we will build our exploration of the intricate dynamics and
stability properties associated with variable-order discrete systems. By delving into the stability of this particular system,
we aim to unravel essential insights that can be applied to a broader understanding of systems with varying orders. This
pursuit is crucial in our efforts to attain a thorough comprehension of the dynamics and behaviors exhibited by these
systems.

Using 3 and taylor devlopment we get

u(t + 1) = Ju(k)+
t

∑
s=0

B(t − s)u(s)+ g(t)+ o(‖u(t)‖), t = 0,1, · · · , (5)

Here, J represents the Jacobian matrix of h evaluated at 0, B(t) = (−1)t
(η(t)

t+1

)

In and g(t) = (−1)t+1
(η(t)−1

t+1

)

u(0). so u(t)
is a solution of 4 if and only if it is a solution of 5. first analyze its homogeneous part

u(t + 1) = Ju(t)+
t

∑
s=0

B(t − s)u(s), t = 0,1, · · · . (6)

When (B(k))k∈N ∈ ℓ1(Nn×n), the resolvent matrix R(k) of 6 is defined as:

R(t + 1) = JR(t)+
t

∑
s=0

B(t − s)R(s), R(0) = In, t ∈N.

Applying the variation of constants formula, we derive:

u(t) = R(t)u(0)+
t−1

∑
s=0

R(t − s− 1)(g(s)+ o(‖u(t)‖)) .

In light of our investigation, it is pertinent to introduce a theorem that holds significant importance for our forthcoming
study. This theorem serves as a foundational building block for our analysis and plays a pivotal role in shaping the direction
of our research.

Theorem 1.[20] If (B(t))t∈N ∈ ℓ1(Nn×n), for equation 6, the following assertions are equivalent: (1)

det(zI −A− B̃(z)) 6= 0 for |z| ≥ 1.
(2) (R(t))t∈N ∈ ℓ1(Nn×n).
(3) The zero solution of equation 6 exhibits uniform asymptotic stability.

In preparation for applying the previous theorem, we establish the requisite notation concerning the Z-transform of

b(t) = (−1)t
(η(t)

t+1

)

, with a radius of convergence R = 1. We have the following notation:

b̃(z) =
∞

∑
k=0

(−1)k

(

η(k)

k+ 1

)

z−k. (7)
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3 Stability in Linear Variable Order Systems

In this section, our focus centers on the examination of the stability characteristics inherent to discrete linear systems with
variable order. To facilitate our analysis, we shall delve into a specific system model featuring a variable-order structure.
This chosen system takes on the following form:

C∆ η(t)u(t + 1−η(t)) = Au(t) , t ∈ N0, (8)

u(0) = u0 ∈Rn, η (.) : N0 → [0,1] and A ∈ Rn×n.
By dissecting and scrutinizing this system, uur objective is to achieve a thorough understanding of stability

considerations within the framework of variable-order systems. This exploration will shed light on the behavior of such
systems under different conditions, providing insights into their dynamics and potential applications.

Theorem 2.System 8 exhibits asymptotic stability solutions of:

det
(

zIn −A− B̃(z)
)

= 0, (9)

are inside the unit circle. Furthermore, if ther is a solution of 9 located outside the unit circle then the solution of 8 is not

stable.

Proof.If we assume that the solutions of equation 9 lie within the unit circle, applying the variation of constants formula
yields:

u(t) =
t

∑
s=0

R(t − s)(−1)s

(

η (s)− 1

s

)

u(0).

We have

‖u(t)‖ =

∥

∥

∥

∥

t

∑
s=0

R(t − s)(−1)s
(

η(s)−1
s

)

u(0)

∥

∥

∥

∥

≤

∥

∥

∥

∥

t

∑
s=0

R(t − s)(−1)s
(η(s)−1

s

)

∥

∥

∥

∥

‖u(0)‖

≤ ζ1

t

∑
s=0

1
(s+1)ηmin

‖R(t − s)‖

= ζ1

(

⌊t/2⌋

∑
s=0

1
(s+1)ηmin

‖R(t − s)‖+
t

∑
s=⌊t/2⌋+1

1
(s+1)ηmin

‖R(t − s)‖

)

,

where ζ1 > 0 is a real constant and ⌊.⌋ is the floor function. Since the components of R belongs to ℓ1(N0), we have
‖R(t)‖= O(t−1) as t → ∞ and there exist ζ2,ζ3 > 0 such that

⌊t/2⌋

∑
s=0

1

(s+ 1)ηmin
‖R(t − s)‖ ≤

ζ2

t + 1

⌊t/2⌋

∑
s=0

1

(s+ 1)ηmin
≤

ζ3

(t + 1)ηmin
,

where we have used the inequality ∑t
s=1(s+ 1)−η ≤

∫ t
0(u+ 1)−ηdu. Similarly, the second sum can be estimated as

t

∑
s=⌊t/2⌋+1

1

(s+ 1)ηmin
‖R(t − s)‖ ≤

ζ4

(t + 1)ηmin

t

∑
s=⌊t/2⌋+1

‖R(t − s)‖ ≤
ζ5

(t + 1)η
,

for suitable ζ4,ζ5 > 0. In summary, we have ‖u(t)‖ ≤ ζ5(t + 1)−η , hence ‖u(t)‖= O(t−η) as t → ∞.
Hence, if there exists a zero z with |z| > 1, then the radius of convergence of at least one component ui of u exceeds 1.
Consequently,

r = lim
t→∞

sup k
√

|ui(t)|> 1,

according Cauchy-Hadamard theorem, consequently, lim
k→∞

sup |ui(k)|=+∞ which proves that u is not bounded and thus 8

is not stable.
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Now, we proceed to unveil a practical result that emerges from our analysis, a result that serves as a valuable addition
to the understanding and application of the concepts under examination. To do this, we introduce a fundamental set, a
concept that will play a pivotal role in our ongoing exploration:

Sη(0) =

{

z−
∞

∑
k=0

(−1)k
(η(0)

k+1

)

z−k,z ∈C, |z|< 1

}

=

{

z ∈C : |z|<
(

2cos
|arg z|−π
2−η(0)

)η(0)
and |argz|>

η(0)π
2

} . (10)

This introduced set encapsulates key elements that underpin the practical implications of our study. It paves the way
for the application of our theoretical insights in real-world scenarios and problem-solving. Through a closer examination
of this set, we aim to highlight its importance and its role in bridging the gap between theoretical concepts and their
practical relevance, ultimately contributing to the advancement of knowledge and the solution of real-world challenges.

Theorem 3.Let

ρ := max

{(

1−
ηmin

ηmax
+ηmin −η(0)

)

,

(

ηmax

ηmin

−ηmax − 1+η(0)

)}

,

where

ηmin = infη (t) ,ηmax = supη (t) ,

and

d
(

λ ,C\Sη(0)
)

= inf
{

|λ − z| ,z ∈ C\Sη(0)
}

.

If

d
(

λ ,C\Sη(0)
)

> ρ , (11)

for any eigenvalues λ of A, then system 8 is asymptotically stable.

Proof.We have

∣

∣z−λ − b̃(z)
∣

∣≥

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

z−λ −
∞

∑
k=0

(−1)k

(

η(0)

k+1

)

z−k

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∞

∑
k=0

(−1)k

(

η(0)

k+1

)

z−k −
∞

∑
k=0

(−1)k

(

η(k)

k+1

)

z−k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

This means if
∣

∣

∣

∣

∣

z−λ −
∞

∑
k=0

(−1)k

(

η(0)

k+ 1

)

z−k

∣

∣

∣

∣

∣

>

∣

∣

∣

∣

∣

∞

∑
k=0

(−1)k

(

η(0)

k+ 1

)

z−k −
∞

∑
k=0

(−1)k

(

η(k)

k+ 1

)

z−k

∣

∣

∣

∣

∣

,

we get for any eigenvalues λ of A :
z−λ − b̃(z) 6= 0,∀z ∈ C, |z| ≥ 1. (12)

We have
∣

∣

∣

∣

∞

∑
k=0

(−1)k
(η(0)

k+1

)

z−k −
∞

∑
k=0

(−1)k
(η(k)

k+1

)

z−k

∣

∣

∣

∣

=
∣

∣

∣

∣

∞

∑
k=1

(

(η(0))(1−η(0))···(k−η(0))
Γ (k+2) − (η(k))(1−η(k))···(k−η(k))

Γ (k+2)

)

z−k

∣

∣

∣

∣

.

So
∣

∣

∣

∣

∞

∑
k=1

(−1)k
(η(0)

k+1

)

z−k −
∞

∑
k=1

(−1)k
(η(k)

k+1

)

z−k

∣

∣

∣

∣

< max

{

∞

∑
k=1

(

(η(0))(1−η(0))···(k−η(0))
Γ (k+2) −

(ηmin)(1−ηmax)···(k−ηmax)
Γ (k+2)

)

,

∞

∑
k=1

(

(ηmax)(1−ηmin)···(k−ηmin)
Γ (k+2)

−
(η(0))(1−η(0))···(k−η(0))

Γ (k+2)

)

}

,

⇔
∣

∣

∣

∣

∞

∑
k=1

(−1)k
(η(0)

k+1

)

z−k −
∞

∑
k=1

(−1)k
(η(k)

k+1

)

z−k

∣

∣

∣

∣

<

max

{

∞

∑
k=1

(

(η(0))(1−η(0))···(k−η(0))
Γ (k+2) − (ηmin)

(ηmax)
(ηmax)(1−ηmax)···(k−ηmax)

Γ (k+2)

)

,

∞

∑
k=1

(

(ηmax)
(ηmin)

(ηmin)(1−ηmin)···(k−ηmin)
Γ (k+2)

− (η(0))(1−η(0))···(k−η(0))
Γ (k+2)

)

}

,
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⇔
∣

∣

∣

∣

∞

∑
k=1

(−1)k
(η(0)

k+1

)

z−k −
∞

∑
k=1

(−1)k
(η(k)

k+1

)

z−k

∣

∣

∣

∣

<

max

{

∞

∑
k=1

(−1)k
(η(0)

k+1

)

− (ηmin)
(ηmax)

∞

∑
k=1

(−1)k
(ηmax

k+1

)

,

(ηmax)
(ηmin)

∞

∑
k=1

(−1)k
(

ηmin
k+1

)

−
∞

∑
k=1

(−1)k
(η(0)

k+1

)

}

,

⇔
∣

∣

∣

∣

∞

∑
k=1

(−1)k
(η(0)

k+1

)

z−k −
∞

∑
k=1

(−1)k
(η(k)

k+1

)

z−k

∣

∣

∣

∣

<

max
{(

1− ηmin
ηmax

+ηmin −η(0)
)

,
(

ηmax

ηmin
−ηmax − 1+η(0)

)}

,

If

∣

∣

∣

∣

z−λ −
∞

∑
k=0

(−1)k
(η(0)

k+1

)

z−k

∣

∣

∣

∣

> max
{(

1− ηmin
ηmax

+ηmin −η(0)
)

,
(

ηmax

ηmin
−ηmax − 1+η(0)

)}

then
∣

∣z−λ − b̃(z)
∣

∣ > 0

therefore the condition 9 is fulfilled.

3.1 Stability in Non-Linear Variable Order Systems

Now, we turn our attention to the examination of the stability properties of the nonlinear system 4 in a more comprehensive
context. To achieve this, we introduce a critical component to our analysis, a Lemma that will aid in our understanding of
the system’s stability under various conditions and scenarios:

Theorem 4.System 4 exhibits local asymptotic stability if all solutions of:

det
(

zIn − J− B̃(z)
)

= 0, (13)

Are contained within the unit disk.

Proof.Suppose that all the solutions of 13 are contained within the unit disk, by the variation of constants, we obtain

u(t) = R(t)u(0)+
t−1

∑
s=0

R(t − s− 1)(g(s)+ o(‖u(s)‖) .

where R(t) is the resolvent matrix. We have

‖u(t)‖ ≤ ‖R(t)‖‖u(0)‖+
t−1

∑
s=0

‖R(t − s− 1)‖‖o(‖u(s)‖)‖+
t−1

∑
s=0

‖R(t − s− 1)‖‖g(s)‖ , (14)

for a given ε > 0 there is δ > 0 such that o(‖u‖)< ε ‖u‖ whenever ‖u‖< δ . So as long as ‖u(s)‖< δ , 14 becomes

‖u(t)‖ ≤ ‖R(t)‖‖u(0)‖+ ε
t−1

∑
s=0

‖R(t − s− 1)‖‖u(s)‖+
t−1

∑
s=0

‖R(t − s− 1)‖‖g(s)‖ ,

we defined y(t) as follow

y(t) = r(t)y(0)+ ε
t−1

∑
s=0

r(t − s− 1)y(s)+
t−1

∑
s=0

r(t − s− 1)h(s)

where

r(t) = ‖R(t)‖ , h(s) = ‖g(s)‖ , y(0) = ‖u(0)‖ .

⇒

y(t + 1) = r(t + 1)y(0)+ ε
t

∑
s=0

r(t − s)y(s)+
t

∑
s=0

r(t − s)h(s)

⇒
y(t + 1) = r(t + 1)y(0)+ εr(t)∗ y(t)+ r(t)∗ h(t). (15)
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We have
‖u(t)‖ ≤ y(t),

we see that r(t) ∈ ℓ1(N). Taking the Z−transform on 15 gives:

zỹ(z)− y(0)z = (zr̃(z)− z)y(0)+ ε r̃(z)ỹ(z)+ r̃(z)h̃(z),

with Rr ≤ 1, and Rh = 1, where Rr is the convergence radius of r̃(z) and Rr is the convergence radius of h̃(z) ⇒

ỹ(z) = (z− ε r̃(z))−1
(

zr̃(z)y(0)+ r̃(z)h̃(z)
)

,

for |z|> max{Rr,1,ε r̃(1)} .
Choose ε < 1

r̃(1)
, we get max{Rr,1,ε r̃(1)}= 1, by final value theorem

lim
t→∞

y(t) = lim
z→1

(z− 1)ỹ(z) = lim
z→1

(z− 1)((z− ε r̃(z))−1zr̃(z)y(0)+ r̃(z)h̃(z))

we have
t

∑
s=0

‖R(t − s)‖‖H(s)‖ ≤ ζ1

t

∑
s=0

1
(s+1)η ‖R(t − s)‖‖u(0)‖

≤ ζ1

(

⌊t/2⌋

∑
s=0

1
(s+1)η ‖R(t − s)‖+

t

∑
s=⌊t/2⌋+1

1
(s+1)η ‖R(t − s)‖

)

where ζ1 > 0 is a suitable real constant and the symbol ⌊.⌋ stands for the floor function and η = min
1≤i≤n

{ηi}. Since ‖R(t)‖

belongs to ℓ1(N), we have ‖R(t)‖= O(t−1) as t → ∞ and there exist ζ2,ζ3 > 0 such that

⌊t/2⌋

∑
s=0

1

(s+ 1)η
‖R(t − s)‖ ≤

ζ2

t + 1

⌊t/2⌋

∑
s=0

1

(s+ 1)η
≤

ζ3

(t + 1)η

where we have used the inequality ∑t
s=1(s+ 1)−η ≤

∫ t
0(u+ 1)−ηdu. Similarly, the second sum can be estimated as

t

∑
s=⌊t/2⌋+1

1

(s+ 1)η
‖R(t − s)‖ ≤

ζ4

(t + 1)η

t

∑
s=⌊t/2⌋+1

‖R(t − s)‖ ≤
ζ5

(t + 1)η
,

for suitable ζ4,ζ5 > 0. In summary, we have
t

∑
s=0

‖R(t − s)‖‖H(s)‖ ≤ ζ5(t + 1)−η , hence
t

∑
s=0

‖R(t − s)‖‖H(s)‖= O(t−η)

as t → ∞. So by final value theorem
lim
z→1

(z− 1)r̃(z)h̃(z) = 0,

and that’s imply

lim
t→∞

y(t) = lim
z→1

(z− 1)ỹ(z) = lim
z→1

(z− 1)((z− ε r̃(z))−1zr̃(z)y(0)+ r̃(z)h̃(z)) = 0.

Theorem 5.Suppose that for any eigenvalues λ of J :

d
(

λ ,C\Sη(0)
)

> ρ . (16)

Then System 4 is locally asymptotically stable. Where

ρ := max

{(

1−
ηmin

ηmax
+ηmin −η(0)

)

,

(

ηmax

ηmin

−ηmax − 1+η(0)

)}

,

Proof.With the same steps of prove Theorem 8: If
∣

∣

∣

∣

∣

z−λ −
∞

∑
k=0

(−1)k

(

η(0)

k+ 1

)

z−k

∣

∣

∣

∣

∣

> max

{(

1−
ηmin

ηmax
+ηmin −η(0)

)

,

(

ηmax

ηmin

−ηmax − 1+η(0)

)}

,

then
∣

∣z−λ − b̃(z)
∣

∣> 0,

therefore the condition 13 is fulfilled.

Remark.If either Matrix A in 8 or Matrix J in 5 is symmetric, their eigenvalues are real, making the calculations
straightforward.
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4 Numerical Simulations

What we will do in this section is to test the obtained result numerically through two numerical examples regarding the
linear case and two other regarding the nonlinear case and to carry out numerical simulations that support the theoretical
results.

4.1 Linear Systems

Example 1.Let us consider the symmetric system with a variable-order the following form:

{

C∆ η(t)u1 (t + 1−η(t)) =−0.56u1 (t)+ 0.16462u2(t)
C∆ η(t)u2 (t + 1−η(t)) = 0.16462u1(t)− 0.56u2 (t)

, t ∈N0, (17)

with initial condition (u1,u2) = (0.2,−0.3), where η : N0 → [0,1],η (t) = 0.4+ 0.1e−t. We have

ηmin = 0.4,ηmax = 0.5

ρ = max

{(

1−
ηmin

ηmax
+ηmin −η(0)

)

,

(

ηmax

ηmin

−ηmax − 1+η(0)

)}

= 0.25.

The eigenvalues of the matrix are λ1 =−0.39538,λ2 =−0.72462
. We notice from the Figure 1 obtained by MATLAB that the condition 16 is fulfilled, and therefore the system 17 is
asymptotically stable around the origin.
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Fig. 1: The location of the eigenvalues and disks which are centred at these eigenvaluse with radius ρ

The following numerical simulations (Figure 2) show the stability which agree with theoretical result
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Fig. 2: The states of the FVoDS 17

Example 2.Let us consider a system with a variable-order in the following form:







C∆ η(t)u1 (t + 1−η(t)) =−0.266905u1(t)+ 0.56619u2(t)− 0.166905u3(t)
C∆ η(t)u2 (t + 1−η(t)) =−0.166905u1(t)− u2 (t)+ 0.166905u3(t)
C∆ η(t)u3 (t + 1−η(t)) = 0.399285u1 (t)+ 0.56619u2(t)− 0.833095u3(t)

, t ∈ N0, (18)

with initial condition (u1,u2,u3) = (2.2,1.01,−1,4), where η : N0 → [0,1],η (t) = 0.6+ 0.1cos π
4

t. We have

ηmin = 0.5,ηmax = 0.7

max

{(

1−
ηmin

ηmax
+ηmin −η(0)

)

,

(

(ηmax)

(ηmin)
− (ηmax)− 1+η(0)

)}

= 0.4.

The eigenvalues of the matrix are λ1 = −0.43381,λ2 = −0.66619,λ3 = −1. We notice from the Figure3 obtained by
MATLAB that the condition 16 is fulfilled, and therefore the system 18 is asymptotically stable around the origin.
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Fig. 3: The location of the eigenvalues and disks which are centred at these eigenvaluse with radius ρ

The following numerical simulations (Figure 4) show the stability which agree with theoretical result
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Fig. 4: The states of the FVoDS 18

4.2 Non-Linear Systems

Example 3.Let us consider the system with a variable-order the following form:

{

C∆ η(t)u1 (t + 1−η(t)) =−0.41sin(u1 (t))+ 1.4sin(u2 (t))
C∆ η(t)u2 (t + 1−η(t)) = 0.5u2

1 (t)− 0.6u2 (t)
, t ∈ N0, (19)

with initial condition u(0) = (0.5,−0.5), where η : N0 → [0,1],η (t) = 0.3+ 0.05cos(t). We have

ηmin = 0.25,ηmax = 0.35
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ρ = max

{(

1−
ηmin

ηmax
+ηmin −η(0)

)

,

(

ηmax

ηmin

−ηmax − 1+η(0)

)}

= 0.4.

The eigenvalues of the Jacobian matrix of
(

−0.41sin(u1 (t))+ 1.4sin(u2 (t)) ,0.5u2
1 (t)− 0.6u2 (t)

)t
,at (0,0) are λ1 =

−0.41,λ2 = −0.6. We notice from the following Figure 5 obtained by MATLAB that the condition 16 is fulfilled, and
therefore the system 19 is asymptotically stable around the origin.
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Fig. 5: The location of the eigenvalues and disks which are centered at these eigenvalues with radius ρ

The following numerical simulations (Figure 6) show the stability which agrees with theoretical result
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Fig. 6: The states of the FVoDS 19

Example 4.Let us consider the system with a variable-order the following form:






C∆ η(t)u1 (t + 1−η(t)) =−0.3sin(u1 (t))− sin(u2 (t))
C∆ η(t)u2 (t + 1−η(t)) = 0.09u1 (t)− 0.8sin(u2 (t))
C∆ η(t)u3 (t + 1−η(t)) = sin(u1 (t)− u2 (t)− u3 (t))

, t ∈N0, (20)
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with initial condition u(0) = (2,3,−4), where η : N0 → [0,1],η (t) = 0.6+ 0.1sin π
2

t. We have

ηmin = 0.5,ηmax = 0.7

max

{(

1−
ηmin

ηmax
+ηmin −η(0)

)

,

(

(ηmax)

(ηmin)
− (ηmax)− 1+η(0)

)}

= 0.4.

The eigenvalues of the Jacobian matrix of

(−0.3sin(u1 (t))− sin(u2 (t)) ,0.09u1 (t)− 0.8sin(u2 (t)) ,sin(u1 (t)− u2 (t)− u3 (t)))
t ,

at (0,0,0) are λ1 =−0.55+0.16583i,λ2 =−0.55−0.16583i,λ3 =−1. We notice from the following Figure 7 obtained
by MATLAB that the condition 16 is fulfilled, and therefore the system 20 is asymptotically stable around the origin.
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Fig. 7: The location of the eigenvalues and disks which are centered at thees eigenvalues with radius ρ

The following numerical simulations (Figure 8) show the stability which agrees with theoretical result
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Fig. 8: The states of the FVoDS 20
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5 Conclusion

In this study, we have presented innovative stability criteria rigorously validated for fractional discrete-time systems with
variable order. This work considers a generalization of the results obtained in the past years regarding the stability of
discrete-time systems with constant order. These criteria were confirmed through numerical demonstrations with multiple
illustrative examples, offering valuable insights for a wide range of discrete-time systems, thus contributing significantly
to the field. This work motivates us to study many models in the case of variable orders and to apply this type of model in
many applied aspects such as biology and engineering.
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