
Progr. Fract. Differ. Appl. 11, No. 1, 87-117 (2025) 87

Progress in Fractional Differentiation and Applications
An International Journal

http://dx.doi.org/10.18576/pfda/110107

Mathematical Modeling of Cholera Dynamics and

Analysis Using Caputo fractional Operator with Optimal

Control

Tulu Leta Tirfe1, Legesse Lemecha Obsu2, Eshetu Dadi Gurmu 2,∗, and Mohamed Hafez3

1 Department of Mathematic, Bule Hora University, Bule Hora, Ethiopia
2 Department of Applied Mathematics, Adama Science and Technology Unversity, Adama, Ethiopia
3 Faculty of Engineering and Quantity Surveying (FEQS), INTI International University, Nilai, Malaysia

Received: 23 Apr. 2024, Revised: 25 May 2024, Accepted: 2 Jun. 2024

Published online: 1 Jan. 2025

Abstract: In this study, we developed a cholera model using the Caputo fractional operator with optimal control strategies to address

the dynamic nature of cholera transmission, employing bifurcation analysis. Initially, by applying fixed point theory, we analyzed the

existence and uniqueness of the solutions of fractional order derivatives. Furthermore, utilizing the next-generation matrix, we

computed the basic reproduction number, crucial for assessing disease dynamics. If this number falls below unity, the equilibrium

point remains disease-free, both locally and globally stable, as verified through the Jacobian matrix, Metzler matrix, and Lyapunov

function. Otherwise, cholera persistence equilibrium occurs. In addition, we extended the model to include optimal control by
integrating three controls: a prevention effort to protect susceptible individuals from contracting the disease and Vibrio cholera, a

treatment for those infected with cholera through quarantine, and water sanitation strategies to reduce infectious transmission. These

controls were determined using the Pontryagin minimum principle. The model validation was done using numerical experiments.

Based on the numerical simulation of fractional order, we observed that the order of derivatives has an impact on controlling disease

transmission. The study of this work underscores the benefit of integrating fractional order derivatives with optimal control strategies

to mitigate cholera outbreaks effectively. The proposed optimal control framework provides a systematic approach to evaluate the
impact of various interventions and inform public health policies. Future research directions include model extensions to incorporate

spatial heterogeneity and real-world data integration to further enhance the applicability and robustness of the control strategies.

Keywords: Fractional, cholera, sensitivity,optimal, stability.

1 Introduction

Cholera is a incredibly contagious acute watery dehydrating diarrheal ailment due to Vibrio cholerae and commonly
propagated by contaminated water and food [1]. Infectious diseases shows immense diversity, and their outbreaks render
millions of people vulnerable to infection, resulting in a significant economic burden on the healthcare system [2].
Nowadays, mathematical modeling plays a vital role in investigating and analyzing the transmission dynamics of
diseases, as well as predicting the potential impacts of intervention strategies to manage their distribution. These models
help in making informed decisions and establish policies to mitigate the dissemination of diseases, [3,4,5]. In past years,
there has been significant study conducted by numerous authors on the complex dynamics of the cholera model.
Theoretical analysis of such systems have resulted in a multitude of interesting findings, which have been published in
various studies [6,7,8,9], along with the references cited within those publications. These authors have focused on
mathematical models that describe the interactions between populations, contaminated water, and poor sanitation. By
employing these models, valuable insights into the dynamics of cholera can be obtained, contributing to a better
understanding of the disease and the development of effective control strategies.
Tilahun et al. [9] developed a stochastic mathematical model to investigate the behavior of cholera disease, with a
specific focus on the direct contact transmission pathway. They extensively studied the qualitative and quantitative
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behavior of the model. Adewole and Faniran [11] developed a human host and environment model to examine the
complex dynamics of cholera infection. In their model, they considered the fraction of infectious individuals who do not
adhere to treatment as part of the overall human population. Their findings suggest that while compliance with treatment
is necessary, it alone is not sufficient to eradicate cholera. These studies contribute to the understanding of cholera
dynamics by incorporating various factors and transmission pathways into mathematical models. The results emphasize
the importance of considering both direct contact transmission and the impact of treatment adherence in devising
effective strategies for cholera control.
Fractional operators, which extend the concept of differentiation and integration to non-integer orders, find extensive
applications in various fields of knowledge, including physics, biology, finance, and control theory [12,13,14,15]. Their
popularity has been on the rise due to their ability to model systems with complex, non-linear, and non-local behavior.
One of the main merits of fractional operators is their capability to describe systems with memory effects, which are
prevalent in physical and biological systems. Moreover, they can effectively capture the behavior of systems with
long-range interactions, making them a valuable tool for modeling complex systems [16,17,18,19]. In [20], a stochastic
computational model of cholera infection was proposed in the context of a direct contact transmission pathway applying
fractional calculus theory. The study results suggest that policymakers should consider measures such as reducing
interactions, improving treatment rates, and encouraging hygiene facilities to eradicate cholera.
Clearly, all of the above-stated works are primarily based fractional derivative and classical integer-order derivatives.
However, to some extent, the deterministic model cannot fully account for the natural behavior of the disease [21]. The
essential motive is that the community operator of the integer Order calculus does now no longer convey any records
approximately the mastering and reminiscence mechanisms of the population that influences disease transmission.
Conversely, the non-neighborhood operator of the fractional-order calculus can expound the worldwide traits of sickness
transmission process, and the derived results are more general nature. Additionally, they not consider indirect
transmission by applying optimal controls and Caputo fractional operators to cholera model with logistic growth for
V.cholerae. Thus, to cover the observed gap, we are motivated to propose a cholera model with optimal control and
Caputo fractional operators analysis. In this section, the formulated SIQR-B mathematical model of the cholera epidemic
model is analyzed to show the impact of optimal control and memory effect on dynamics of cholera infection.
The remainder of this paper is structured as follows: Section 2 presents the formulation of the cholera model in a
deterministic and Caputo fractional order framework. In Section 3, we discuss qualitative analysis and sensitivity
analysis of the model. Optimal control formulation is detailed in Section 4, followed by numerical simulation results
using MATLAB software in Section 5. We present our discussions and conclusions in Section 6. Finally, we present our
conclusions in Section 7.

2 Cholera Model Description and Formulation

Based on the condition of their diseases, the model separated all people into four groups. Those are susceptible
individuals S(t), are individuals who are vulnerable to the cholera infection over a period of time, infected individuals
I(t), are those individuals who have developed the symptom of cholera infection, quarantined individuals Q(t), are
individuals who are infectious and compulsory quarantine to reduce the spread of cholera and get treatment based on the
patients clinical results, and recovered individuals R(t), are individuals who are recovered from cholera disease by
treatment at a time. Moreover, B(t), is the concentration of Vibro cholerae bacterium in an aquatic environment is
tracked as an additional compartment.
Moreover, the model assumed that the human population recruited to susceptible compartment at a rate Π and the
concentration of the environmental bacteria is described by a logistic growth model with the intrinsic growth rate r and
the carrying capacity K. The parameters α1 and α2 represents the rate of contribution from an infected individuals and
quarantined individuals to the bacteria population in the environment respectively, and µB is the bacteria removal rate.
Susceptible individuals may acquires cholera infection either directly through human to human transmission at a rate
β2SI or indirectly from environment to human by ingestion of contaminated water and food by Vibrio cholerae

bacterium at a rate
(β1SB)
(k+B) , where k is the concentration of Vibrios cholera in contaminated water and food that causes 50

percent chance of cholera infection [6], and β1 ingestion rate. Cholera infected individuals are quarantined to control the
transmission of cholera infection and joined the quarantined compartment at a rate θ . Individuals in quarantined
compartment recover as a result of cholera treatment at a rate δ . The recovered individuals who lose immunity become
susceptible at a rate ω . In all compartments, µ is the natural death rate of individuals, but in the infectious compartment
ξ is cholera disease induced death rate. All parameters in the model are non-negative. The schematic diagram of cholera
model is shown in Figure (1).

© 2025 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 11, No. 1, 87-117 (2025) / www.naturalspublishing.com/Journals.asp 89

Fig. 1: Schematic Diagram of Cholera Model

Based on the basic assumption with the description and schematic diagram we obtain the following model equations.































dS(t)
dt

= Π − (β1SB
k+B

+β2SI)− µS+ωR,
dI(t)

dt
= (β1SB

k+B
+β2SI)− (θ +α1 + µ + ξ )I,

dQ(t)
dt

= θ I− (δ +α2 + µ + ξ )Q,
dR(t)

dt
= δQ− (ω + µ)R,

dB(t)
dt

= rB(1− B
K
)+α1I+α2Q− µBB,

(1)

with initial condition
S(0)> 0, I(t)≥ 0,Q(t)≥ 0,R(t)≥ 0,B(t)≥ 0. (2)

As a research, fractional derivative modelling capabilities are enhanced by its non-fixed order. The selection of the Caputo
operator in this study is motivated by the fact that it permits for the use of local initial conditions to be included in the
formulation of the model solution. Besides, the Caputo derivative for a given constant function is zero; thus, it takes
the same outcome for integer order derivatives. Upon the memorability nature of the Caputo fractional derivate, model
parameters can be estimated well. For this merits, we use the Caputo fractional derivatives to model cholera infection.
Taking the above interrelationship and the explanation of the time-dependent kernel defined by the power law correlation
function, the new fractional model for the cholera dynamics is as the following system.



























C
0 Dα

t S(t) = Π − (β1SB

k+B
+β2SI)− µS+ωR,

C
0 Dα

t I(t) = (β1SB

k+B
+β2SI)− (θ +α1 + µ + ξ )I,

C
0 Dα

t Q(t) = θ I− (δ +α2 + µ + ξ )Q,
C
0 Dα

t R(t) = δQ− (ω + µ)R,
C
0 Dα

t B(t) = rB(1− B
K
)+α1I+α2Q− µBB,

(3)

with initial condition
S(0)> 0, I(t)≥ 0,Q(t)≥ 0,R(t)≥ 0,B(t)≥ 0. (4)

where all the parameters are assumed to be non-negative, and C
0 Dα

t denotes the Caputo fractional derivative (CFD) of
order α ∈ (0,1] for function f (t) such that [8].

2.1 Preliminaries

In this section, we review several key definitions, lemmas, and concepts that are necessary to understand our suggested
model.

Definition 1.([42,43]). Given a function u : ℜ+ −→ ℜ,andα ∈ (n− 1,n),n ∈ N. The left Caputo fractional derivative of

order α of the function u is defined as,
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C
0 Dα

t (u(t)) =
1

Γ (n−α)

∫ t
0 un(k)(t − k)n−α−1)dk,

and the Mittag-Leffler function Eα(z) with C the set of the complex number is given by,

Eα(z) = ∑∞
β=0

zβ

Γ (1+αβ )
,α,z ∈ C,ℜ(α)> 0.

Definition 2.([42,43]). The corresponding Riemann-Liouville fractional integral associated with the power-law kernel is

defined as,

C
0 Iα

t (u(t)) = 1
Γ (α)

∫ t
0(t − k)α−1)u(k)dk, t > 0.

Definition 3.The Laplace transform of the Caputo fractional derivative is,
{

C
0 Dα

t u(t);s
}

= sα F(s)−∑n−1
k=0 sα−k−1 f (k)(0),

where n− 1 < α ≤ n.

Lemma 1.([45,46]). Assuming there is a function u(t) ∈C[0,η ] of order α ∈ (0,1), the solution of fractional differential

equation,
{

C
0 Dα

t (u(t)) = Y (t,u(t)), t ∈ [0,η ],

u(0) = u0,

is given by

u(t)− u(0) = 1
Γ (α)

∫ t
0 Y (k,u(k))(t − k)α−1dk.

3 Basic Properties of Cholera Model

3.1 Existence and Uniqueness of the Solutions

This part shows that the system has a unique solution. First, we construct the system (3) as follows;







































































C
0 Dα

t S(t) = F1(t,S(t)),
C
0 Dα

t I(t) = F2(t, I(t)),
C
0 Dα

t Q(t) = F3(t,Q(t)),
C
0 Dα

t R(t) = F4(t,R(t)),
C
0 Dα

t B(t) = F5(t,B(t)),

F1(t,S(t)) = Π − (β1SB
k+B

+β2SI)− µS+ωR,

F2(t, I(t)) = (β1SB
k+B

+β2SI)− (θ +α1 + µ + ξ )I,

F3(t,Q(t)) = θ I− (δ +α2 + µ + ξ )Q,

F4(t,R(t)) = δQ− (ω + µ)R,

F5(t,B(t)) = rB(1− B
K
)+α1I +α2Q− µBB.

Taking the both sides of the previous equations as an integral form, we get































S(t)− S(0) = 1
Γ (α)

∫ t
0(t − k)α−1F1(k,S)dk,

I(t)− I(0) = 1
Γ (α)

∫ t
0(t − k)α−1F2(k, I)dk,

Q(t)−Q(0) = 1
Γ (α)

∫ t
0(t − k)α−1F3(k,Q)dk,

R(t)−R(0) = 1
Γ (α)

∫ t
0(t − k)α−1F4(k,R)dk,

B(t)−B(0) = 1
Γ (α)

∫ t
0(t − k)α−1F5(k,S)dk,

(5)

we show that the kernel Fi, f ori = 1,2,3,4,5 follows the condition of Lipschitz and contraction.
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Theorem 1.If the following inequality holds 0 ≤ ri < 1, then the function Fi for i = 1,2,3,4,5 fulfill with the condition of

Lipschitz and contraction mapping as well.

Proof.We have for S and S1

‖ F1(t,S)−F1(t,S1) ‖=‖ ( β1B
k+B

+β2I)(S1 − S)+ µ(S1− S) ‖

≤ [‖ ( β1B
k+B

+β2I) ‖+ ‖ µ ‖] ‖ (S1 − S) ‖

≤ [( ‖β1‖‖B‖
‖k‖+‖B‖+ ‖ β2 ‖‖ I ‖)+ ‖ µ ‖] ‖ (S1 − S) ‖

≤ [(β1‖‖B‖
k+‖B‖ +β2 ‖ I ‖)+ µ ] ‖ (S1 − S) ‖

≤ [( β1z5
k+z5

+β2z2)+ µ ] ‖ (S1 − S) ‖ .

Where there are positive constants z1,z2,z3,z4,z5 such as

{

‖ S(t) ‖≤ z1,‖ I(t) ‖≤ z2,

‖ Q(t) ‖≤ z3,‖ R(t) ‖≤ z4,‖ B(t) ‖≤ z5,

and r1 = (( β1z5
k+z5

+β2z2)+ µ) are non-negative bounded functions.

Hence

‖ F1(t,S)−F1(t,S1) ‖≤ r1 ‖ S(t)− S1(t) ‖ . (6)

Similarly, we can prove that Fi , for i = 2,3,4,5 fulfill the Lipschitz condition as following:



















‖ F2(t, I)−F2(t, I1) ‖≤ r2 ‖ I(t)− I1(t) ‖,

‖ F3(t,Q)−F3(t,Q1) ‖≤ r3 ‖ Q(t)−Q1(t) ‖,

‖ F4(t,R)−F4(t,R1) ‖≤ r4 ‖ R(t)−R1(t) ‖,

‖ F5(t,B)−F5(t,B1) ‖≤ r5 ‖ B(t)−B1(t) ‖ .

Therefore, Fi satisfies the Lipschitz condition. Furthermore, under the condition 0 ≤ ri ⋖1, the functions are contractions.
Depending on the system (3), consider the following recursive forms:































Sn(t) =
1

Γ (α)

∫ t
0(t − k)α−1F1(k,Sn−1)dk,

In(t) =
1

Γ (α)

∫ t
0(t − k)α−1F2(k, In−1)dk,

Qn(t) =
1

Γ (α)

∫ t
0(t − k)α−1F3(k,Qn−1)dk,

Rn(t) =
1

Γ (α)

∫ t
0(t − k)α−1F4(k,Rn−1)dk,

Bn(t) =
1

Γ (α)

∫ t
0(t − k)α−1F5(k,Bn−1)dk.

The difference between two terms can be expressed as follows:































Φ1n(t) = Sn(t)− Sn−1(t) =
1

Γ (α)

∫ t
0(t − k)α−1(F1(k,Sn−1)−F1(k,Sn−2))dk,

Φ2n(t) = In(t)− In−1(t) =
1

Γ (α)

∫ t
0(t − k)α−1(F2(k, In−1)−F2(k, In−2))dk,

Φ3n(t) = Qn(t)−Qn−1(t) =
1

Γ (α)

∫ t
0(t − k)α−1(F3(k,Qn−1)−F3(k,Qn−2))dk,

Φ4n(t) = Rn(t)−Rn−1(t) =
1

Γ (α)

∫ t
0(t − k)α−1(F4(k,Rn−1)−F4(k,Rn−2))dk,

Φ5n(t) = Bn(t)−Bn−1(t) =
1

Γ (α)

∫ t
0(t − k)α−1(F5(k,Bn−1)−F5(k,Bn−2))dk,

using the initial condition S(t) = S(0), I(t) = I(0),Q(t) = Q(0),R(t) = R(0),B(t) = B(0). We continue the first equation
of the preceding method with the norm and through Lipschitz condition (13), we get;

‖ Φ1n(t) ‖=‖ Sn(t)− Sn−1(t) ‖=‖ 1
Γ (α)

∫ t
0(t − k)α−1(F1(k,Sn−1)−F1(k,Sn−2))dk ‖,

≤ 1
Γ (α)

∫ t
0 ‖ (t − k)α−1(F1(k,Sn−1)−F1(k,Sn−2) ‖))dk,

‖ Φ1n(t) ‖≤
r1

Γ (α)

∫ t
0 ‖ Φ1(n− 1)(k) ‖ dk,

(7)
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likewise, we get
‖ Φ2n(t) ‖≤

r2
Γ (α)

∫ t
0 ‖ Φ2(n− 1)(k) ‖ dk,

‖ Φ2n(t) ‖≤
r2

Γ (α)

∫ t
0 ‖ Φ2(n− 1)(k) ‖ dk,

‖ Φ3n(t) ‖≤
r3

Γ (α)

∫ t
0 ‖ Φ3(n− 1)(k) ‖ dk,

‖ Φ4n(t) ‖≤
r4

Γ (α)

∫ t
0 ‖ Φ4(n− 1)(k) ‖ dk,

‖ Φ5n(t) ‖≤
r5

Γ (α)

∫ t
0 ‖ Φ5(n− 1)(k) ‖ dk.

(8)

Then we can write that;
{

Sn(t) = ∑n
i=1 Φ1i(t), In(t) = ∑n

i=1 Φ2i(t),

Qn(t) = ∑n
i=1 Φ3i(t),Rn(t) = ∑n

i=1 Φ4i(t),Bn(t) = ∑n
i=1 Φ5i(t).

In the following theorem, we prove the existence of a solution.

Theorem 2.If there exists t1 > 1 such that ri

Γ (α)
t1 ≤ 1 , for i = 1,2,3,4,5 then, there exist at least one solution of system

given by the fractional cholera SIQR-B.

Proof.Suppose their exist t such that ri

Γ (α) t1 ≤ 1.

From the recursive scheme and from (7) as well as (8), we have obtained that ‖ Φ1n(t) ‖≤
r1

Γ (α)

∫ t
0 ‖ Φ1(n− 1)(k) ‖ dk.

Replacing n by n - 1 in the above inequality

‖ Φn−1(t) ‖≤
r1

Γ (α)

∫ t
0 ‖ Φ1(n− 2)(k) ‖ dk,

≤ ( r1
Γ (α))

2
∫ t

0 ‖ Φ1(n− 2)(k) ‖ dk.

Again replacing n by n - 2 in the given inequality

‖ Φn−2(t) ‖≤
r1

Γ (α)

∫ t
0 ‖ Φ1(n− 3)(k) ‖ dk,

≤ ( r1
Γ (α)

)3
∫ t

0 ‖ Φ1(n− 3)(k) ‖ dk.

If we keep substituting in this way and use the initial condition, we obtain

‖ Φ1n(t) ‖≤‖ Sn(0) ‖ [
r1

Γ (α)
t]n.

Similarly, we get
‖ Φ2n(t) ‖≤‖ In(0) ‖ [

r2
Γ (α) ]

n,

‖ Φ3n(t) ‖≤‖ Qn(0) ‖ [
r3

Γ (α) ]
n,

‖ Φ4n(t) ‖≤‖ Rn(0) ‖ [
r4

Γ (α) ]
n,

‖ Φ5n(t) ‖≤‖ Bn(0) ‖ [
r5

Γ (α)
]n.

This system has a solution, so it is also continuous. We will show that Φ1n(t),Φ2n(t),Φ3n(t),4n(t),Φ5n(t) converge to
system of solution (3).
Consider D1n(t),D2n(t),D3n(t),D4n(t),D5n(t), as fixed point iteration method, so that



























S(t)− S(0) = Sn(t)−D1n(t),

I(t)− I(0) = In(t)−D1n(t),

Q(t)−Q(0) = Qn(t)−D1n(t),

R(t)−R(0) = Rn(t)−D1n(t),

B(t)− S(0) = Bn(t)−D1n(t).

(9)

Using the triangular inequality with the condition of Lipschitz F1, we are getting:

‖ D1n(t) ‖=‖ 1
Γ (α)

∫ t
0(F1(k,Sn)−F1(k,Sn−1))dk ‖,

≤ 1
Γ (α)

∫ t
0(F1(k,Sn)−F1(k,Sn−1) ‖))dk,

≤ r1
Γ (α) r1 ‖ Sn − Sn− 1 ‖ t.
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By applying the above process recursively, we obtain

‖ D1n(t) ‖=≤ [ r1
Γ (α)r1]

n+1k,

here K is the Lipschitz constant.
As a result, the sequence is valid and follows the described conditions as

‖ D2n(t) ‖−→ 0,‖ D3n(t) ‖−→ 0,‖ D4n(t) ‖−→ 0,‖ D5n(t) ‖−→ 0,

as n −→ ∞.











































‖ Sn+r(t)− Sn(t) ‖≤ ∑n+r
i=n+1Y i

1 =
Y n+1

1 −Yn+r+1
1

1−Y1
,

‖ In+r(t)− In(t) ‖≤ ∑n+r
i=n+1Y i

2 =
Y n+1

2 −Y n+r+1
2

1−Y1
,

‖ Qn+r(t)−Qn(t) ‖≤ ∑n+r
i=n+1Y i

3 =
Y n+1

3 −Yn+r+1
3

1−Y3
,

‖ Rn+r(t)−Rn(t) ‖≤ ∑n+r
i=n+1 Y i

4 =
Y n+1

4 −Y n+r+1
4

1−Y4
,

‖ Bn+r(t)−Bn(t) ‖≤ ∑n+r
i=n+1 Y i

5 =
Y n+1

5 −Y n+r+1
5

1−Y5
.

By hypothesis ri

Γ (α)
t1 ≤ 1, S, I,Q,R,B are Cauchy sequences. For this reason, it can be deduce that they are uniformly

convergent. Hence, the limit of the sequences is the unique solution of the fractional system (3).

Theorem 3.If the condition (1− ri

Γ (α))t > 0, for i = 1,2,3,4,5 holds then the SIQRB model of Cholera is unique solution.

Proof.We assume that another solution is possible for the system to highlight the uniqueness of the solution, such a
S1(t), I1(t),Q1(t),R1(t) and B1(t) then we have

S(t)− S1(t) =
1

Γ (α)

∫ t

0
(F1(t,S)−F1(t,S1))dk.

Now, we take the norm of above equation

‖ S(t)− S1(t) ‖=‖ 1
Γ (α)

∫ t
0(F1(t,S)−F1(t,S1)) ‖ dk,≤ 1

Γ (α)

∫ t
0 ‖ (F1(t,S)−F1(t,S1)) ‖ dk.

From the Lipschitz condition (7) it follows that,

‖ S(t)− S1(t) ‖≤
1

Γ (α)
r1t ‖ (S(t)− S1(t)) ‖,

consequently,

‖ S(t)− S1(t) ‖
1

Γ (α) r1t ‖ (S(t)− S1(t)) ‖≤ 0,

‖ S(t)− S1(t) ‖ [1−
1

Γ (α)
r1t]≤ 0. (10)

By the hypothesis (1− ri

Γ (α) )t > 0 the previous (7) become the form,

‖ S(t)− S1(t) ‖= 0.

This means that S(t) = S1(t). Apply similar technique to all solution for i = 2,3,4,5 we get
‖ I(t)− I1(t) ‖= 0,‖Q(t)−Q1(t) ‖= 0,‖Q(t)−Q1(t) ‖= 0,‖Q(t)−Q1(t) ‖= 0. Hence, the theorem is proved. Therefore
based on analysis and discussion described above, the solutions of the system (3) remain positive and bounded. Hence,
system (3) is both mathematically and epidemiologically well-posed.
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3.2 Invariant region

In the following analyses, we shall demonstrate that the model performs well-posed in both epidemiologically and
mathematically.

Theorem 4.The epidemiologically feasible region of model (3) is given by

Ω =

{

(S, I,Q,R,B) ∈ R5
+ : 0 ≤ N(t)≤

Π

µ
,B(t)≤

(α1 +α2)

µµBr
ΠK

}

. (11)

Proof.The boundedness of the solutions are performed in two parts: the human population and bacterial population. For
the human population, the first four equations of system (3) are summed to give

C
0 Dα

t N(t) = Π − µN(t)− Iα1− ξ I−α2Q− ξ Q ≤ Π − µN(t). (12)

Applying the Laplace transform of the above inequality, we have

λ αℓ[N(t)]−λ α−1N(0)≤
Π

λ
− µℓ[N(t)], (13)

that can be written as

ℓ[N(t)]≤
λ−1

λ α + µ
Π +

λ α−1

λ α + µ
N(0), (14)

applying the inverse of the Laplace transform on inequality (6) gives

N(t)≤ Π tα Eα ,α+1(−µtα)+Eα ,1(−µtα)N(0) = (−
Π

µ
+N(0))Eα ,1(−µtα)+

Π

µ
, (15)

where

Ea,b(z) = ∑∞
k=0

zk

Γ (ak+b)

is Mittag-Leffler function with parameters a and b. It is clear that N(0) ≤ Π
µ when t = 0. Then, N(t) ≤ Π

µ can be derived

from Eα ,1(−µt(α))≥ 0.
Next, for the bacterial population, it follows that

C
0 Dα

t B(t)≤ rB(1−
B

K
)+α1I+α2Q− µBB, (16)

thus, one has

B(t)≤
(α1+α2)

µµBr
ΠK.

As such, the feasible region for system (3) is given by

Ω =

{

(S, I,Q,R,B) ∈ R5
+ : 0 ≤ N(t)≤

Π

µ
,B(t)≤

(α1 +α2)

µµBr
ΠK

}

. (17)
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3.3 Positivity of Solutions

Theorem 5.For the given initial conditions (4), the solutions of system (3) are positive and bounded for all t ≥ 0.

Proof.One of the important characteristics of epidemiological models is that their solutions are both positive and bounded.
In order to ensure this, we establish that all of the state variables are non-negative for any time m > 0, which implies that
a trajectory starting with a positive initial condition will stay positive for all m > 0. Thus, system (3) gives



























C
0 Dα

t S(t)|S = 0 = Π +ωR ≥ 0,
C
0 Dα

t I(t)|I = 0 = β1SB
k+B

≥ 0,
C
0 Dα

t Q(t)|Q = 0 = θ I ≥ 0,
C
0 Dα

t R(t)|R = 0 = δQ ≥ 0,
C
0 Dα

t B(t)|B = 0 = α1I +α2Q ≥ 0.

(18)

Based on analysis and discussion described above, the solutions of the system (3) remain positive and bounded.

3.4 Cholera Disease-free equilibrium point

A disease-free equilibrium E0 = (S0, I0,Q0,R0,B0) of cholera model is a point where cholera infection is not in the
population. Hence, setting
C
0 Dα

t S(t) = 0,C0 Dα
t I(t) = 0,C0 Dα

t Q(t) = 0,C0 Dα
t R(t) = 0,C0 Dα

t B(t) = 0, I = 0,B= 0 in the cholera model (3), then computed
cholera-free equilibrium is given by



























C
0 Dα

t S(t) = 0,
C
0 Dα

t I(t) = 0,
C
0 Dα

t Q(t) = 0,
C
0 Dα

t R(t) = 0,
C
0 Dα

t B(t) = 0.

(19)

Which means



























Π − (β1SB
k+B

+β2SI)− µS+ωR= 0,

(β1SB
k+B

+β2SI)− (θ +α1 + µ + ξ )I = 0,

θ I− (δ +α2 + µ + ξ )Q = 0,

δQ− (ω + µ)R = 0,

rB(1− B
K
)+α1I +α2Q− µBB = 0.

(20)

Then the system of equations (20) is simplified, which gives

Π − (β1SB
k+B

+β2SI)− µS+ωR= 0,
by solving above equation we get
S0 =

Π
µ .

Therefore, our disease-free equilibrium point is E0 = (Π
µ ,0,0,0,0).

3.5 Endemic Equilibrium

The endemic equilibrium point E∗ = (S∗, I∗,Q∗,R∗,B∗) of cholera model is the point where the infection persists in the
population or where rate of change of fractional derivatives vanish and it is obtained by solving the following equations:
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

























Π − (β1SB
k+B

+β2SI)− µS+ωR= 0,

(β1SB
k+B

+β2SI)− (θ +α1 + µ + ξ )I = 0,

θ I− (δ +α2 + µ + ξ )Q = 0,

δQ− (ω + µ)R = 0,

rB(1− B
K
)+α1I +α2Q− µBB = 0.

(21)

Hence, the solution of preceding equation is given by

E∗ = (S∗, I∗,Q∗,R∗,B∗). (22)

Where







































Q∗ = (ω+µ)R∗

δ ,

I∗ = (δ+α2+µ+ξ )(ω+µ)R∗

θδ ,

B∗ = (r− µB)+
√

(µB − r)2 + 4r
K
(α1b(ω+µ)R∗

θδ + α2(ω+µ)R∗

δ ),

S∗ = (θ+α1+µ+ξ )I∗

β1B∗

k+B∗
+β2I∗

,

R∗ =
(

β1S∗B∗

k+B∗
+β2S∗I∗)+µS∗−Π

ω ,

(23)

where, b = δ +α2 + µ + ξ .

3.6 Basic Reproduction Number

Here, the threshold parameter that governs the spread of disease known as the basic reproduction number is obtained. It
is nothing but the spectral radius of the next-generation matrix. For the purpose, the system of model (3) is rearranged
starting with those representing newly infective classes.

C
0 Dα

t I(t) = (β1SB
k+B

+β2SI)− (θ +α1 + µ + ξ )I,
C
0 Dα

t Q(t) = θ I− (δ +α2 + µ + ξ )Q,
C
0 Dα

t B(t) = rB(1− B
K
)+α1I +α2Q− µBB.

(24)

Let Z = [I,Q,B]T denote a vector of infectious variables,

C
0 Dα

t Z = F(Z)−V(Z) =

[

β1SB
k+B

+β2SI

0

]

-





(θ +α1 + µ + ξ )I
−θ I+(δ +α2 + µ + ξ )Q

−rB(1− B
K
)−α1I−α2Q+ µBB



,

with the next-generation matrices,

F = ∂F(Z)
∂Z

|E0
=





β2S0 0 β1S0
K

0 0 0
0 0 0



,V = ∂V (Z)
∂Z

|E0
=





θ +α1 + µ + ξ 0 0
−θ δ +α2 + µ + ξ 0
−α1 −r+ µB −α2



,

which leads to,

FV−1 =







β2S0(δ +α2 + µ + ξ )+ β1S0(−θ(−r+µB)+α1(δ+α2+µ+ξ ))

K(θ+α1+µ+ξ )(−α2δ−α2
2−µα2−ξ α2)

β1S0(−r+µB)

K(α2δ+α2
2+µα2+ξ α2)

−β1S0α2
K

0 0 0
0 0 0






,then, R0

Here, by the next generation matrix principle, the largest eigenvalue is the basic reproduction number.
Therefore, our basic reproduction number is

R0 =
β1Πθ (−r+ µB)+β2Π(δ +α2 + µ + ξ )2α2K(θ +α1 + µ + ξ )−β1Πα1(δ +α2 + µ + ξ )

α2µK(θ +α1 + µ + ξ )(δ +α2 + µ + ξ )
(25)

or

R0 =
β1Πθ(−r+µB)+β2Πm2α2Kn−β1Πα1m

α2µKnm
,

where
m = δ +α2 + µ + ξ ,n = θ +α1 + µ + ξ .
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3.7 Local Stability of Disease-Free Equilibrium

Theorem 6.Disease-free equilibrium E0 of system of equations given in (1) is locally asymptotically stable if R0 < 1 and

unstable if R0 > 1.

Proof.To show that the DFE point of our model system 3 is locally asymptotically stable, we need to show that all the
eigenvalues of Jacobian matrix J of system of Equation (3) evaluated at DFE point satisfies the condition |arg(λi)| > α
π
2 . Let us find the Jacobian matrix J of model system of Equation (3) at DFE point. Jacobian matrix J of (3) evaluated at
DFE point is given by



























C
0 Dα

t S(t) = Π − (β1SB
k+B

+β2SI)− µS+ωR= f1,
C
0 Dα

t I(t) = (β1SB
k+B

+β2SI)− (θ +α1 + µ + ξ )I = f2,
C
0 Dα

t Q(t) = θ I− (δ +α2 + µ + ξ )Q = f3,
C
0 Dα

t R(t) = δQ− (ω + µ)R = f4,
C
0 Dα

t B(t) = rB(1− B
K
)+α1I+α2Q− µBB = f5.

Then the Jacobian matrix is given by equation(26).

J =















−[ β1B
k+B

+β2I]− µ −β2S 0 ω −β1S(k+B)+β1SB

(K+B)2

β1B

k+B
+β2I β2S− (θ +α1 + µ + ξ ) 0 0

β1S(K+B)−β1SB

(k+B)2

0 θ −(δ +α2 + µ + ξ ) 0 0
0 0 δ −(ω + µ) 0

0 α1 α2 0 r− 2Br
K

− µB















(26)

Then the Jacobian matrix evaluated at E0 becomes

J(E0) =













−µ − β2Π
µ 0 ω −β1Π

µk

0 β2Π
µ − (θ +α1 + µ + ξ ) 0 0 β1Π

µk

0 θ −(δ +α2 + µ + ξ ) 0 0
0 0 δ −(ω + µ) 0
0 α1 α2 0 r− µB













(27)

From equation(27) the eigenvalues are evaluated as follows:

J(E0) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−µ −λ − β2Π
µ 0 ω −β1Π

µk

0
β2Π

µ − (θ +α1 + µ + ξ )−λ 0 0
β1Π
µk

0 θ −(δ +α2 + µ + ξ )−λ 0 0
0 0 δ −(ω + µ)−λ 0
0 α1 α2 0 −(µB − r)−λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(28)

The Characteristic Polynomial of equation (28)becomes

(−µ −λ )(
β2Π

µ
− (θ +α1 + µ + ξ )−λ )(−(δ +α2 + µ + ξ )−λ )(−(ω+ µ)−λ )(−(µB− r)−λ ) = 0. (29)

By factorizing the Characteristic Polynomial of equation,eigenvalues are as follows:

λ1 =−µ ,λ2 =−((θ +α1 + µ + ξ )− β2Π
µ ),λ3 =−(δ +α2 + µ + ξ ),λ4 =−(ω + µ),λ5 =−(µB − r)

Since
λ1 < 0,λ2 < 0,λ3 < 0,λ4 < 0,λ5 < 0 for µB < r, know the sign of all eigenvalues are negative.
Therefore,our disease-free equilibrium point is locally asymptotically stable if and only if R0 < 1.
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3.8 Global Stability of Disease-free Equilibrium

Model(3) can be rewritten in the following form:

{

dX
dt

= H(X ,Z),
dy
dt

= G(X ,Z),G(X ,0) = 0.
(30)

The disease -free equilibrium E1
0 of the preceding system is

E1
0 = (X0,0,0),

where X0 is the disease-free equilibrium of the disease-free system.
According to [19] ,to guarantee global asymptotic stability,we verify the following conditions H1 and H2 to be satisfied:

i.H1: for dX
dt

= H(X ,0),X0 is the globally asymptotically stable equilibrium.

ii.H2: G(X ,Z) = PY − Ĝ(X ,Z), Ĝ(X ,Z)≥ 0 for (X ,Z) ∈ Ω .

Here,P = DZG(X ,0) satisfy the condition of the Metzler matrix, and Ω is a region of feasible solutions.
Now,we state the following theorem.

Theorem 7.The disease-free equilibrium of the cholera dynamic model is globally asymptotically stable if R0 < 1 if

conditions H1 and H2 are satisfied and unstable whenever R0 > 1.

Proof.From model (3), we have

H(X ,0) = Π − µS = H(S,0). (31)

Solving H(X ,0) = 0, we obtain S = Π
µ .

Hence,X0 = (Π
µ ,0).

Here, X0 is the globally stable equilibrium of equation.

dX

dt
= H(X ,0). (32)

From the infected compartments of model (3), we obtain;

G(X ,Z) =





−(θ +α1 + µ + ξ ) 0 0
θ −(δ +α2 + µ + ξ ) 0
α1 α2 r− µB









I

Q

B



-





− β1SB

k+B
−β2SI

0
rB2

K



.

At the disease -free equilibrium, the preceding equation reduces to the following form:

G(X ,Z) =





−(θ +α1 + µ + ξ ) 0 0
θ −(δ +α2 + µ + ξ ) 0
α1 α2 r− µB









I

Q

B



-





0
0
0





G(X ,Z) = PY − Ĝ(X ,Z),
Where

P =





−(θ +α1 + µ + ξ ) 0 0
θ −(δ +α2 + µ + ξ ) 0
α1 α2 r− µB



 and Ĝ(X ,Z) =





0
0
0



≥ 0.

Now,it follows that the formulated model satisfied the hypothesis conditions required as,

G(X ,Z) = PY − Ĝ(X ,Z),

where Ĝ(X ,Z)≥ 0,∀X ,Z.

Therefore, E0 is globally asymptotically stable if R0 < 1.
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3.9 Global Stability of Endemic Equilibrium Point (EEP)

Theorem 8.If R0 > 1,then the endemic equilibrium point E∗ of model (3) is globally asymptotically stable in the region

Ω .

Proof.Define a Lyapunov function candidate by;

F(S, I,Q,R) = 1
2 [(S− S∗)+ (I− I∗)+ (Q−Q∗)+ (R−R∗)]2.

Then F(S, I,Q,R)≥ 0 and F(S∗, I∗,Q∗,R∗) = 0. Moreover,
dF
dt

= [(S+ I+Q+R)− (S∗+ I∗+Q∗+R∗)] dN
dt
.

Since
S∗+ I∗+Q∗+R∗ = Π

µ

and
dN
dt

= Π − µN(t)−α1I− ξ I−α2Q− ξ Q,
we have

dF
dt

= (N − Π
µ )(Π − µN(t)−α1I− ξ I−α2Q− ξ Q)

=− 1
µ (Π − µN)2 − (Π − µN)(α1I + ξ I+α2Q+ ξ Q)≤ 0.

Note that at the EEP we have N ≤ Π
µ . Hence,it follows that dF

dt

leq0 and dF
dt

= 0 if and only if S = S∗, I = I∗,Q = Q∗,R = R∗. Therefore the largest closed and bounded invariant set in,

{

(S, I,Q,R,B) ∈ Ω : Ḟ = 0
}

is the set
{E∗ : E∗ = (S∗, I∗,Q∗,R∗,B∗)} .

By LaSalle’s invariance principle the unique equilibrium point E∗ is globally asymptotically stable when R0 > 0 in the
region Ω .

3.10 Bifurcation analysis

In this subsection, we establish the conditions on the parameters using Theorem 4.1 from [22] and center manifold theory
[21]. In this theorem, there are two coefficients that represent dynamics on the center manifold. If we say these coefficients
that ’decide’ the bifurcation B1 and B2, we have B1 < 0 and B2 > 0 for the occurrence of forward bifurcation.
For the governing system (3), we will designate the effective cholera transmission rate, β2, as the bifurcation parameter.
Consequently, model (3) can be expressed in vector form by renaming the variables as follows:
S = x1, I = x2,Q = x3,R = x4,B = x5. That is,

dX

dt
= F(X). (33)

Where, X = (x1,x2,x3,x4,x5)
T ,F(X) = ( f1, f2, f3, f4, f5).

Then, model (3) becomes



























C
0 Dα

t S(t) = Π − (β1SB

k+B
+β2SI)− µS+ωR= f1,

C
0 Dα

t I(t) = (β1SB

k+B
+β2SI)− (θ +α1 + µ + ξ )I = f2,

C
0 Dα

t Q(t) = θ I− (δ +α2 + µ + ξ )Q = f3,
C
0 Dα

t R(t) = δQ− (ω + µ)R = f4,
C
0 Dα

t B(t) = rB(1− B
K
)+α1I+α2Q− µBB = f5.

(34)

Here, from preceding system of nonlinear equation, choosing β2 as a bifurcation parameter and setting R0 = 1, we have

β ∗
2 = β2 =

µ

Πm
−

β1θ (−r+ µB)

m2α2Kn
+

β1α1

mα2Kn
. (35)
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Where,n = θ +α1 + µ + ξ and m = δ +α2 + µ + ξ .
So that the disease-free equilibrium, E0, is locally stable when β2 < β ∗

2 and is unstable when β2 > β ∗
2 . The linearized

matrix of the system around the disease-free equilibrium E0 and evaluated at β ∗
2 is given by

J(E0,β
∗
2 ) =













−µ − β2Π
µ 0 ω −β1Π

µk

0
β2Π

µ − (θ +α1 + µ + ξ ) 0 0
β1Π
µk

0 θ −(δ +α2 + µ + ξ ) 0 0
0 0 δ −(ω + µ) 0
0 α1 α2 0 r− µB.













(36)

The system (36) with β2 > β ∗
2 has a simple zero eigenvalues, hence the centre manifold theory will be used to analyse the

dynamics of the system near β2 = β ∗
2 . The Jacobean matrix near β2 = β ∗

2 has a right eigenvector associated with the zero

eigenvalue given by, w = (w1,w2,w3,w4,w5)
T from the system;

J(E0,β
∗
2 )w =













−µ − β2Π
µ 0 ω −β1Π

µk

0
β2Π

µ − (θ +α1 + µ + ξ ) 0 0
β1Π
µk

0 θ −(δ +α2 + µ + ξ ) 0 0
0 0 δ −(ω + µ) 0
0 α1 α2 0 r− µB























w1

w2

w3

w4

w5











=











0
0
0
0
0











.

The system of equation becomes































−µw1 −
β2Π

µ w2 +ωw4 −
β1Π
µK

w5 = 0,

(β2Π
µ − (θ +α1 + µ + ξ ))w2 +

β1Π
µK

w5 = 0,

θw2 − (δ +α2 + µ + ξ )w3 = 0,

δw3 − (ω + µ)w4 = 0,

α1w2 +α2w3 +(r− µB)w5 = 0.

(37)

After solving system of equation (37) we obtained







































w1 =
β2Π

µ w2+ωw4−
β1Π
µK w5

µ ,

w2 = w2 > 0,

w3 =
(ω+µ)w4

δ ,

w4 = w4 > 0,

w5 =
(

β2Π
µ −(θ+α1+µ+ξ ))w2

β1Π
µK

.

(38)

The left eigenvectors of JE associated with the zero eigenvalue at β2 = β ∗
2 is given by v = (v1,v2,v3,v4,v5)

T , from the
system (36),

J(E0,β
∗
2 )v =













−µ 0 0 0 0

− β2Π
µ

β2Π
µ − (θ +α1 + µ + ξ ) θ 0 α1

0 0 −(δ +α2 + µ + ξ ) δ α2

ω 0 0 −(ω + µ) 0
−β1Π

µk
β1Π
µk

0 0 r− µB























v1

v2

v3

v4

v5











=











0
0
0
0
0











.































−µv1 = 0,

− β2Π
µ v1 +(β2Π

µ − (θ +α1 + µ + ξ ))v2 +θv3 +α1v5 = 0,

−(δ +α2 + µ + ξ )v3 + δv4 +α2v5 = 0,

ωv1 − (ω + µ)v4 = 0,
−β1Π

µk
v1 +

β1Π
µk

v2 +(r− µB)v5.

(39)
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Solving system of equation (39) gives































v1 = 0,

v4 = 0,

v3 =
−α2v5

(δ+α2+µ+ξ )
= 0,

v5 =
β1Π
µk v2

(r−µB)
,

v2 = v2 > 0.

(40)

To study the stability of endemic equilibrium points, the center manifold theory is used to compute B1 and B2 such that,

B1 =
n

∑
k, j,i=1

vkwiw j
∂ 2 f

∂xi∂X j

(So,0,0,0,0), (41)

B2 =
n

∑
k,i=1

vkwi

∂ 2 f

∂xi∂β ∗
2

, (42)

where































Π − (β1x1x5
k+x5

+β2x1x2)− µx1 +ωx4 = f1,

(β1x1x5
k+x5

+β2x1x2)− (θ +α1 + µ + ξ )x2 = f2,

θx2 − (δ +α2 + µ + ξ )x3 = f3,

δx3 − (ω + µ)x4 = f4,

rx5(1−
x5
K
)+α1x2 +α2x3 − µBx5 = f5.

(43)

We employ the center manifold theory as in [16] to compute the coefficients Bi(i = 1,2) in equation (27), thereby
finalizing the bifurcation analysis. This involves determining the nonzero second-order partial derivatives of
fk(k = 1, ...,5) with respect to xi(i = 1, ...,5) around the disease-free equilibrium.

The center manifold theory allows us to simplify the analysis of the dynamical system by reducing the dimension of
the system around the bifurcation point. By computing the coefficients Bi, we can classify the type of bifurcation and
predict the qualitative changes in the system’s behavior as the bifurcation parameter, in this case the effective cholera
transmission rate β2 varies.







































































∂ 2 f1
∂x2

1

=,
∂ 2 f1

∂x1∂x2
= ∂ 2 f1

∂x2∂x1
=,

∂ 2 f1
∂x2

2

= ∂ 2 f1
∂x4∂x2

= ∂ 2 f1
∂x2∂x4

= 0, ∂ 2 f1
∂x3∂x2

= ∂ 2 f1
∂x2∂x3

= 0,

∂ 2 f1
∂x2

3

= ∂ 2 f1
∂x1∂x3

= ∂ 2 f1
∂x3∂x1

= ∂ 2 f1
∂x4∂x3

= ∂ 2 f1
∂x3∂x4

= ∂ 2 f1
∂x2

4

= ∂ 2 f1
∂x1∂x4

= ∂ 2 f1
∂x4∂x1

= 0,

∂ 2 f2
∂x2

1

= ∂ 2 f2
∂x1∂x2

= ∂ 2 f2
∂x2∂x1

= ∂ 2 f2
∂x2

2

= ∂ 2 f2
∂x3∂x2

= ∂ 2 f2
∂x2∂x3

= ∂ 2 f2
∂x4∂x2

= ∂ 2 f2
∂x2∂x4

= 0,

∂ 2 f2
∂x2

3

= ∂ 2 f2
∂x1∂x3

= ∂ 2 f2
∂x3∂x1

= ∂ 2 f2
∂x4∂x3

= ∂ 2 f2
∂x3∂x4

= ∂ 2 f2
∂x2

4

= ∂ 2 f3
∂x3∂x2

= ∂ 2 f3
∂x4∂x2

= 0,

∂ 2 f3
∂x2

3

= ∂ 2 f3
∂x4∂x3

= ∂ 2 f3
∂x1∂x3

= ∂ 2 f2
∂x1∂x4

= ∂ 2 f2
∂x4∂x1

= ∂ 2 f3
∂x2

1

= ∂ 2 f3
∂x1∂x2

= 0,

∂ 2 f3
∂x2

2

= ∂ 2 f3
∂ f 2

4

= ∂ 2 f4
∂x1∂x4

= ∂ 2 f5
∂x2

1

= ∂ 2 f5
∂x1∂x2

= ∂ 2 f5
∂x2

2

= ∂ 2 f5
∂x3∂x2

= 0,

∂ 2 f5
∂x4∂x2

= ∂ 2 f5
∂x2

3

= ∂ 2 f5
∂x1∂x3

= ∂ 2 f5
∂x4∂x3

= ∂ 2 f5
∂x2

4

= ∂ 2 f5
∂x1∂x4

= 0.

Also,















∂ 2 f2
∂x2∂β ∗

2
(E0,β

∗
2 ) = x1,

∂ 2 f3
∂x3∂β ∗

2
(E0,β

∗
2 ) = 0,

∂ 2 fk
∂xi∂β ∗

2
(E0,β

∗
2 ) = 0, i 6= 0.
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Since B1 < 0 and B2 > 0, the model exhibits forward bifurcation at R0 = 1.
Next, following procedures given in [13], we compute the bifurcation coefficients B1 and B2, to identify the direction of
bifurcation at R0 = 1. Thus, we have















B1 = ∑4
k,i, j=1 wkviv j

∂ 2 fk
∂xi∂x j

(E0,β
∗
2 ) = ∑4

i, j=1 w3viv j
∂ 2 f5

∂x5∂x5
(E0,β

∗
2 ) =

−2
(K < 0,

B2 = ∑4
k,i=1 wkvi

∂ 2 fk
∂xi∂β ∗

2
(E0,β

∗
2 ) = w2v2

∂ 2 f2
∂x2∂β ∗

2
(E0,β

∗
2 ) = w2v2

∂ 2 f2
∂x1∂β ∗

2
(E0,β

∗
2 ) = w2v2x1

= w2v2
Π
µ = B2 > 0.

(44)

Given that all parameters in model (1) are nonnegative, and additionally w3 and v3 are positive, we can deduce that
B1 < 0 and B2 > 0. Consequently, following the findings of [9], model (3) demonstrates a supercritical bifurcation as
R0 crosses the threshold R0 = 1. This implies the existence of a locally asymptotically stable endemic equilibrium point
E∗

1 = (S∗, I∗,Q∗,R∗,B∗) for R0 > 1. Drawing on the outcomes of the aforementioned discussion and referencing [10], the
following theorem is formulated.

Theorem 9.The trans-critical bifurcation of model (3) at R0 = 1 is characterized as a supercritical bifurcation. This

implies the presence of a locally asymptotically stable endemic equilibrium point E1 = (S∗, I∗,Q∗,R∗,B∗) for R0 > 1.

Remark.Theorem 10 indicates that when R0 > 1, even a minor influx of infectious individuals into a fully susceptible
population can lead to the sustained presence of cholera within the population.

3.11 Sensitivity Analysis and Its Interpretations

In this section we perform the sensitivity analysis of the reproductive number. Sensitivity analysis tells us how important
each parameter is to disease transmission. Such information is crucial not only for experimental design, but also to data
assimilation and reduction of complex nonlinear models. Sensitivity analysis is commonly used to determine the
robustness of model predictions to parameter values, since there are usually errors in data collection and presumed
parameter values. It is used to discover parameters that have a high impact on basic reproduction number and should be
targeted by intervention strategies. The normalized forward sensitivity index of a particular variable, R0, with respect to a
parameter,ρ , is defined as

Y
R0
ρ =

∂R0

∂ρ
×

ρ

R0

It is already shown that the explicit expression of R0 is given by

R0 =
β1Πθ (−r+ µB)+β2Π(δ +α2 + µ + ξ )2α2K(θ +α1 + µ + ξ )−β1Πα1(δ +α2 + µ + ξ )

α2µK(θ +α1 + µ + ξ )(δ +α2 + µ + ξ )
.

The normalized forward sensitivity indices of R0 with respect to parameters in its are given as follows































































































Y
R0

β1
= ∂R0

∂β1
× β1

R0
= θβ1((µB−r)−α(δ+α2+µ+ξ ))

β1θ(µB−r)+β2(δ+α2+µ+ξ )2α2K(θ+α1+µ+ξ )−β1α1(δ+α2+µ+ξ )
,

Y
R0
Π = ∂R0

∂Π × Π
Ro

= 1,

Y
R0
θ = ∂R0

∂θ × θ
R0

= β θ((µB−r)+β2(δ+α2+µ+ξ )2α2K)

β θ(µB−r)+β2(δ+α2+µ+ξ )2α2K(θ+α1+µ+ξ )−β1α1(δ+α2+µ+ξ )
− θ

αµK(δ+α2+µ+ξ )
,

Y
R0
r = ∂R0

∂ r
× r

R0
= −β1θr

β1θ(µB−r)+β2(δ+α2+µ+ξ )2α2K(θ+α1+µ+ξ )−β1α1(δ+α2+µ+ξ )
,

Y
R0
µB

= ∂R0
∂ µB

× µB

R0
= β1θ

β1θ(µB−r)+β2(δ+α2+µ+ξ )2α2K(θ+α1+µ+ξ )−β1α1(δ+α2+µ+ξ )
,

Y
R0

β2
= ∂R0

∂β2
× β2

R0
= β2α2k(δ+α2+µ+ξ )2(θ+α1+µ+ξ )

β1θ(µB−r)+β2(δ+α2+µ+ξ )2α2K(θ+α1+µ+ξ )−β1α1(δ+α2+µ+ξ )
,

Y
R0
α1

= ∂R0
∂α1

× α1
R0

= β2α2k(δ+α2+µ+ξ )2Kα1

β1θ(µB−r)+β2(δ+α2+µ+ξ )2α2K(θ+α1+µ+ξ )−β1α1(δ+α2+µ+ξ )
− α1

α2µK(δ+α2+µ+ξ )(θ+α1+µ+ξ )
,

Y
R0
α2

= ∂R0
∂α2

× α2
R0

= β2ξ (θ+α1+µ+ξ )k(δ+2α2+µ+ξ )−β α1α2

β1θ(µB−r)+β2(δ+α2+µ+ξ )2α2K(θ+α1+µ+ξ )−β1α1(δ+α2+µ+ξ )
− (δ+2α2+µ+ξ )µKα2(θ+α1+µ+ξ )

αµK(θ+α1+µ+ξ )(delta+α2+µ+ξ )
,

Y
R0

δ
= ∂R0

∂δ × δ
R0

= (2β2(delta+α2+µ+ξ )α2K(θ+α1+µ+ξ ))δ
β1θ(µB−r)+β2(δ+α2+µ+ξ )2α2K(θ+α1+µ+ξ )−β1α1(δ+α2+µ+ξ )

− δ
(δ+α2+µ+ξ )

,

Y
R0

ξ
= ∂R0

∂ξ
× ξ

R0
=

β2α2Kξ (δ+α2+µ+ξ )2

β1θ(µB−r)+β2(δ+α2+µ+ξ )2α2K(θ+α1+µ+ξ )−β1α1(δ+α2+µ+ξ )
− δ

(δ+α2+µ+ξ )
− ξ

(θ+α1+µ+ξ )
.
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where,
P = β1Πθ (−r+ µB)+β2Πm2α2Kn−β1Πα1m,
m = δ +α2 + µ + ξ ,
n = θ +α1 + µ + ξ .

Table 1: Sensitivity Indices Table

Parameters Symbol Description Sensitivity indices

Π Recruitment rate into the human population 1

ξ Cholera induced death rate 0.654

δ Rate of recovery using the available cholera treatment from Q(t) 0.437

α2 Rate of contribution from Q(t) to B(t) 0.365

β1 Ingestion rate 0.235

r Intrinsic growth rate 0.0002

θ Rate of infected individuals join Q(t) class -0.125

β2 Transmission rate -0.136

α1 Rate of contribution from I(t) to B(t) -0.459

µB Bacteria removal rate -0.812

The sensitivity analysis interpretation of our basic reproduction number is described as follows. The parameters that have
negative sensitivity indices (β2,θ ,α1,µB)) have the effect of reducing the burden of cholera from the community if the
values of the parameters are decreasing (which means that the basic reproduction number of the disease decreases as their
parameter values decrease) by keeping other parameter constant. Also, those parameters with positive sensitivity indices
(ξ ,δ ,α2,β1,r) have an important role in the expansion of Cholera in the community if their values increase (this means
that if their parameter values increase, then the secondary infection in the community increases). Due to the reason that
R0 (effective reproductive number) increases as its parameter cost will increase, the common wide variety of secondary
contamination will increase withinside the population; and R0 decreases as its parameter value decreases, which means
that the average number of secondary contamination decreases withinside the human population and illustrated as Figure
(2).
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Fig. 2: Sensitivity indices of basic reproduction number R0
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4 Optimal Control Model

The aim of this section is to extend model equation (1) into an optimal control problem. The controls are defined as
follows;

i)u1(t) a prevention effort that protect susceptible individuals from contracting the disease and Vibrio cholerae.
ii)u2(t) a treatment for cholera-infected individuals through quarantine , with 0 ≤ u2(t)≤ 1 [14].

iii)u3(t) is a water sanitation , with
0 ≤ u3(t)≤ 0.1

[17].

After in corporating the controls , the corresponding state system for model equation (1) is given as ;



























dS
dt

= Π − (1− u1(t))(
β1SB
k+B

+β2SI)− µS+ωR,
dI
dt

= (1− u1(t))(
β1SB
k+B

+β2SI)− (θ +α1 + µ + ξ + u2(t))I,
dQ
dt

= θ + u2(t)I − (δ +α2 + µ + ξ )Q,
dR
dt

= δQ− (ω + µ)R,
dB
dt

= u3(t)rB(1− B
K
)+α1I+α2Q− µBB.

(45)

With initial condition
S(0)> 0, I(t)≥ 0,Q(t)≥ 0,R(t)≥ 0,B(t)≥ 0.

and a bounded lebesgue measurable control set .

4.1 Construction of Objective Function

Although L1 type cost function is more robust than L2 type cost function, most papers done on optimal control problems
adopt L2 type cost function aim for a simply calculations [15]. In this subsection we apply L2 type cost function to define
the objective functional J that describes the optimal level of effort required to control cholera infection. Moreover, the aim
of objective functional is to minimize the number of infected humans I(t), the concentrations of Vibrio cholerae in the
environment B(t),the quarantine human and the cost of providing and applying the controls u1,u2 and u3. Here, similar
to the works done in [5], we choose the quadratic cost on controls. Thus, under these control measures, we consider the
following optimal control problem:

J(I,U, t) = minu1,u2,u3

∫ t f

0
M1I+M2B+M3Q+

1

2
(

3

∑
i=1

wiu
2
i )dx, (46)

subject to the control system



























dS
dt

= Π − (1− u1(t))(
β1SB
k+B

+β2SI)− µS+ωR,
dI
dt

= (1− u1(t))(
β1SB
k+B

+β2SI)− (θ +α1 + µ + ξ + u2(t))I,
dQ
dt

= (θ + u2(t))I − (δ +α2 + µ + ξ )Q,
dR
dt

= δQ− (ω + µ)R,
dB
dt

= u3(t)rB(1− B
K
)+α1I+α2Q− µBB.

(47)

Where i = 1,2,3 and M1,M2,M3,
w1
2 , w2

2 and w3
2 are positive weights that balance the size of the integrand terms to reduce

the dominance of any of the term in the integral. The constants M1 , M2 and M3 measures the cost or effort required for
the implementation of each of the three control measures adopted while u1, u1 and u3 measures the relative importance of
reducing the associated classes on the spread of the disease.The parameter T is the duration of time in years of prevention
and treatment progress. Thus, we need to find the optimal controls
u∗ = (u∗1,u

∗
2,u

∗
3) such that;

J(u∗) = minuJ(u1,u2,u3)
Hence, the basic setup of the optimal control problem is to check the existence and uniqueness of the optimal controls and
to characterize them.
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4.2 Existence of an Optimal Control

Theorem 10.Consider the objective function J(u) as (46) with the set of admissible control Ω subject to the system ,then

there exist an optimal control (u∗1,u
∗
2,u

∗
3) ∈ Ω such that

J(u∗1,u
∗
2,u

∗
3)=min(u1,u2,u

∗
3 ∈ Ω)J(u1,u2,u

∗
3)

the subsequent situations are satisfied.

Let the control set

u = [0,1]2,υ = (u1,u2,u
∗
3) ∈ u,χ = (S∗, I∗,Q∗,R∗,B∗)

and f (t,χ ,υ) the right hand side of state system (46), is given by

f (t,χ ,υ) =



























dS
dt

= Π − (1− u1(t))(
β1SB

k+B
+β2SI)− µS+ωR,

dI
dt

= (1− u1(t))(
β1SB

k+B
+β2SI)− (θ +α1 + µ + ξ + u2(t))I,

dQ
dt

= (θ + u2(t))I − (δ +α2 + µ + ξ )Q,
dR
dt

= δQ− (ω + µ)R,
dB
dt

= u3(t)rB(1− B
K
)+α1I+α2Q− µBB.

(48)

The proof is based on the following assumption and by Fleming and Rishel’s theorem.

1.The set of controls and corresponding state variables is nonempty.
2.The admissible control set Ω is convex and closed.
3.All the right hand sides of equations of system (1) are continuous, bounded above by a sum of bounded control and

state, and can be written as a linear function of u, v and w with coefficients depending on time and state.
4.The integrand of the objective functional M1I+M2B+M3Q+ 1

2 w1u2
1 +

1
2 w2u2

2 +
1
2 w3u2

3 is convex.
5.The integrand of the objective functional is bounded below by

M1I+M2B++M3Q+ 1
2 w1u2

1 +
1
2 w2u2

2 +
1
2 w3u2

3 ≥ c1 + c2|u1|
τ + c3|u2|

τ + c4|u3|
τ .

where c1,c2,c3,c4 > 0 and τ > 1.

Proof.The non trivial requirement on the set of admissible controls and the set of end conditions are followed by[2]
theorem.
Condition 1: Using theorem 3.2 of Picard-Lindelof, if g(t,χ ,υ) is bounded, continuous and Lipschitz in the state
variables, then there exists a unique solution corresponding to every admissible control Ω . Hence, for every ui ∈ Ω and
the state variables, we have

0 ≤ N(t)≤
Π

µ
,B(t)≤

(α1 +α2)

µµBr
ΠK. (49)

and non empty by model assumption. Furthermore, with the bounded done in (10) it implies that the state variable is

continuous and bounded. Additionally, the partial derivative ∂ f

∂x
exist and finite (i.e. are all continuous). Therefore, there

exists a unique solution (S, I,Q,R,B) that satisfies the initial conditions. Hence, the set of controls and the corresponding
state variables is nonempty and condition 1 is satisfied.
Condition 2: Assume that
Ω = {u ∈ ℜ3 : ||u|| ≤ 1− ε}. Let u1,u2 ∈ Ω such that ||u1|| ≤ 1− ε and ||u2|| ≤ 1− ε . Then for any ρ ∈ [0,1],

||ρu1 +(1−ρ)u2|| ≤ ρ ||u1||+(1−ρ)||u2|| ≤ 1− ε .

This implies that Ω is convex and closed.
The existence of the result in (10) for the equation of system (1) with bounded coefficients is used to hold the condition
under (2). The control set u is convex and is closed by definition. The RHS of the state variables in (1) holds. Condition
(10) as the state solutions is a priori bounded. The integrand of the objective functional M1I+M2B+M3Q+ 1

2 ∑2
i=1 wiu

2
i (t)

is clearly concave on u. Finally, n1 > 0,n2 > 0 and β > 0.

M1I +M2B+M3Q+
1

2

2

∑
i=1

wiu
2
i (t)≤ n1 − n2(u

2
1,u

2
2,u

2
3)

α
2 . (50)

The state variables are bounded. Hence, there exists an optimal control (u1,u2,u3) that minimizes the objective functional
J(u1,u2,u3).
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4.3 Construction of Hamiltonian Function

The necessary condition that an optimal control must satisfy comes from Pontryagin’s Maximum Principle [1]. The
principle converts equations of objective functional into a problem of minimizing point wise a Hamiltonian H, with
respect to the controls u1,u2, and u3. Let λ1,λ2,λ3,λ4 and λ5 be the adjoint variables with respect to state variables S, I,
Q, R and B, respectively. Then Hamiltonian function can be constructed as follows:

H = M1I +M2B+M3Q+
1

2
w1u2

1 +
1

2
w2u2

2 +
1

2
w3u2

3 +λ1
dS

dt
+λ2

dI

dt
+λ3

dQ

dt
+λ4

dR

dt
+λ5

dB

dt
.

With conditions:

1. dλ1
dt

=− ∂H
∂S

,
dλ2
dt

=− ∂H
∂ I

,
dλ3
dt

=− ∂H
∂Q

,
dλ4
dt

=− ∂H
∂R

,
dλ5
dt

=− ∂H
∂B

2. ∂H
∂u1

= 0, ∂H
∂u2

= 0, ∂H
∂u3

= 0.

4.4 Characterization of optimal control solution

According to Pontryagin’s minimum principle (22), and using the results described in [4], if u∗ ∈ Ω is optimal solution
for the objective functional (21), then there exists an adjoint vector λ = (λS(t),λI(t),λQ(t),λR(t),λB(t)) ∈ R5

+ satisfies:

(i)the control system































dλ1
dt

=− ∂H
∂S

,
dλ2
dt

=− ∂H
∂ I

,
dλ3
dt

=− ∂H
∂Q

,
dλ4
dt

=− ∂H
∂R

,
dλ5
dt

=− ∂H
∂B

.

(51)

(ii)the adjoint system

dλ1

dt
=−

∂H

∂S
,

dλ2

dt
=−

∂H

∂ I
,

dλ3

dt
=−

∂H

∂Q
,

dλ4

dt
=−

∂H

∂R
,

dλ5

dt
=−

∂H

∂B
; (52)

(iii)the stationary condition

∂H

∂u1
= 0,

∂H

∂u2
= 0,

∂H

∂u3
= 0; (53)

(iv)the transversality conditions

λS(t f ) = 0,λI(t f ) = 0,λQ(t f ) = 0,λR(t f ) = 0,λB(t f ) = 0; (54)

in which the Hamiltonian function is defined as
H = M1I+M2B+M3Q+ 1

2 w1u2
1 +

1
2 w2u2

2 +
1
2 w3u2

3 +λ1
dS
dt
+λ2

dI
dt
+λ3

dQ
dt

+λ4
dR
dt

+λ5
dB
dt
.

Theorem 11.Let (S∗, I∗,Q∗,R∗,B∗) be optimal state variables set related to optimal control solution U∗ = (u∗1,u
∗
2,u

∗
3)

which minimizes the objective function for the optimal control problem (21)-(22), then there exists an adjoint variable

λ = (λS,λI ,λQ,λR,λB) satisfying































dλ1
dt

= λ1[(1− u1)
β1B
k+B

+β2I+ µ ]−λ2(1− u)( β1B
k+B

+β2I),
dλ1
dt

= λ1((1− u1)β2S)−λ2(1− u1)β2S+λ2(θ +α1 + µ + ξ + u2)−λ3(θ + u2)−λ5α1,
dλ3
dt

= λ3(δ +α2 + µ + ξ )−λ4δ −λ5α2,
dλ4
dt

=−λ1ω +λ3(ω + µ),
dλ5
dt

= λ1((1− u1)(
β1S(k+B)−β1SB

(k+B)2 ))−λ2((1− u1)(
β1S(k+B)−β1SB

(k+B)2 ))−λ5(u3r− 2u3rB
K

− µB).

(55)
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And with transversality conditions,

λ1(t f ) = 0,λ2(t f ) = 0,λ3(t f ) = 0,λ4(t f ) = 0,λ5(t f ) = 0. (56)























u∗1 = min

{

max

{

0,
(λ1−λ2)(

β1SI

k+B +β2SI)

w1

}

,u1max

}

,

u∗2 = min
{

max
{

0,
(λ2−λ3)I

w2

}

,u2max
}

,

u∗3 = min
{

max
{

0,−
λ5rB(1− B

K )
w3

}

,u3max
}

.

(57)

Therefore, we obtain the optimal controls and states by solving the optimal system which includes the state system with
initial conditions, the adjoint system, and the characterization of the optimal controls. Thus, substituting optimal controls
u∗1(t),u

∗
2(t), and u∗3(t) in the control model equations, we arrived at the optimality system.











































































dS
dt

= Π − (1− u1(t))(
β1SB
k+B

+β2SI)− µS+ωR,
dI
dt

= (1− u1(t))(
β1SB
k+B

+β2SI)− (θ +α1 + µ + ξ + u2(t))I,
dQ
dt

= (θ + u2(t))I − (δ +α2 + µ + ξ )Q,
dR
dt

= δQ− (ω + µ)R,
dB
dt

= u3(t)rB(1− B
K
)+α1I+α2Q− µBB,

dλ1
dt

= λ1[(1− u1)
β1B
k+B

+β2I+ µ ]−λ2(1− u)( β1B
k+B

+β2I),
dλ1
dt

= λ1((1− u1)β2S)−λ2(1− u1)β2S+λ2(θ +α1 + µ + ξ + u2)−λ3(θ + u2)−λ5α1,
dλ3
dt

= λ3(δ +α2 + µ + ξ )−λ4δ −λ5α2,
dλ4
dt

=−λ1ω +λ3(ω + µ),
dλ5
dt

= λ1((1− u1)(
β1S(k+B)−β1SB

(k+B)2 ))−λ2((1− u1)(
β1S(k+B)−β1SB

(k+B)2 ))−λ5(u3r− 2u3rB
K

− µB).

(58)

With initial conditions: S(0)> 0, I(0)≥ 0, Q(0)≥ 0,R(0)≥ 0 and B(0)≥ 0 Transversality conditions: λ1(t f ) = λ2(t f ) =
λ3(t f ) = λ4(t f ) = λ5(t f ) = 0 and control conditions: 0 ≤ u1 ≤ 1, 0 ≤ u2(t)≤ 1, and 0 � u3 � 1. Moreover, the controls ui

are in function of time t. Also, due to the boundedness of the state and adjoint variables, the optimality system has unique
solution for small time t f .

Table 2: Parameters in model and their descriptions in model

Symbols Parameters Initial values Reference

β1 rate of transmission from environment to human 0.001 Assumed

β1 rate of transmission from human to human 0.5 Assumed

µ rate of natural death 0.001 [23]

ω rate of recovered individuals who lose immunity 0.05 [23]

k Concertaration of vibrios cholera 106 [23]

θ rate of infection 0.03 [4,5]

α1 rate of contribution from I(t) 0.09 Assumed

ξ Induced death rate 20 [23]

δ rate of recover as a result of cholera treatment 0.33 [23]

α2 rate of contribution from Q(t) 0.007 Estimated

r intrinsic growth rate 0.004 Estimated

K carrying capacity 200 Estimated

µB bacterial removal rate 0.006 Estimated

5 Numerical Results and Discussion

5.1 Numerical simulation I

The objective of this section is to explain the impact of different values of fractional order α in model (3). To this end,
we give several numerical simulations of the model using the MATLAB software. The parameters presented in Table 2
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are used in the simulation of solutions of SIQR-B model and are either assumed or taken from the literature and and
the initial conditions S(0) = 9000, I(0) = 6000,Q(0) = 4000,R(0) = 1000,B(0) = 1200 in the model equations (3) and a
simulation study is conducted and the results are given in the following Figures. In Fig.2, the memory effect is displayed by
considering the level of impacts imposed. The more the memory impact considered, the more the possibility to influence
the growth of V. cholerae in the environment. The high-order of fractional derivative value indicates more impacts on the
growth of V. cholerae. In Figure 2, the order of fractional derivative shows the influence of memory effect on cholera
recovered individuals. The more the memory effect on the community, the more individuals shows cholera recovered
with immunity. In Figure 3, the impact of memory effect on cholera recovered individuals is illustrated. Cholera infected
individuals decrease when the order of fractional derivative is more. The memory effect on individuals descend the number
of individuals who become infected with cholera disease.
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Fig. 3: (a) Effects of memory (order of derivatives) (alpha) on I. (b) Effects of memory (order of derivatives) (alpha) on Q. (c) Effects

of memory (order of derivatives) (alpha) on B.
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Fig. 4: Caputo fractional-order dynamical behavior of each state variable

5.2 Numerical simulation II

Using different combinations of the controls such as one control only at a time and also all controls at a time, that we
analyse and compare numerical results from simulations with the following scenarios. Moreover, the applied control
strategies are described as follows:

1.Strategy 1: apply combination of prevention and treatment of effected human
2.Strategy 2: apply combination of prevention and sanitation of water
3.Strategy 3: apply combination of treatment of effected human and sanitation of water
4.Strategy 4: apply combination of prevention, treatment of effected human and sanitation of water

The optimal control problem is obtained by solving the optimality system. We used fourth-order Runge-Kutta’s methods,
both forward and backward methods were used to analyses the optimality problem. The details of control strategy are
described as follows:
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Fig. 5: Simulations of optimality system with prevention only.
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Fig. 6: Simulations of optimality system with prevention only.
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Fig. 7: Simulations of optimality system with treatment only.
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Fig. 8: Simulations of optimality system with water sanitation only.
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Fig. 9: Simulations of optimality system with water sanitation only.
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Fig. 10: Simulations of optimality system with prevention and treatment.
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Fig. 11: Simulations of optimality system with prevention and treatment.
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Fig. 12: Simulation of treatment and water sanitation
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Fig. 13: Simulation of prevention,treatment and water sanitation

© 2025 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 11, No. 1, 87-117 (2025) / www.naturalspublishing.com/Journals.asp 113

5.3 Cost-effectiveness Analysis

In this subsection, we have identified a strategy that is benefit compared to other strategies. To get this strategy, we used
the method of incremental cost-effectiveness ratio (ICER), which is performed by dividing the difference of costs between
two strategies to the difference of the total number of their infections averted. This approach was defined as follows:

ICER(A) =
Costo f strategyA−Costo f StrategyB

Totalin f ectionssavedbyStrategyA−Totalin f ectionssavedbyStrategyB
.

Applying one intervention only might to be effective to eliminate the disease from the community. Therefore, we analysed
strategies that used more than one intervention method. In Table 3 we obtain the total number of infectious averted and
total cost for the implemented strategies. To find the total cost for the applied strategies we used the cost function given
by 1

2 M1u2
1(t),

1
2 M2u2

2(t)and 1
2 M3u2

3(t) over time. We used the parameter values in Table 2. and to apply ICER technique
first we ordered the intervention strategies for pairwise comparison as in Table 3 from A to C with increasing order of
effectiveness. First we in comparison the price effectiveness of approach A and B.

Table 3: Total amount of infection averted and total cost for all strategies.

Strategies Description Total infectious averted Total cost ($) ICER

A Prevention and treatment 1,404.79 3564.75 2.534

B Prevention and sanitation of water 4881.05 3813.248 0.0052

C sanitation of water and treatment 5133.94 8118 16.96
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Fig. 14: Total infectious averted plots indicating the effect of control strategies A, B and C

ICER(A) =
3564.75

1404.79
= 2.534, ,

ICER(B) =
3813.248− 3564.75

48880.05− 1404.79
= 0.0052,

ICER(C) =
8118.98− 3813.248

5133.94− 4880.05
= 16.96.
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Fig. 15: Total infectious averted plots indicating the effect of control strategies A, B and C
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Fig. 16: Comparison of the ICER of each control

From ICER (A) and ICER (B) we can see that strategy B saves 0.0052 than strategy B. Therefore, we exclude strategy
B, because it is a bit expensive and continue to compare strategy B and C. From ICER (B) and ICER (C) we can see
that strategy A saves 0.0052 than strategy C. Therefore, we exclude strategy C, because it is a bit expensive. Therefore,
we conclude that strategy B is the cheapest of all compared strategies, that meant it is the most cost-effective for cholera
disease control interventions strategys.
The amount of people averted in strategies A, B and C in an increasing rank is given in Table 3. We can observe that,
from the strategies A and B in Figure (16), the ICER (A) is less than ICER(B). This implies that strategy B is dominated
by strategy A. It means that strategy B is more expensive than strategy A. Thus, we have deleted B from the strategies.
For further explanation, we plotted a cost function graph, Figure (15) that shows applying only one intervention costs the
least interims of price but we didn’t consider this, due to the reason that a single intervention is not effective to eradicate
the disease. Additionally, the figure indicates that, applying all the two intervention at once is the most expensive of all
the applied intervention strategies. From the strategies A and B with their comparison in Table 3, we can observe that
ICER (A) is less than ICER (B). This implies that strategy A is dominated by strategy B. It means that strategy B is more
expensive than strategy A. Thus, we have deleted B from the comparison strategies. Then again re-calculate the ICER for
the remaining comparison strategies A and C as given in Table 3

6 Results and Discussions

In this section, dynamics of cholera infection is described with analytical and numerical analysis. The fractional and
optimal control effects are described. Moreover, the numerical simulation results obtained in Figure (3) shows that
decreasing order of fractional derivative reduces the V. cholerae accumulation in the environment, the quarantine
population size , the number of cholera infected individuals size decrease. Moreover, the numerical simulations results
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obtained from Figure (5 -13 ) depicts the combined controls reduces the outbreak of infections in the community and
ascend the cholera-free human population. Moreover, numerical simulation output indicates applying control strategy
that includes control measures u1 and u3 from the beginning results in more effective techniques to manage further
transmission of cholera disease. Moreover, applying prevention with treatment, and water sanitation is preferred among
two and three controlling measures in the presence of cholera treatment. In Fig.4 the dynamics of individual size is
simulated. The output shows that the numbers of susceptible individuals descend in the presence of cholera infection.
The fractional derivative analysis results is supported by results achieved in [15]. In Figure (12), the impact of control
strategies on the individuals is simulated along with associated coasts and applied control measures. The applied control
reduces the number of infected individuals and V. cholerae concentration. Moreover, applying prevention controlling
measures both on human and environment is effective from the starting to the end of the infection. The cost of applying
all control is highly relative to others. However, the cost of including prevention and treatment in applying three control
measures is less compared to other control measures. The optimal control analysis is supported with results obtained in
[26,28].

7 Conclusion

In this study, we formulated mathematical model of cholera disease using Caputo fractional order to study the dynamics
of cholera disease in the population taking into consideration memory effect. In Section 2, we described the model
assumptions and formulated the deterministic model represented by systems of ordinary differential equations and the
model extended to fractional order. In Section 3, model analysis was done by proving positively invariant region in
which the solution to the fractional order model is bounded and non-negative, finding equilibrium points and basic
reproduction number. Local and global stability analyses of both disease-free and endemic equilibrium points are
presented. In Section 4, Extension of model into optimal control. In Section 5, numerical simulation was performed to
investigate the effect of memory on cholera disease and we used MATLAB to perform numerical simulation. Applying
numerical simulations, we investigated the impact of memory on the number of cholera-infected individuals,quarantine
cholera individuals and bacteria population by using different values for the order of fractional derivative. Generally, our
output shows that memory has great influence on disease dynamics and the result of the comparison between
cholera-infected,quarantine cholera and bacteria population shows that decreasing order of fractional derivative is better
to eliminate cholera disease from community. The dynamics of the cholera is complicated and needs further research
both biologically and mathematically. Although the modern fractional order models developed in research study could
produce better results in the comparison of existing classical models, we strongly believe that this research analysis can
further be enhanced. However, we notice that the models with fractional derivatives are more complicated than the ones
with classical derivatives. The authors declare that this manuscript is far from being complete because of the fact that the
model does not fit to the cholera real data. It is a theoretical discussion with different assumptions on the parameters and
initial state variables. Therefore, we recommend any interested researchers to apply the parameter estimation of cholera
disease model for more novelty.
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