
Appl. Math. Inf. Sci. 7, No. 3, 1201-1213 (2013) 1201

Applied Mathematics & Information Sciences
An International Journal

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

Experimental Study on Block and Ratio Storage Strategy
and Parallel Transmission Algorithms

Chun-mao Jiang1,2, Guo-yin Zhang1 and Ming-cheng Qu3

1School of Computer Science and Technology, Harbin Engineering University, Harbin, Heilongjiang 150001, P.R.China
2School of Computer Science Technology and Information Engineering, Harbin Normal University, Harbin, Heilongjiang 150001,
P.R.China
3School of Computer Science and Technology, Harbin Institutue of Technology, Harbin, Heilongjiang 150001, P.R. China

Received: 22 Sep. 2012, Revised: 27 Nov. 2012, Accepted: 16 Dec. 2012
Published online: 1 May 2013

Abstract: Parallel transmission algorithms CLBA and DAS greatly improved the speed of transferring data files, but they cause a
large overhead of storage space and network traffic for deployment of duplications of large files, in addition to their poor feasibility
of deploying large complete replicas on nodes with limited storage space. In view of Google and Hadoop distributed file systems
all adopted block storage mechanism, a parallel data transmission algorithm based on block storage strategy is proposed, but the
interrelation between block storage and parallel transmission was not properly taken into consideration and so the nodes of slower
bandwidth greatly affected the overall transmission performance. Therefore, we proposed in this paper block and ratio storage strategies
for files of massive data in distributed systems and parallel transmission algorithms PTBM and PTRM for the two storage strategies.
Experimental results indicate the proposed algorithms are better than CLBA, and close to DAS, and they save more than 50% storage
space, and can adapt to the deployment of large data files.

Keywords: Distributed system, large data file, data block storage, parallel transmission

1 Introduction

GridFTP is a sub-project of Globus which expands the
FTP protocol, and one of its important functions is to
release one data file on multiple nodes so that the file can
be partially transferred in parallel from multiple servers
[1,2], the studies on applications based on parallel
transmission and partial file access greatly improved the
speed of data acquisition[3,4].

(1)Parallel Transmission Algorithms Based on
Multiple Complete Replicas

Sudharshan and others[5,6] proposed in 2003 the
Co-Allocation strategies which use partial file access
function of GridFTP to transfer many parts of the whole
data at the same time from multiple nodes who have the
copies of the file and then merge these parts. As shown in
Figure 1.1, the co-allocator is the core unit that allocates
downloading data for each download thread. Sudharshan
proposed the following 4 strategies: Brute-Force
Co-Allocation, History-based Co-Allocation,

Conservative Load Balancing and Aggressive Load
Balancing.

Figure 1.1 Co-allocation architecture

Brute-Force Co-Allocation (shown in Figure 1.2)
allocates the same size of data block for each transmission
channel; History-based Co-Allocation (shown in Figure
1.3) allocates the data size for each transmission channel
proportionately on the basis of previous average

∗ Corresponding author e-mail: hsdrose@126.com
c⃝ 2013 NSP

Natural Sciences Publishing Cor.



1202 C. Jiang, G. Zhang, M. Qu: Experimental Study on Block and Ratio Storage...

transmission speed of server nodes; Conservative Load
Balancing (shown in Figure 1.4) divides the original
duplication of the file into the blocks of equal size, each
transmission channel is allocated to one data block, after
it completes the current data block transmission, it applies
for the next data block; Aggressive Load Balancing
allocates more download data blocks for faster
duplication nodes each time instead of only one block
while it allocates data blocks. It is found through
experiments that the performance of Aggressive Load
Balancing is better than Conservative Load Balancing
mainly due to its larger data block, and the performance
of History-based Co-Allocation is poorer, and the
performance of Brute-Force Co-Allocation is the poorest.

Figure 1.2 Brute-Force Co-Allocation

Figure 1.3 History-based Co-Allocation

Figure 1.4 Conservative Load Balancing

Feng and others [7] also developed in 2004 a rFTP
system based on partial data transfer function of GridFTP,
and the essential characteristics of this system are the
same as those of Sudharshan’s thinking of cooperative
transmission from multiple duplicates. The 5 cooperative
transmission strategies in the system are Baseline, Static,
Dynamic, SelfObserve and NoObserve.
Feng’s Baseline and Sudharshan’s Brute-Force
Co-Allocation are exactly the same; his Static and
Sudharshan’s History-based Co-Allocation work to a
similar principle, History-based Co-Allocation allocates
download data based on the previous speed of each
duplicate node while Feng’s Static allocates download
tasks based on the predicted speed of each duplicate node;
Feng’s Dynamic gets a file block U of fixed size every
time, then allocates U proportionately on the basis of the
predicted speed of each duplicate node, any task that
finishes downloading will get a data block U1 of the same
size as U from the unallocated remaining data file, and it
will be transferred like U. SelfObserve is similar to
Dynamic while SelfObserve allocates U based on the real
speed of each duplicate node rather than the predicted
speed; Feng’s NoObserve is completely the same as
Sudharshan’s Conservative Load Balancing.

It can be seen from Feng’s experiment that the
performance of Dynamic, SelfObserve and NoObserve is
very close to each other. The big problem Feng
encountered is that when he wanted to deploy larger
duplicates he had to observe further experimental results
because the file system doesn’t support large files in his
experiment. Chao and others [8] came to the conclusion
in 2005 that the final transmission completion time is
subject to the slowest node after the last scheduling
because allocating is based on the blocks of fixed size. So
they proposed a recursive and dynamic data distribution
algorithm, let the data file size be U, given the scale factor
a(0¡a¡1), the first scheduling removes file fragment
(section 1) of size U*a from U, the second scheduling
removes file fragment (section 2) of size U*a*(1-a).
Section 1 will be allocated in proportion based on the
predicted speed of each node, when a download thread
finishes its downloading (shown in Figure 1.5 as t1), then
the allocation of section 2 begins with the unfinished parts
on each node in section 1 taken into account. The same
goes recursively until the remaining data that’s not
downloaded is less than a threshold value (threshold)
which will be directly allocated (not multiplied by scale
factor a).

Chao’s method has a certain similarity to Feng’s
Dynamic except that Feng’s study didn’t specify how to
deal with data that didn’t download of each thread when
current block U was allocated. Chao’s study took this into
account and gave the calculation formula, and the key of
the formula is that the remaining data of each thread plus
newly allocated data divided by the predicted speed of
each thread must be equal, so that each thread finishes its
transmission at the same time when the next scheduling
begins shown t1 and t2 in Figure 1.5.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 7, No. 3, 1201-1213 (2013) / www.naturalspublishing.com/Journals.asp 1203

Figure 1.5 Process of Adjustment

It can be seen through comparison between Chao’s
experimental results and the result obtained using
Sudharshan’s three methods that Chao’s algorithm is
slightly better than Sudharshan’s Conservative Load
Balancing, but there is one precondition for Chao’s
experiments that the size of data block must be large, and
his conclusion of the experiments also pointed out that the
threshold value that’s allocated at the last time played a
key role, and so it’s not certain that the performance of
Sudharshan’s Conservative Load Balancing is poorer than
that of Chao’s algorithm when the size of data block is
smaller.

Bhuvaneswaran and others [9,10] also analyzed in
2005 and 2006 the impact of the last transmission block
on the overall completion time in Sudharshan’s
Conservative Load Balancing and Aggressive Load
Balancing, and he also took the impact of the uncertainty
of network on the scheduling allocation into account. He
gave a circular queue allocation method, and some blocks
will be allocated multiple duplicate nodes in this case, so
his algorithm has the ability to guard against failure. That
is to say, if any duplicate node stops transmission, data
block can be retransferred because other duplicate nodes
also have the data block. And because each node has the
full duplicate, no matter which node has a problem, data
can still be transferred from other nodes. It can be seen
from the description of the algorithm that a new block is
allocated after a duplicate node finishes its current block
downloading, this is similar to Sudharshan’s Conservative
Load Balancing.

Chao and others [11,12] further enriched and
improved in 2007 and 2010 their algorithm based on the
ideas they had proposed before, and developed a parallel
transmission system. They took into consideration CPU,
IO and network load of duplicate nodes, and gave a
duplicate node selection model, but this didn’t improve
the performance of their previous parallel transmission
algorithm.

(2)Review of the Study Above
The core idea of the study above is to make sure each

thread finishes its download tasks at the same time
through rationally allocating download tasks for each
transmission thread. No matter it’s based on fixed size
block or dynamic size block, they all tried to shorten the
completion time of the last block to optimize the overall

time because the performance of the whole transmission
process is basically the same except the last block. The
study above makes full use of the advantage of parallel
transmission to guarantee the transmission speed, but they
all have some shortages. (1) It takes large storage space
and network traffic overhead to deploy the full duplicate
of the original file on multiple nodes to improve the
collected bandwidth to support parallel transmission; (2)
When the data file is too large, it’s impossible to deploy
the full duplicate of the file on a node with limited storage
space of the node. The problem Feng met was the size of
the files used by others was no larger than 4G.

(3)Block Storage and Parallel Transmission of Data
Files

Since it’s difficult to deploy the full duplicate when
file is large, so people working in distributed file system
research field proposed the block storage mechanism. For
example: Google designed and implemented Google File
System (GFS) to meet the increasing demand for data
processing. The concept “file size” of GFS is different
from that of a common file system. The file size of a
common file system is usually counted by G bytes while
the files of GFS are cut into fixes size Chunk and then
deployed on different nodes.

Apache Foundation implemented Hadoop Distributed
File System (HDFS), which is similar to GFS. It uses
block storage strategy with high ability of fault-toleration
and it’s designed to be deployed on low-cost hardware.
The parallel transmission studies above were all based on
multiple full duplicates. In view of the difficulties in
deploying duplicates of large files, Ruay-Shiung and
others [16] proposed parallel transmission algorithm
based on block storage strategy. It first assumes that the
blocks of data file are randomly stored on different nodes
of a distributed file system, a scheduling algorithm is
given after the file information is obtained. But this
algorithm is based on random block duplicate storage (it
doesn’t take network load into account), so it will meet
the problem that the overall transmission time is too long
because the faster node will wait for the slower node.

Similarly, Gaurav and others [16,17] established in
2008 a transmission optimization model based on the
parallel transmission mechanism used for
“Multi-source-Multi-target” data access situation. This
model tried to minimize the overall completion time. In
his research “Multi-source” doesn’t mean the same data
duplicate but different blocks of the same file. However,
this research had the same shortages as Ruay-Shiung, it
didn’t take into account the process of data block storage
(position, amount and so on), so it had the same problem
that the overall transmission time is too long because the
faster node will wait for the slower node[18].

(4) Problems and Main Contributions of This Paper
Problems: Parallel transmission based on multiple

full duplicates has such shortages that on one hand it
takes large storage space and network traffic overhead to
deploy multiple full duplicates, on the other hand it’s
difficult to deploy the full duplicate when data file is too

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



1204 C. Jiang, G. Zhang, M. Qu: Experimental Study on Block and Ratio Storage...

large because of the limited storage space of a node.
Although block storage solved the problems associated
with deploying large files. can’t avoid The impact of the
slower nodes on the whole transmission time can’t be
avoided using download algorithm for data block random
storage because it takes into account the process of data
block storage and scheduling algorithm for later parallel
access.

Contributions: In order to solve the problem above,
a data block and fair storage strategy is proposed in this
paper and a parallel transmission algorithm is given for
this storage strategy. This storage strategy has a great
advantage in space over the strategy based on full
duplicate, and the parallel transmission algorithm can not
only adapt to the dynamic change of network, but also it
optimizes the transmission time of the last data block.
Compared to Sudharshan’s Conservative Load Balancing
and Chao’s algorithm, the performance of this paper’s
algorithm is better than Sudharshan’s Conservative Load
Balancing and close to Chao’s algorithm in performance,
but strategy proposed in this paper guarantees the parallel
transmission speed, while it solves problems of deploying
large data file and optimizing storage space and network
traffic during the deploying process.

2 Data Block and Storage Strategy

Let data file be f with size S, k nodes fit for storing file
N1 ∼ Nk◦

(1)File Block
First divide the file into k equal parts, each part is

denoted as fi(1 ≤ i ≤ k), the size of fi is denoted as Si,
obviously Si = S/k. Then divide fi into k− 1 equal parts,
each part is denoted as fi j(1 ≤ i ≤ k,1 ≤ j ≤ k− 1), and
the size of fi j is denoted as Si j(1 ≤ i ≤ k,1 ≤ j ≤ k− 1).
The total number of data blocks of file f is k(k − 1) as
shown in Figure 2.1

Figure 2.1 Diagram of File Block

(2)File Storage
There are two steps:(a)store fi on node Ni, (b)Store k−

1 files fi j(1 ≤ i ≤ k,1 ≤ j ≤ k − 1) of fi on other k − 1
nodes, one data block is stored on each node only. The
storage is based on the number of nodes and number j of

fi j one by one in an increasing order (as shown in Figure
2.2). Other fi(1 ≤ i ≤ k) and its sub-files fi j(1 ≤ i ≤ k,1 ≤
j ≤ k−1) are all processed in the same way. And the data
storage structure is shown in Figure 2.2.We assume k > 3.

As shown in Figure 2.2 there are two types of data on
each node. The blocks in the lower position of each node
that’s made bold are all from step (a), we call them LND
data of the node (LND data of node i is donated as LNDi);
The blocks in higher position of each node are all from
step (b), we call them OND data of the node (OND data of
node i is donated as ONDi).

Theory 1 It’s obvious that LND data and OND data
is equal in amount, so the total amount of storage is 2S.
And it can be inferred from block storage mechanism that
when any node can’t be used, the union of the storage data
of other nodes is equal to the complete data.

Figure 2.2 Diagram of Data Block Storage

3 Scheduler

3.1 Basic Ideas

Definition 1 (Local Data Surplus, Si), let the average
bandwidth of node Ni be Vi, the difference between the
ideal data amount that’s downloaded from server node Ni
and local data LNDi in a parallel data acquiring is defined
as local data surplus Si, and

Si =Vi/(∑k−1
j=0 Vj)−LNDi

This indicator reflects the load of download tasks of
each node, when Si tends to or is equal to 0, it means each
node can generally finish downloading at the same time.
If Si is positive, it means the download speed of the node
is faster, it can share download tasks of nodes whose Si is
negative.

Example (1): use four nodes to store block data k=4,
average bandwidths of each node are V1=12, V2=10,

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 7, No. 3, 1201-1213 (2013) / www.naturalspublishing.com/Journals.asp 1205

V3=4, V4=28. The goal of scheduling algorithm is to
make sure each node finishes download tasks at the same
time without duplicate data. We give a scheduling result
of the algorithm as shown in Table 1(a and b). When
downloading data blocks in gray from node Ni, we can
calculate that the ideal download data blocks of each
block are 8, 6.7, 2.7 and 18.7, the actual scheduling result
is 8, 7, 3 and 18. The load of each node before scheduling
is (-1, -2, -6, 10), it turns to be (0, -0.3, -0.3, 0.7) after
scheduling, the load has been basically balanced.

Because the number of blocks is an integer, it must be
rounded off.

Table 1 Example of Block Storage and Scheduling

(a)
Node Speed Si Ideal A Actual B A-B

N1 12 -1 8 8 0
N2 10 -2 6.7 7 -0.3
N3 4 -6 2.7 3 -0.3
N4 28 10 18.7 18 0.7

(b)

LND Data of Node OND Data of Node

(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11) (12)(19)(20)(21)(28)(29)(30)

(10)(11)(12)(13)(14)(15)(16)(17)(18) (1)(2)(3)(22)(23)(24)(31)(32)(33)

(19)(20)(21)(22)(23)(24)(25)(26)(27) (4)(5)(6)(13)(14)(15)(34)(35)(36)

(28)(29)(30)(31)(32)(33)(34)(35)(36) (7)(8)(9)(16)(17)(18)(25)(26)(27)

It can be seen from Table 1 and Table 2 that the faster
node shares the download task of slower node from OND
data when it finishes its LND download task. For example,
data blocks (25)(26)(27) are in LND of node N3, but they
are downloaded from OND data of node N4.

3.2 Description of Scheduling Algorithm

Goal: Optimize Si of each node to make it close or
tend to 0 to balance the load of each node.

Description: For any two nodes ZN and FN, if Si of
ZN is positive and LND data of FN is not shared by OND
data of ZN, then ZN can share download tasks of FN.
Every time ZN shares a data block, ZN.Si–, FN.Si++. If a
data block is shared, then its download position will be
marked (including the same data block on the other
nodes), and the same data block on the other nodes won’t
be processed.

Input: k, p, Vi that meet the demand of the storage
model.

Output: The scheduling schemes for download data
blocks of each node.
(1) Construct linked list ZSi list with nodes whose Si is
positive, put ZSi list in descending order.

(2) Construct linked list FSi list with nodes whose Si is
negative, put FSi list in ascending order.
(3) For every node FN in FSi list deal from first one by
one.
(4) For every node ZN in ZSi list deal from first one by
one // Let nods in ZSi list share download task of nodes in
FSi list.
(5) IF FN.Si ≥ 0 THEN FSi list.Move to Next, go to(3).
(6) IF ZN.Si > 0 THEN Let OND data of current node ZN
share LND data of FN, update ZN.Si according to the data
shared, each time one data block is shared, the following
two conditions are always judged:
(a) IF FN.Si ≥ 0 THEN FSi list.Move to Next, go to (3).
(b) IF ZN.Si ≤ 0 THEN ZSi list.Move to Next, go to (4).
(7) In the steps (1) - (6) above, let the faster node share the
download tasks of the slower node, as long as one of the
two lists gets to the end, it jumps out.
(8) If there still are nodes FN with Si negative in FSi list,
then traverse ZSi list from first, if the unprocessed OND
data blocks of node ZN in ZSi list and the unprocessed
LND data blocks of FN intersect, then let ZN share
download tasks of FN until they don’t intersect regardless
of whether the Si of ZN is negative.
(9) At this time there are two types of nodes in FSi list: Si
is positive or non-positive. Let OND data of nodes with Si
positive share LND data of nodes with Si negative until it
can’t be shared.
(10) At this time there are two types of nodes in ZSi list: Si
is positive or non-positive. Repeat steps (1) - (6) for nodes
in ZSi list. Then download based on the download marks
of data blocks on each node after it’s done.

4 Storage Strategy and Parallel Transmission
Algorithm

Because scheduler only has functions that are similar to
“History-based Co-Allocation”, it schedules only once for
every transmission, it has to schedule many times to adjust
the data blocks that are downloaded from each node owing
to the dynamic change of network transmission speed.

Definition 2(Space Occupied Ratio, SAV) the ratio
between the storage space it takes to store data on i nodes
based on this paper’s storage strategy and the storage
space it takes to store data on i nodes using full duplicate
is defined as space occupied ratio (SAV).

4.1 Block Storage Strategy Model

If node k can be used to store data, then divide the original
data into k equal parts, each block is denoted as Bi, i∈(1,k).
Each block uses the storage strategy given in Section 2. An
example of k=4 is given in Figure 4.1

The following conditions are true in Figure 4.1:
size(B1)=size(B2)=size(B3)=size(B4),

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



1206 C. Jiang, G. Zhang, M. Qu: Experimental Study on Block and Ratio Storage...

Figure 4.1 Example of Storage Strategy

Table 2 Example of Segmentation Process of Block Storage
Strategy Model

Bi B1 B2 B3 B4
Segmentation ↓ ↓ ↓ ↓

Data (1)(2)...(11)(12) (13)(14)...(23)(24) (25)(26)...(35)(36) (37)(38)...(47)(48)

file=B1 ∪ B2 ∪ B3 ∪ B4. Specific segmentation process is
as shown in Table 2.

We can get the data allocation shown in Table 3 further
based on the mechanism of block storage model.

Table 3 Example of Data Allocation of Block Storage Strategy
Model
PPPPPPPBi

Node
N1 N2 N3 N4

B1 (1)(2)(3)(4)(7)(10) (4)(5)(6)(1)(8)(11) (7)(8)(9)(1)(5)(12) (10)(11)(12)(3)(6)(9)
B2 (13)(14)(15)(16)(19)(22) (16)(17)(18)(13)(20)(23) (19)(20)(21)(17)(14)(24) (22)(23)(24)(18)(15)(21)
B3 (25)(26)(27)(28)(31)(34) (28)(29)(30)(25)(32)(35) (31)(32)(33)(26)(29)(36) (34)(35)(36)(27)(30)(33)
B4 (37)(38)(39)(40)(43)(46) (40)(41)(42)(37)(44)(47) (43)(44)(45)(38)(41)(48) (46)(47)(48)(39)(42)(45)

4.2 Scale Model Storage Strategy

4.2.1 Storage Mechanism

In the section above, the whole data is divided into i
sub-blocks Bi, then store the i sub-blocks based on the
model. In this section, we will give another storage and
segmentation strategy as shown in Figure 4.2, divide the
complete data file into two parts, δ and 1−δ , 0 < δ < 1.

Figure 4.2 File Ratio Segmentation

If i node can be used to distribute file, the storage and
segmentation process of the two parts above is as followed:

(1) Part δ is divided into i equal parts, then every sub-
file block is stored on node i;

(2) Part 1− δ is stored based on block storage model
given in the above section.

The whole file storage strategy is shown as Figure 4.3.

Figure 4.3 Example of File Scale Model Storage Strategy

If we use block model storage strategy in Section 4.1,
then its space occupied ratio SAV with full data duplicate
deploying is 2/k. If we use scale model storage strategy,
the formula to calculate space occupied ratio SAV is:

SAV =
a+2(1−a)

k
=

2−a
k

(0 < a < 1) (1)

It can be seen from the diagram that when δ equals 0,
scale model storage strategy will change to block model
storage strategy, and the corresponding space occupied
ratio SAV will have the same trend as shown in formula
(1).

4.2.2 Relationship between Average Bandwidth of Nodes
and δ

It can be seen from 4.2.1 that part δ of the file is divided
into i parts and then put on i nodes, so every data block
will be downloaded if we want to get the complete data.
The goal of parallel transmission is to make sure each
node finishes download tasks at the same time, so for the
slower nodes they must finish data blocks δ stored on
them while for the faster nodes will try their best to
transfer all the file blocks on them to the demanders.
Theorem 1 Assuming each node finishes download tasks
at the same time, let the maximum average bandwidth of
nodes in a transmission be Vmax, let the minor be Vmin,
then

Vmax, Vmin and δ must satisfy Vmax
Vmin

≤ 2
δ −1

Prove: Because each node finishes download tasks at
the same time and data integrity must be guaranteed, the

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 7, No. 3, 1201-1213 (2013) / www.naturalspublishing.com/Journals.asp 1207

fastest nodes must finish transferring all the data stored
on them. Their total data amount Dmax =

(
δ
i +

2(1−δ )
i

)
·

M based on block model storage strategy and scale model
storage strategy; the slowest nodes must finish transferring
all the data of δ parts stored on them, that is Dmin =

δ
i M.

The transmission time is equal, so

Vmax

Vmin
=

Dmax

Dmin
=

(
δ
i
+

2(1−δ )
i

)
·M

/
δ
i

M =
2
δ
−1

If Vmax
Vmin

> 2
δ − 1 , then the bandwidth of slowest nodes

will be less than Vmin or the bandwidth of the fastest
nodes will be greater than Vmax, in this situation, none of
them can finish data transmission at the same time, this
contradicts the precondition of the theorem, so in order to
make sure each node finishes download tasks at the same
time, we must have Vmax

Vmin
≤ 2

δ −1 .

4.3 Principle of Parallel Transmission
Algorithm

Scheduling algorithm in this section is based on block
model storage strategy, the process of δ part of file in
scale model storage strategy is given in section 5.2.

Take Diagram and Table for example, because any
data block Bi that satisfies the storage model is not full
duplicate, if download Bi from four nodes at the same
time, it must satisfy: (1) Download data from the four
nodes continuously; (2) Download without repeated data
blocks; (3) The union of downloaded data of each node
after finishing downloading is equal to Bi.

Because transmission speeds of nodes dynamically
change, let ∆ ti be the interval of time when the first two
nodes finish downloading Bi−1 and Bi. For example, N1
first finishes downloading Bi−1 and the time is ti−1, N3
first finishes downloading Bi and the time is ti, then
∆ ti = ti − ti−1.

The data amount of Bi that each node is allocated is
determined as follows: (1) Let Vi, the speeds of each node
at the time ti−1(0 ≤ i ≤ k− 1) be the input of scheduler;
(2) Let the unfinished data amount of each node at the time
ti−1 be mi; (3) Let the data amount of Bi that each node is
allocated be xi(0≤ i≤ k−1); (4) They theoretically satisfy
Formula 2 to make sure each node finishes download tasks
at the same time.

V0

m0 + x0
=

V1

m1 + x1
= ...=

Vk−1

mk−1 + xk−1
(2)

Apply Equation Identically Equal Theorem on
Formula 2, we deduce Formula 3, and from Formula 3 we
deduce the method of calculating xi shown as Formula 4.
Let xi be the input values of scheduler Si.

(
Vi

mi+xi

)k−1

i=0
=

k−1
∑

i=0
Vi

k−1
∑

i=0
(mi+xi)

=

k−1
∑

i=0
Vi

k−1
∑

i=0
mi+

k−1
∑

i=0
xi

=

k−1
∑

i=0
Vi

k−1
∑

i=0
mi+M

= λ (3)

xi =
Vi

λ
−mi (0 ≤ i ≤ k−1) (4)

Based on the formulas above, we give the schematic
diagram shown in Figure 4.1. The client is made up of
download unit and scheduler unit, the download unit
passes recent average speed Vi and unfinished data
amount mi of each node to scheduler when a ∆ t ends,
scheduler works out xi, then calculate and output data
blocks of Bi that should be downloaded from each node,
and pass them to download unit. Download unit
downloads data blocks from each node based on the
output of scheduler unit, it also observes whether a new
∆ t is generated all the time along this processing loops.

Figure 4.4 Schematic Diagram of Parallel Transmission

5 Experimental Environments

5.1 Constitution of Functions

As shown in Figure 5.1, the client of a prototype system
mainly has the following 6 functional modules: data
partition unit, data upload unit, storage unit, query unit
and data download unit.

Model Process Unit Divide the original data
according to the number of nodes (k) used to store and the
number of blocks (h) of block storage based on the
storage model and the block storage strategy. A prototype
system uses all kinds of files as the original data, uses an
open-source file segmentation unit to divide file, and it
can control the size of B1 when dividing.

Data Upload Unit Based on the IP address of servers,
upload the segmentation data in batches according to the
hash rules of model, and write the data and server storage
information into database through the storage unit, which
can be used to query during downloading.

Data Download Unit When download data, first let
the query unit queries the database according to file name

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



1208 C. Jiang, G. Zhang, M. Qu: Experimental Study on Block and Ratio Storage...

(unique), get all the storage information and block
information of the data. Then call the thread control unit
to create threads based on the number of storage nodes,
transfer data parallel with scheduler unit and parallel
transmission algorithm unit to finish downloading data.

Figure 5.1 Constitution and Procedure of Prototype System

Because the original data blocks are effectively
divided, all the blocks can be merged correctly after they
are all downloaded.

5.2 Determination of Multithread Transmission
Parameters

Determination of Average Download Speed of Each
Thread At first, the master threads read out the storage list
of all the file, create threads based on the value of k , and
the default download speed of each node is the same, that
is V1:V2:...Vk=1:1:...:1, this is the input of scheduler
(11), so the download data amount of each node must be
equal at the first scheduling. For the δ part data in scale
model storage strategy, it just needs to download data
blocks that have been divided equally. How to calculate
continuous Vi? Since every data block file in the
downloaded list of each thread contains the time when
downloading is finished, use the time when the most
recent downloading is finished to subtract the previous
one shown as the coordinate axis in the right of Figure
5.2, we can get ∆ t, which is the time it takes to transfer
data file x+1. Then we can work out the average speed Vi
at which a specific thread downloads from a specific node
because the size of each data block file has already been
known in the stage of first segmentation, we can use this
speed as the input speed of scheduler unit.

Determination of Scheduling Opportunity That is
when to dispatch a new download task to threads. When a
download list of any thread is null, the master thread gets
out the next grouped data Bi + 1 based on the position of
the dispatched grouped data Bi to begin scheduling.

Figure 5.2 Schematic Diagram of Multithread Transmission

Determination of Unfinished Data Amount of Each
Thread Use the number of surplus files in the list to
download each thread as the mi of scheduler unit (Figure
4.4).

6 Performance Test

6.1 Introduction to Experiment

Since parallel transmission of this paper can be applied to
block model storage strategy and scale model storage
strategy, let parallel transmission algorithm based on
block model storage strategy be PTBM(parallel
transmission based on block model), let parallel
transmission algorithm based on ratio model storage
strategy be PTRM(parallel transmission based on ratio
model), let conservative load balancing algorithm be
CLBA, let Chao’s algorithm be DAS(dynamic adjustment
strategy). As for ratio model storage strategy, it changes
to block model storage strategy when δ is 0. This
experiment first verifies the impact of Bi on block model
storage strategy; then detect the performance difference
of ratio model storage strategy in certain network status.

Figure 6.1 Network Environment of Experiment

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 7, No. 3, 1201-1213 (2013) / www.naturalspublishing.com/Journals.asp 1209

We choose 3 kinds of network, education network,
Mobile Broadband and Telecom Broadband, select a
certain number of nodes from the 3 kinds of network as
the data deployment nodes of the model as detailed
below: Data demand node is connected through Telecom
3G WLAN; select two computers in education network,
one computer in Mobile Broadband and one computer in
Telecom Broadband as data deployment nodes, install IIS
server on them, and the size of the data file is 960M. Use
the same network connection and service nodes to
guarantee the physical conditions are the same as shown
in Figure 6.1.

Definition 2-23 (MLTT: minimum limited
transmission time) If the total data amount is M, the
number of nodes is k, the real speed of node i is Vi, the
minimum limited transmission time is ζ , then

M =
k
∑

i=1

(∫ ζ
0 Vidv

)
.

Time ζ is determined as follows: Record data amount
mi that each node transfers (take no account of scheduling
and merging file) when transfer data from duplicate node
to client. Stop when ∑mi = M, then we can get ζ .

Conclusion: The minimum transmission time of each
algorithm can’t surpass MLTT.

Experiment(A) Test performance differences between
this paper’s PTBM algorithm and CLBA algorithm, DAS
algorithm under the condition of equal number of nodes.

Experiment(B) Test the impact of the size of Bi on the
performance of PTBM algorithm.

Experiment(C) Test performance differences between
PTBM algorithm and CLBA algorithm, DAS algorithm in
the same network conditions when δ changes and in the
different network conditions when δ is fixed.

6.2 Experiment A: PTBM Performance
Comparison

Use two PCs in education network, one PC in Mobile
Broadband and one PC in Telecom Broadband. Let
Bi = 40, data file was divided into 480 blocks after being
processed by the model. Every data block was
approximately 2M. For Conservative Parallel
Transmission, it’s also divided into 480 blocks, and the
partition method is the same. Observe the value of MLTT
to compare the performance with other two algorithms.
The test durations are 9-10(AM), 2-3(PM) and 5-6(PM),
observe the time value of PTBM,CLBA,DAS and MLTT
in each duration. Observe 3 times for every algorithm
experiment in every duration because network conditions
change in different periods of time. The results are shown
as Table 4(a and b).

Process the data in the table, we can get Figure 6.2, it
can be seen from the table that there is little difference
between PTBM and CLBA observed at the same time,
DAS algorithm always has some slight advantage over the
others. Because the network is not stable, in the first and

Table 4 Transmission Time
(a)

Item PTBM CLBA
Count 1 2 3 1 2 3

Time(Sec.) 2306 2226 1765 2250 2259 1666

(b)
Item DAS MLTT

Count 1 2 3 1 2 3
Time(Sec.) 2206 2189 1658 2180 2152 1580

third observation, transmission time of CLBA is slightly
less than that of PTBM while in the second observation,
transmission time of PTBM is slightly less than that of
CLBA.

Figure 6.2 Comparison of Transmission Time

Figure 6.3 Polynomial Curve Fitting of Transmission Time

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



1210 C. Jiang, G. Zhang, M. Qu: Experimental Study on Block and Ratio Storage...

Use a quintic polynomial to fit the curves to three
kinds of transmission time to further observe trends and
performance differences. As shown in Figure 6.3, the
MLTT curve is at the bottom. PTBM curve is basically
consistent with CLBA curve, their trends are the same,
they cross with each other in the middle, which means
their performances are close to each other. DAS curve is
always at their bottom, it has some slight advantages.
Three curves are all above the MLTT curve.

6.3 Experiment B: Analysis of Impact of Bi in
PTBM

Because Bi has a direct impact on the size of a file, the
previous dynamic schedule algorithm mainly optimizes
the transmission time of the last data block, the
experiment in this section is mainly concerned with the
impact of Bi on the algorithm performance when its
values are different, and test duration is 8:30-11:30 (AM).

Table 5 List of metadata and Bi

Bi 10 20 30 40 50 60 70
metadata(M) 8 4 2.7 2 1.6 1.33 1.14

Transmission Time 2456.4 2394.3 2348.3 2226.86 2247.1 2226.4 2456.4

Let Bi=10,20,30,40,50,60,70, take out a block for the
processing every time based on the model and download
with parallel transmission. The corresponding minimum
file block size metadata when the value of Bi is different
is as shown in Table 5. The transmission time of
downloading the same data under all kinds of conditions
is shown in the third line of Table 5.

It can be seen from Figure 6.4 that when Bi is 10, the
performance is the poorest, it’s the same as the scheduling
based on history in this situation. With the increasing of
Bi, transmission time gradually decreases. It can be seen
from the fitting curve quartic polynomial in Figure 6.5
that the performance tends to be stable when Bi is 40, 50,
60 and 70. That is to say the impact of the size of data
block on the algorithm performance tends to be stable to a
certain degree. And it can be seen from experiment A that
the algorithm performance is close to the conservative
scheduling algorithm when Bi is 40.

6.4 Experiment C: PTRM Performance
Comparison

The experiments were mainly made to test: (1)
differences in performance between PTBM algorithm and
CLBA algorithm, DAS algorithm in the different network
conditions when δ is fixed; (2) differences in performance
between PTBM algorithm and CLBA algorithm, DAS

Figure 6.4 Comparison of Transmission Time

Figure 6.5 Polynomial Curve Fitting of Transmission Time

algorithm in the same network conditions when δ
changes.

(1) Let δ = 0.3, test durations are 9-10(AM), 2-3(PM)
and 5-6(PM). Observe PTRM in the first day, CLBA in
the second day and DAS in the third day. Observe 3 times
for every algorithm experiment in every duration because
network conditions change in different periods of time.
The observed value of PTRM is shown in Table 6, use
data in Table 4 as the result of CLBA and DAS.

Table 6 Observed Value of PTRM
(a)

Item PTRM(δ = 0.3) CLBA
Count 1 2 3 1 2 3

Time(Sec.) 2243.88 2271.94 1752.6 2250.09 2259.75 1666.58

(b)
Item DAS

Count 1 2 3
Time(Sec.) 2206.85 2189.6 1658.3

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 7, No. 3, 1201-1213 (2013) / www.naturalspublishing.com/Journals.asp 1211

We can get Figure 6.6 from the data of Table 6, it can
be seen from figure 6.6 that the performances of the three
algorithms are close to each other in the same duration
every day without big difference, but DAS algorithm has
some slight advantage over the others.

(2) Let δ=0.1, 0.2, 0.3, 0.4, 0.5, test time is 5 days,
observe PTRM at 8-9(PM) every day when δ takes
different values in order to ensure approximate consistent
state of the network. The observed result is shown in
Table 7.

Table 7 PTRM Performances for Different δ
δ 0.1(First Day) 0.2(Second Day) 0.3(Third Day) 0.4(Fourth Day) 0.5(Fifth Day)

Time(Sec.) 1989 1970 1981 2021 2040

We can get Figure 6.7 from the data of Table 7, it can
be seen from Figure 6.7 that the performances are close
to each other when δ=0.1,0.2,0.3. Experiment of 6.6.3-(1)
shows the performance of PTRM is close to those of the
other two algorithms when δ = 0.3 while performance of
PTRM decreases obviously when δ=0.4,0.5.

Figure 6.6 Comparison of Transmission Time

The maximum and minimum average bandwidths of
each experiment are shown in Table 8. It can be seen from
Table 8 that the actual Vmax and Vmin are 4.6 and 4.5
respectively when δ is 0.4 and 0.5, they are all greater
than theoretical values 4 and 3. It can be seen from the
observed results that the increasing of time is because the
nodes with narrow average bandwidth delay the download
time of part of file δ . So the nodes with wide average
bandwidth have better performance when δ is smaller.
For example, the actual Vmax/Vmin is 4.4 when δ=0.3, but
the performance is still good.

Figure 6.7 Transmission Time When δ Changes

Table 8 Ratio of Vmax and Vmin

δ 0.1 0.2 0.3 0.4 0.5
Theoretical Vmax/Vmin 19 9 5.7 4 3

Actual Average Vmax(kbyte/s) 212 221 209.0 218 208
Actual Average Vmin(kbyte/s) 44 43 48 47 46

Actual Vmax/Vmin 4.8 5.1 4.4 4.6 4.5

6.5 Summery of Experiments

Experiment (A) shows this paper’s PTBM algorithm has
a performance similar to those of CLBA and DAS, but it
saves 50% storage space.

Experiment (B) shows Bi has an obvious influence on
PTBM algorithm, but when size of metadata is less than
2M, the enlargement of Bi has no influence on the
algorithm.

Experiment (C) shows the performance of this paper’s
PTRM algorithm is close to those of CLBA and DAS when
δ < 0.3 in the given network environment. At this time,
Vmax/Vmin is 4.4, bandwidth differs greatly, which means
PTRM can adapt to the poor network environment. It can
save 57% storage space in the 4 node environment of this
paper. (See section 6.6 for details)

6.6 Comparison of Storage Space (SAV)

We can work out space occupied ratio (SAV) in different
experimental conditions based on Theory 1, Formula 1 and
the definition of SAV shown in Table 9 and 10. As shown
in Table 9, SAV is 0.425 when δ = 0.3, and it can be seen
from the experiment that the performance of algorithm is
still good. As shown in Table 10, the corresponding SAV
is 0.28 when k=6.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



1212 C. Jiang, G. Zhang, M. Qu: Experimental Study on Block and Ratio Storage...

Table 9 Comparison of SAV When k=4

Item PTBM PTRM
δ = 0.1 δ = 0.2 δ = 0.3

SAV 0.5 0.475 0.45 0.425

Table 10 SAV Comparison of PTRM When δ = 0.3

k 3 4 5 6
SAV 0.57 0.425 0.34 0.28

7 Conclusion

Parallel transmission based on deploying multiple
duplicate plays an important role in the practical use of
distributed systems. Previous parallel transmission
algorithm based on multiple full duplicates has made
good progress. But complete multiple duplicate
deployment has some shortages, on one hand it takes
large storage space and network traffic overhead to deploy
multiple full duplicates, on the other hand it’s difficult to
deploy large duplicate on nodes with limited storage
space. So Google and Hadoop distributed systems
completely adopt block storage strategy. Some others
studied on parallel transmission algorithm are based on
random block storage strategy, but it takes into account
duplicate storage and parallel transmission, so that the
nodes with narrow bandwidth will greatly delay the
overall transmission time. This paper presents two storage
strategies and parallel transmission algorithms, which
effectively solve the problems of deploying large
duplicate and large overhead of storage space. Compared
to the algorithm based on full duplicates, PTBM and
PTRM have better performance and save more than 50%
storage space at the same time.

Acknowledgement

This work is partially supported by the National Science
Foundation of China under Grant No.61073042 and
Heilongjiang Province Science Foundation under Grant
No.F201139. Thanks for the help.

References

[1] William Allcock, John Bresnahan, Rajkumar Kettimuthu
etal. The Globus Striped GridFTP Framework and Server.
Proceedings of the 2005 ACM/IEEE SC—05 Conference.
November 12-18, 2005, Seattle, Washington, USA: 1-11.

[2] Jun Feng, Lingling Cui, Glenn Wasson. Toward Seamless
Grid Data Access: Design and Implementation of GridFTP
on .NET. Grid Computing Workshop, 2005. IEEE computer
society: 164-171.

[3] Wantao Liu, Rajkumar Kettimuthu, Brian Tieman. GridFTP
GUI: An Easy and Efficient Way to Transfer Data in Grid.
GridNets 2009, LNICST 25. 2010, 57-66.

[4] Branimir Radic, Vedran Kajic, and Emir Imamagic.
Optimization of Data Transfer for Grid Using GridFTP.
Journal of Computing and Information Technology, 2007,
4(15): 347-353.

[5] Sudharshan, Vazhkudai. Enabling the Co-Allocation of
Grid Data Transmissions[A]. Proceedings of the Fourth
International Workshop on Grid Computing[C], IEEE
Computer Society, 2003: 1-8.

[6] Sudharshan Vazhkudai. Distributed Downloads of Bulk,
Replicated Grid Data. Journal of Grid Computing, 2004, 2:
31-42.

[7] Jun Feng, Marty Humphrey. Eliminating Replica Selection
- Using Multiple Replicas to Accelerate Data Transfer on
Grids. Proceedings of the Tenth International Conference
on Parallel and Distributed Systems (ICPADS’04), IEEE
computer society: 1-8.

[8] Chao-Tung Yang, I-Hsien Yang, Kuan-Ching Li. A
Recursive-Adjustment Co-allocation Scheme in Data
Grid Environments. ICA3PP 2005, LNCS 3719. 2005: 1-10.

[9] R.S. Bhuvaneswaran, Yoshiaki Katayama, and Naohisa
Takahashi. Coordinated Co-allocator Model for Data Grid in
Multi-sender Environment. ICSOC 2006, LNCS 4294. 2006:
66-77.

[10] R.S. Bhuvaneswaran, Yoshiaki Katayama, and Naohisa
Takahashi. Dynamic Co-allocation Scheme for Parallel Data
Transfer in Grid Environment. Semantics, Knowledge and
Grid, 2005. SKG’05. First International Conference on,
IEEE, 2005: 1-6.

[11] Chao-Tung Yang, I-Hsien Yang and Kuan-Ching Li.
Improvements on dynamic adjustment mechanism in
co-allocation data grid environments. The Journal of
Supercomputing. 2007, 40: 269-280.

[12] Chao-Tung Yang, Shih-YuWang, William Cheng-Chung
Chu. Implementation of a dynamic adjustment strategy
for parallel file transfer in co-allocation data grids. J
Supercompute, 2010, 54: 180-205.

[13] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung.
The Google File System. SOSP’03, October 19-22, Bolton
Landing, New York, USA, 2003: 1-15.

[14] Konstantin Shvachko, Hairong Kuang, Sanjay Radia et al.
The Hadoop Distributed File System. IEEE 2010: 1-10.

[15] Shafer, J.; Rixner, S.; Cox, A.L. etal. The Hadoop
Distributed Filesystem: Balancing Portability and
Performance. 2010 IEEE: 122-133.

[16] Ruay-Shiung Chang, Po-Hung Chen. Complete and
fragmented replica selection and retrieval in Data Grids.
Future Generation Computer Systems, 2007, 23: 536-546.

[17] Gaurav K, Umit C, Tahsin K, et al. A Dynamic Scheduling
Approach for Coordinated Wide-Area Data Transfers using
GridFTP. Parallel and distributed system., 2008, 1-12.

[18] Ji-Yi W, Jian-Lin Z, Tong W, et al. Study on Redundant
Strategies in Peer to Peer Cloud Storage Systems[J]. Applied
mathematics & information sciences. 2011, 5(2): 235-242.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 7, No. 3, 1201-1213 (2013) / www.naturalspublishing.com/Journals.asp 1213

JIANG Chun-Mao
received the MS degree
in software engineer
from Harbin Institute
of Technology in 2004.
He is a Ph.D. candidate
in school of computer science
and technology of Harbin
Engineering University.
His research interests include

embedded computing and P2P etc.

ZHANG Guo-Yin,
born in 1962, is a professor
and Ph.D. supervisor
in school of computer
science and technology
of Harbin Engineering
University. His research
interests include embedded
computing and P2P etc.

Qu Ming-Cheng, born
in 1980, is a Ph.D. in school
of computer science and
technology of Harbin Institute
of Technology. His research
interests include embedded
computing and P2P etc.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.


