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Abstract: This paper studies the linguistic truth value domain (AX) based on finite monotonous hedge algebra and then we extend
lukasiewicz algebra on [0, 1] to linguistic lukasiewicz algebra on linguistic truth value domain (AX), in an attempt to propose a general
resolution for linguistic many-valued logic based on hedge moving rules and linguistic lukasiewicz algebra for linguistic reasoning. Its
theorems of soundness and completeness associated with general resolution are also proved. This reflects the symbolic approach acts
by direct reasoning on linguistic truth value domain.
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1. Introduction

Automated reasoning based on Robinson’s resolution rule
have been extensively studied in the context of finding
natural and efficient proof systems to support a wide
spectrum of computational tasks. With the development
of Zadeh’s fuzzy logic [1, 2], expert systems and
knowledge engineering, especially since non-classical
logics have become a considerable formal tool for
computer science and artificial intelligence. The area of
automated reasoning based on non-clasical logic has
drawn the attention of many research, especially for fuzzy
logic and for multiple-valued logic.

Studied in [11–15] are proposed a resolution method
for fuzzy logic, multiple-valued logic based on truth values
on [0, 1] and lattice respectively to solve the problem of
approximate reasoning.

Based on hedge algebraic (HA) structures in order to
model the linguistic truth value domain was studied
in [3, 4], it has been analyzed and proposed in [9] that
monotonous hedge algebra be used for the processing
systems using hedge moving rules in combination with
fuzzy reasoning which satisfy semantic inheritance and
accommodation. Based on monotonous algebra, one can
build inverse mapping of hedges with limited length [8],
allowing the expansion of hedge moving rules.

Based on the results in [9], the writing suggests finite
monotonous hedge algebra be the linguistic truth value
domain for linguistic many-valued logic, using hedge

moving rules, hedge inverse mapping and general
resolution based on linguistic lukasiewicz algebra for
linguistic many-valued logic to solve the problem of
reasoning.

The paper consists of five parts: the preliminaries
followed by Section 2, presenting basic knowledge
serving as theoretical foundation for the research.
Section 3 is for research in linguistic many-valued logic
based on the linguistic truth value domain. Section 4
describes the resolution method for linguistic
many-valued logic based on linguistic lukasiewicz
algebra and hedge moving rules for linguistic reasoning.
The last section is the conclusion.

2. Preliminaries

In this session, we would present some concepts,
properties of the monotonous hedge algebra, hedge
inverse mapping that have been researched in [3–5, 8–10].

2.1. Monotonous hedge algebra

Consider a truth domain consisting of linguistic values,
e.g., VeryVeryTrue, PossiblyMoreFalse; etc. In such a
truth domain the value VeryVeryTrue is obtained by
applying the modifier Very twice to the generator True.
Thus, given a set of generators G = (True;False) and a
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nonempty finite set H of hedges, the set X of linguistic
values is {δc|c ∈ G, δ ∈ H∗}.

Furthermore, if we consider True > False, then this
order relation also holds for other pairs, e.g., V eryTrue >
MoreTrue. It means that there exists a partial order > on
X .

In general, given nonempty finite sets G and H of
generators and hedges resp., the set of values generated
from G and H is defined as X = {δc|c ∈ G, δ ∈ H∗}.
Given a strictly partial order > on X , we define u ≥ v if
u > v or u = v. Thus, X is described by an abstract
algebra HA = (X,G,H,>).

Each hedge h ∈ H can be regarded as a unary function
h : X → X;x 7→ hx. Moreover, suppose that each hedge
is an ordering operation, i.e., ∀h ∈ H, ∀x ∈ X : hx > x
or hx < x. Let I /∈ H be the identity hedge, i.e., Ix = x
for all x ∈ X . Let us define some properties of hedges in
the following definition.

Definition 1. A hedge chain σ is a word over H , σ ∈ H∗.
In the hedge chain hp . . . h1, h1 is called the first hedge
whereas hp is called the last one. Given two hedges h; k,
we say that:

i) h and k are converse if ∀x ∈ X: hx > x iff kx < x;
ii) h and k are compatible if ∀x ∈ X: hx > x iff kx > x;

iii) h modifies terms stronger or equal than k, denoted by
h ≥ k, if ∀x ∈ X: (hx ≤ kx ≤ x) or (hx ≥ kx ≥ x);
h > k if h ≥ k and h ̸= k;

iv) h is positive w.r.t. k if ∀x ∈ X: (hkx < kx < x) or
(hkx > kx > x);

v) h is negative w.r.t. k if ∀x ∈ X: (kx < hkx < x) or
(kx > hkx > x);

The most commonly used HA are symmetric ones, in
which there are exactly two generators, like e.g.,
G = {True;False}. In this paper, we only consider
symmetric HA. Let G = {c+, c−}, where c+ > c−. c+
and c− are called positive and negative generators
respectively. The set H is decomposed into the subsets
H+ = {h ∈ H| hc+ > c+} and
H− = {h ∈ H|hc+ < c+}. For each value x ∈ X , let
H(x) = {σx|σ ∈ H∗}.

Definition 2. An abstract algebra (X,G,H,>), where H
̸= ∅, G = {c+, c−} and X = {σc|c ∈ G, σ ∈ H∗}, is
called a linear symmetric HA if it satisfies the following
conditions:

A1) For all h ∈ H+ and k ∈ H−, h and k are converse.
A2) The sets H+∪{I} and H−∪{I} are linearly ordered

with the least element I .
A3) For each pair h, k ∈ H , either h is positive or negative

wrt k.
A4) If h ̸= k and hx < kx then h′hx < k′kx, for all h, k,

h′, k′ ∈ H and x ∈ X .
A5) If u /∈ H(v) and u < v (u > v) then u < hv (u > hv,

resp.), for any h ∈ H .

Example 1. Consider a HA (X , {True;False}, H , >),
where H = {V ery, More, Probably, Mol (More or

Less)}, and (i) V ery and More are positive wrt V ery
and More, negative wrt Probably and Mol; (ii) Probably
and Mol are negative wrt V ery and More, positive wrt
Probably and Mol.

H is decomposed into H+ = {V ery,More} and
H− = {Probably,Mol}. In H+ ∪ {I} we have
V ery > More > I , whereas in H− ∪ {I} we have
Mol > Probably > I .

Definition 3. (Mono-HA) A HA (X;G;H;>) is called
monotonic if each h ∈ H+ (H−) is positive wrt all
k ∈ H+ (H−), and negative wrt all h ∈ H− (H+).

As defined, both sets H+ ∪ {I} and H− ∪ {I} are
linearly ordered. However, H ∪ {I} is not, e.g., in
Example 1 V ery ∈ H+ and Mol ∈ H− are not
comparable. Let us extend the order relation on H+ ∪ {I}
and H− ∪ {I} to one on H ∪ {I} as follows.

Definition 4. Given h, k ∈ H ∪ {I}, h ≥h k iff

i) h ∈ H+, k ∈ H−; or
ii) h, k ∈ H+ ∪ {I} and h ≥ k; or

iii) h, k ∈ H− ∪ {I} and h ≤ k.
(h >h k iff h ≥h k and h ̸= k)

Example 2. The HA in Example 1 is Mono-HA. The order
relation >h in H ∪ {I} is V ery >h More >h I >h

Probably >h Mol.
Then, in Mono-HA, hedges are “context-free”, i.e., a

hedge modifies the meaning of a linguistic value
independently of preceding hedges in the hedge chain.

2.2. Inverse mapping of hedge

In application of hedge algebra into direct reasoning on
natural language [4], using hedge moving rule RT1 and
RT2:

RT1 :
(p (x;hu) , δc)

(p (x;u) , δhc)
; RT2 :

(p (x;u) , δhc)

(p (x;hu) , δc)

Example 3. Applying rule of hedge moving, there are two
equal statements: “It is true that Robert is very old” and
“It is very true that Robert is old”. It means that if the
reliability of the sentence: “Robert is very old” is “True”,
the reliability of the sentence: “Robert is old” is “Very
True” and vice versa.

However the above hedge moving rules are not applied
in such case as from the true value of the sentence: “John
is young” is “Very True” , we can not count the true value
of the sentence: “John is more young”. To overcome the
above weak point, in [5–7] inverse mapping of hedge is
proposed.

Definition 5. Given Mono-HA = (X , {c+, c−}, H , ≤)
and hedge h ∈ H . We take AX = X ∪ {0,W, 1} of which
0, W , 1 are the smallest, neutral, and biggest element in
AX respectively. A mapping h−: AX → AX is called
inverse mapping of h if it meets the following conditions:
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i) h−(δhc) = δc of which c ∈ G = {c+, c−}, δ ∈ H∗

ii) x ≤ y ⇒ h−(x) ≤ h−(y) of which x, y ∈ X

In case of inverse mapping of a hedge string, we determine
it, based on inverse mapping of single hedges as follows:

(hk, hk−1, . . . , h1)
−
(δc) = h−

k

(
. . .

(
h−
1 (δc)

)
. . .

)
Then the rule (RT2) is generalized as follows:

GRT2 :
(p (x;u) , δc)

(p (x;hu) , h− (δc))

In [5–8], it is shown that inverse mapping of hedge always
exists and inverse mapping value of hedge is not unique.

3. Linguistic many-valued logic

3.1. Linguistic truth value domain

In real life, people only use a string of hedge with a finite
length for a vague concept in order to have new vague
concepts and only use a finite string of hedges for truth
values. This makes us think about limiting the length of
the hedge string in the truth value domain to make it not
exceed L-any positive number. In case that intellectual
base has a value having length of hedge string bigger than
L, we need to approximate the value having hedge string
≤ L. Based on monotonous hedge algebra Mono-HA, we
set finite monotonous hedge algebra to make linguistic
truth value domain.

Definition 6. (L-Mono-HA) L-Mono-HA, L is a natural
number, is a Mono-HA with standard presentation of all
elements having the length not exceeding L+ 1.

Definition 7. (Linguistic truth value domain) A
linguistic truth value domain AX taken from a
L-Mono-HA = (X, {c+, c−} ,H,≤) is defined as
AX = X ∪ {0,W, 1} of which 0, W , 1 are the smallest,
neutral, and biggest elements respectively in AX .

Example 4. Given finite monotonous hedge algebra
2-Mono -HA = (X, {c+, c−} , {V,M,P} ,≤)
(V = V ery; M = More; P = Possibly) (P ∈ H−,
M,V ∈ H+, M < V ).

We have the linguistic truth value domain:
AX = {0, V V c−, MV c−, V c−, PV c−, VMc−,
MMc−, Mc−, PMc−, c−, V Pc−, MPc−, Pc−,
PPc−, W , PPc+, c+, MPc+, V Pc+, c+, PMc+,
Mc+, MMc+, VMc+, PV c+, V c+, MV c+,V V c+, 1}.

Proposition 1 If we have L-Mono-HA
= (X, {c+, c−},H , ≤), the linguistic truth value domain
AX is finite to a number of elements
|AX| = 3 + 2

∑L
i=0 |H|i and elements of AX is linearly

ordered. (The symbol |AX| is the number of elements of
AX and |H| is the number of H).

Proof. Suppose that |H| = n, we always have 3 elements
0, 1, W ;

With i = 0, we have 2 more elements {c+, c−}; i = 1,
we have 2n1 more elements; with i = L we have 2nL

more elements.
Then

|AX| = 3 + 2
(
1 + n+ . . .+ nL

)
= 3 + 2

∑L
i=0 |H|i

According to the definition of linear order relation in
monotonous hedge algebra Mono-HA, we see that,
elements in AX are linearly ordered.

Example 5. According to Example 4, we have the
language true value domain (is linearly ordered) AX
= {v1 = 0, v2 = V V c−, v3 = MV c−, v4 = V c−,
v5 = PV c−, v6 = VMc−, v7 = MMc−, v8 = Mc−,
v9 = PMc−, v10 = c−, v11 = V Pc−, v12 = MPc−,
v13 = Pc−, v14 = PPc−, v15 = W , v16 = PPc+,
v17 = Pc+, v18 = MPc+, v19 = V Pc+, v20 = c+,
v21 = PMc+, v22 = Mc+, v23 = MMc+,
v24 = VMc+, v25 = PV c+, v26 = V c+, v27 = MV c+,
v28 = V V c+, v29 = 1}.

We can determine the index of v by Algorithm 1:

Algorithm 1 Finding index
Input: Domain (Truth) of L−mono−HA is AX ,
H− = {h−q, . . . , h−1}, H+ = {h1, . . . hp}
x = lkl . . . l1c with c ∈ {T, F}, k ≤ L
Output: Finding index of v so that vindex = x
Methods: M = 3 + 2

∑L
i=0 (p+ q)i;

if x = 0 then index = 1;
if x = W then index = (M + 1)/2;
if x = 1 then index = M ;
index = (M + 1)/2 + 1 + qAX1;
for i = 1 to k − 1 do
{find j such that li = hj

if j > 0 then
index = index+ (j − 1)

∣∣AXi
∣∣+ q

∣∣AXi+1
∣∣+ 1;

if j < 0 then
index = index− (|j| − 1)

∣∣AXi
∣∣− p

∣∣AXi+1
∣∣− 1;

}
find j such that lk = hj /*j > 0 then lk ∈ H+, else lk ∈ H−*/
if k < L then
{if j > 0 then
index = index+ (j − 1)

∣∣AXk
∣∣+ q

∣∣AXk+1
∣∣+ 1;

if j < 0 then
index = index+ (|j| − 1)

∣∣AXk
∣∣+ q

∣∣AXk+1
∣∣− 1;

}
else index = index+ j;
if c = False then index = (M + 1)− index;
return (index)
/*|AX| =

∑L−i
k=0 (p+ q)k*/

Based on the algorithm to identify the inverse map of
hedge and properties studied in [8], we can establish the
inverse map for 2-Mono-HA
= (X, {c+, c−} , {V,M,P}, ≤) with a note that, if
h−(x) = W with x ∈ H(c+) we can consider
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Table 1 Inverse mapping of hedges

V − M− P−

0 0 0 0

kV c− V V c− V V c− kV c−

kMc− V V c− kV c− Mc−

c− V c− Mc− c−

V Pc− VMc− PMc− MPc−

MPc− MMc− Pc− MPc−

Pc− Mc− Pc− Pc−

PPc− PMc− V Pc− Pc−

W W W W

PPc+ PPc+ PPc+ V Pc+

Pc+ Pc∓ MPc+ c+

MPc+ MPc+ V Pc+ Mc+

V Pc+ MPc+ V Pc+ MMc+

c+ V Pc+ c+ VMc+

kMc+ c+ kMc+ kV c+

kV c+ kMc+ VMc+ V V c+

1 1 1 1

h−(x) = V Pc+ the smallest value of H(c+); if
h−(x) = 1 with x ∈ H(c+) we can consider
h−(x) = V V c+ the biggest value of H(c+); If
h−(x) = W with x ∈ H(c−) we can consider
h−(x) = V Pc− the biggest value of H(c−); if
h−(x) = 0 with x ∈ H(c−) we can consider
h−(x) = V V c− the smallest value of H(c−).

The following is an example on inverse map of
2-Mono-HA= (X, {c+, c−} , V,M,P ,≤), (k ∈ H) (see
Table 1).

3.2. Linguistic lukasiewicz algebra

In logic, the truth value domain is shown by a algebra
structure with calculations ∧,∨,¬,→. Many-valued logic
has finite truth value domain including elements
according to linearly order on [0, 1] and lukasiewicz
algebra is an algebra structure for this truth value domain.

Definition 8. [10] (Lukasiewicz algebra) The structure
L = ([0, 1],∧, ∨, ⊗, ⊕, ¬, →, 0, 1) is called as
lukasiewicz algebra with [0, 1] which is segment of real
numbers between 0 and 1, 0 is the smallest value element,
1 is the biggest value element and ∧, ∨, ⊗, ⊕, ¬, → are
operators defined as follows: (with a, b ∈ [0, 1])

i) a ∧ b = min(a, b)

ii) a ∨ b = max(a, b)

iii) a → b = min(1, 1− a+ b)

iv) ¬a = 1− a

v) a⊗ b = max(0, a+ b− 1)

vi) a⊕ b = min(1, a+ b)

We have the linguistic truth value domain AX = {vi, i =
1, 2, . . . , n} with v1 = 0 and vn = 1 in finite monotonous

hedge algebra and linear order or AX = {vi, i = 1, 2, . . . ,
n; v1 = 0, vn = 1 and ∀1 ≤ i, j ≤ n : vi ≥ vj ⇔ i ≥ j}

Based on definition above, we can extend [0, 1] to AX ,
when we have the definition following:

Definition 9. (Linguistic lukasiewicz algebra) The
structure Ln = (AX,∧,∨, ⊗, ⊕, ¬, →, 0, 1) is called as
linguistic lukasiewicz algebra with AX which is segment
of real numbers between 0 and 1, 0 is the smallest value
element, 1 is the biggest value element and ∧, ∨, ⊗, ⊕, ¬,
→ are operators defined as follows: (with vi, vj ∈ AX)

i) vi ∨ vj = vmax{i,j}

ii) vi ∧ vj = vmin{i,j}

iii) ¬vi = vn−i+1

iv) vi →L vj = vmin{n,n−i+j}

v) vi ⊗ vj = v1 ∨ vi+j−n

vi) vi ⊕ vj = vn ∧ vi+j

The biresiduation operation ↔ could be defined vi ↔ vj
=df (vi → vi) ∧ (vj → vi). The following properties of
Ln will be used in the sequel:

v ⊗ 1 = v; v ⊗ 0 = 0; v ⊕ 1 = 1; v ⊕ 0 = v

v → 1 = 1; v → 0 = ¬v; 1 → 0 = v; 0 → v = 1

Lemma 1 Let va, vb, vc ∈ AX , we have:

(va → vb)⊗ (vb → vc) ≤ va → vc

Proof. We have:

va → vb = vmin{n,n−a+b}

vb → vc = vmin{n,n−b+c}

va → vc = vmin{n,n−a+c}

Otherwise:

min(n, n− a+ b) =
|2n− a+ b|

2
− |a− b|

2
,

min(n, n− b+ c) =
|2n− b+ c|

2
− |b− c|

2

Because of:

min(n, n− a+ b) + min(n, n− b+ c)− n

=
|2n− a+ b|

2
− |a− b|

2
+

|2n− b+ c|
2

− |b− c|
2

− n

=
|2n− a+ c|

2
−
(
|a− b|

2
+

|b− c|
2

)
≤ |2n− a+ c|

2
− |a− c|

2
= min(n, n− a+ c)

So, we have:

(va → vb)⊗ (vb → vc)

= vmin{n,n−a+b} + vmin{n,n−b+c} − n ≤ va → vc
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3.3. Linguistic many-valued logic

Many-valued logic is a generalization of Boolean logic. It
provides truth values that are intermediate between True
and False. We denote by N the number of truth degrees in
many-valued logic.

The linguistic truth value domain AX = {vi, i = 1, 2,
. . . , n} with v1 = 0 and vn = 1 in finite monotonous
hedge algebra and linear order or AX = {vi, i = 1, 2,
. . . , n; v1 = 0, vn = 1 and ∀1 ≤ i, j ≤ n: vi ≥ vj ⇔ i ≥
j}.

In linguistic many-valued logic, an assertion is one pair
A = (p(x;u), δc) (Symbol: (A, v)), herein x is a variable,
u is a vague concept, δ is the hedge strings, p(x;u) is a
vague sentence, δc is a linguistic truth value and δc ∈ AX .
In this context, the following equivalence holds:

(p(x;hu), δc) ⇔ (p(x;u), δhc) (RT1)
(p(x;u), δc) ⇔ (p(x;hu), h−(δc)) (GRT2)

(With h is a hedge and δhc, h−(δc) ∈ AX)
Based on linguistic lukasiewicz algebra, the syntax and

semantic of linguistic many-valued logic is following:
Syntax: propositional variables, logical constants

−{a| a ∈ AX}. Instead of 0 we write ⊥ and instead of 1
we write ⊤, connectives & (Lukasiewicz conjunction), ∧
(conjunction), ∇ (Lukasiewicz disjunction), ∨
(disjunction), ⇒ (implication), ⇔ (equivalence), ¬
(negation) and futuremore by FJ we denote set of all
formulas of linguistic many-valued logic in language J .

Semantic: connectives have the following semantic
interpretations:
D(a) = a for a ∈ AX ,
D(A&B) = D(A)⊗D(B),
D(A ∧B) = D(A) ∧D(B),
D(A∇B) = D(A)⊕D(B),
D(A ∨B) = D(A) ∨D(B),
D(A ⇒ B) = D(A) → D(B),
D(A ⇔ B) = D(A) ↔ D(B),
D(¬A) = ¬D(A).

4. Resolution method for linguistic
many-valued logic

4.1. Knowledge base systems

In linguistic many-valued logic, an assertion is one pair
A = (p(x;u), δc), herein x is a variable, u is a vague
concept, δ is the hedge strings, p(x;u) is a vague
sentence, δc is a linguistic truth value and δc ∈ AX . It
will be written as (A, v), where A is formula and v is
syntactic evaluation. In this context, the following
equivalence holds:

(p(x;hu), δc) ⇔ (p(x;u), δhc) (RT1)
(p(x;u), δc) ⇔ (p(x;hu), h−(δc)) (GRT2)

(With h is a hedge and δhc, h−(δc) ∈ AX)

One knowledge base K in linguistic many-valued
logic is a finite set of assertions (A, v). From the given
knowledge base K, we can deduce new assertions by
using the resolution method.

4.2. Resolution method

In the previous research [13] referred to general fuzzy
resolutions with truth values on interval [0, 1], In the
following tasks, We extend the results in [13] for
linguistic many-valued logic to solve linguistic reasoning.

Definition 10. (Inference rule) An n-ary inference rule r
in graded logical system is a scheme

r :
(A1, v1), . . . , (An, vn)

(rsyn (A1, . . . , An) , revl (v1, . . . , vn))

Using which the evaluated formulas
(A1, v1), . . . , (An, vn) are assigned the evaluated formula
(rsyn (A1, . . . , An) , revl (v1, . . . , vn)

)
. The syntactic

operation rsyn is a partial n-ary operation on FJ and the
evaluation operation revl is an n-ary lower semicontinous
operation on L (i.e. it preserves arbitrary suprema in all
variables).

Definition 11. (Formal theory for linguistic
many-valued logic) A formal theory T in language J is a
triple:

T = ⟨LAx, SAx,R⟩

Where LAx ⊂ FJ is a set of logical axioms, SAx ⊂ FJ is
a set of special axioms, and R is a set of sound inference
rules.

Definition 12. (Evaluated formal proof) An evaluated
formal proof of formula A from the set X ⊂ FJ is a finite
sequence of evaluated formulas

w := (A1, v1), . . . , (An, vn) (*)

Such that An := A and for each i ≤ n, either there exists
an n-ary inference rule r such that

(Ai, vi) :=
(
rsyn (Ar1 , . . . , Arn) , r

evl (vr1 , . . . , vrn)
)
,

i1, . . . , in < n

or
(Ai, vi) := (Ai, X (Ai))

We will denote the value of evaluated proof by V al(w)
= vj , which is the value of the last member in (*).

Definition 13. (Provability and truthfulness) Let T be a
formal theory and A ∈ FJ a formula. We write T ⊢a A
and say that the formula A is theorem in the degree a, or
provable in the degree a in the formal theory T .

T ⊢a A iff a = ∨{V al(w)| w is a proof of A from
LAx ∪ SAx}
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We write T �a A and say that the formula A is true in the
degree a in the formal theory T .

T �a A iff a = ∧{D(A)|D � T}, where the
condition D � T hold, if for every A ∈ LAx:
LAx(A) ≤ D(A), A ∈ SAx: SAx(A) ≤ D(A).

The extending fuzzy modus ponens rule for linguistic
many-valued logic could be formulated:

Definition 14. (Modus ponens for linguistic
many-valued logic)

rMP :
(A, a) , (A ⇒ B, b)

(B, a⊗ b)

Where from premise A holding in the degree a and
premise A ⇒ B holding in the degree b we infer B
holding the degree a ⊗ b. rMP could be viewed as a
special case of resolution in classical logic. From this
fact, the completeness of system based on resolution can
be deduced. It is possible to introduce following notion of
resolution, with respect to the modus ponens:

Definition 15. (General resolution for linguistic many-
valued logic)

rR :
(F1 [G] , a) , (F2 [G] , b)

(F1 [G/ ⊥]∇F2 [G/⊤] , a⊗ b)

Where F1 holding in the degree a and F2 holding in the
degree b are formulas premises of linguistic many-valued
logic and G is an occurrence as a subformula in F1and
F2. The expression below the line means the resolvent of
premises on G holding in the degree a ⊗ b. Every
occurrence of G is replaced by false in the first formula
and by true in the second one.

Theorem 1. (Soundness of rR) The inference rR rule for
linguistic many-valued logic based on Ln is sound i.e. for
every truth valuation D

D (rsyn (A1, . . . , An)) ≥ revl (D(A1), . . . , D(An))

hold true

Proof. For rR we may rewrite the values of the left and
right parts of equation above:

D (rsyn (A1, . . . , An)) = D [D (F1 [G/ ⊥])∇D (F2 [G/⊤])]

revl (D(A1), . . . , D(An)) = D (F1 [G])⊗D (F2 [G])

It is sufficient to prove the equality for ⇒ since all other
connectives could be defined by it. By induction on the
complexity of fomula |A|, defined as the number of
connectives, we can prove:

Let premises F1 and F2 be atomic fomular. Since they
must contain the same subformula then F1 = F2 = G and
it holds:

D [D (F1 [G/ ⊥])∇D (F2 [G/⊤])] = D (⊥ ∇⊤) =

0⊕ 1 = 1 ≥ D (F1 [G])⊗D (F2 [G])

Induction step: Let primises F1 and F2 be complex
formulas and let A and B are subformulas of F1, C and
D are subformulas of F2 and G is an atom here generally
F1 = (A ⇒ B) and F2 = (C ⇒ D). The complexity of
|F1| = |A| + 1 or |F1| = |B| + 1 and |F2| = |C| + 1 or
|F2| = |D| + 1. Since they must contain the same
subformulas and for A, B, C, D the induction
presupposition hold it remain to analyze the following
cases:

1.F1 = (A ⇒ G), F2 = (G ⇒ D):

D [D (F1 [G/ ⊥])∇D (F2 [G/⊤])]

= D ([A ⇒⊥]∇ [⊤ ⇒ D]) = D (¬A∇D)

= vn ∧ vn+1−a+d = vmin{n,n+1−a+d}

We have rewrite the expression in to lukasiewicz
interpretation. Now we will try to rewrite the right
side of the inequality, which has to be proven.
D (F1 [G]) ⊗ D (F2 [G]) =
D (A ⇒ G)⊗D (G ⇒ D)

= (D(A) → D(G))⊗ (D(G) → D(D))

≤ D(A) → D(D) = vmin{n,n−a+d} (According to
Lemma 1). So, we have:

D [D (F1 [G/ ⊥])∇D (F2 [G/⊤])]

≥ D (F1 [G])⊗D (F2 [G])

2.F1 = (A ⇒ G), F2 = (C ⇒ D):

D [D (F1 [G/ ⊥])∇D (F2 [G/⊤])]

= D ([A ⇒⊥]∇ [C ⇒ ⊤])

= 1 ≥ D (F1 [G])⊗D (F2 [G])

3.F1 = (G ⇒ B), F2 = (G ⇒ D):

D [D (F1 [G/ ⊥])∇D (F2 [G/⊤])]

= D ([⊥⇒ B]∇ [⊤ ⇒ D])

= 1 ≥ D (F1 [G])⊗D (F2 [G])

4.F1 = (G ⇒ B), F2 = (C ⇒ G):

D [D (F1 [G/ ⊥])∇D (F2 [G/⊤])]

= D ([⊥⇒ B]∇ [C ⇒ ⊤])

= 1 ≥ D (F1 [G])⊗D (F2 [G])

By induction we have proven that the inequality holds and
the rR is sound. The induction of the case where only one
of the premises has greater complexity is included in the
above solved induction step.

From this result we can conclude the completeness
theorem. We will need two additional simplification rules
for purposes of proof:

Definition 16. (Simplification rules for ∇,⇒)

rs∇ :
(⊥ ∇A, a)

(A, a)
and rs⇒ :

(⊤ ⇒ A, a)

(A, a)

The soundness of rs∇ and rs⇒ is straightforward.
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Theorem 2. (Completeness for linguistic many - valued
logic with rR, rs∇, rs⇒ instead of rMP ) Formal theory,
where rMP is replaced with rR, rs∇, rs⇒ is complete i.e.
for every A from the set of formulas T ⊢a A iff T �a A.

Proof. The left to right implication (soundness of such
formal theory) could be easily done from the soundness
of the resolution rule. Conversely it is sufficient to prove
that rule rMP can be replaced by rR, rs∇, rs⇒. Indeed,
let w be a proof:
w := (A, a) {a proof wa}, (A ⇒ B, b) { a proof wA⇒B},
(B, a⊗ b) {rMP }

Then we can replace it by proof:
w := (A, a) { a proof wa}, (A ⇒ B, b) { a proof wA⇒B},
(⊥ ∇ [⊤ ⇒ B] , a⊗ b) {rR}, (⊤ ⇒ B, a⊗ b) {rs∇},
(B, a⊗ b) {rs⇒}

Using the last sequence we can easily make a proof with
rMP also with the proposed rR and simplification rules.
Since usual formal theory with rMP is complete as it is
proved in [10], every formal theory with these rules is else
complete.

4.3. Deductive procedure

The deduction method is derived from knowledge base K
using the above rules to deduce the conclusion (P, v), we
can write K ⊢ (P, v). Let C(K) denote the set of all
possible conclusions: C(K) = {(P, v) : K ⊢ (P, v)}. A
knowledge base K is called consistent if, from K, we can
not deduce two assertions (P, v) and (¬P, v).

Here, we build an deduction procedure (Algorithm 2)
based on hedge moving rules and rR for solving the
linguistic reasoning problem.
Problem: Suppose that we have a given knowledge base
K, how can we deduce conclusions from K?

Algorithm 2 Deductive procedure
Input: Knowledge base set K; L-Mono-HA
Output: Truth value of the conclusion clause.
Methods:

Step 1: Using the moving rules RT1 and GRT2 to
determine the dim unknown claims in the knowledge base.
In the case of the linguistic truth value of the new clause
does not belong to AX , or the hedge series length is greater
than L, we must approximate the hedge series to hedge series
of length L by removing the outside left hedge. (The outside
left hedge of hedge series make little change to the semantics
of linguistic truth value);
Step 2: Transferring the truth value δc in the expression
found in Step 2 into vi : vi = δc (Algorithm 1);
Step 3: Calculating the truth value of formula based on rR,
rs∇, rs⇒;
Step 4: Making the truth value of conclusion clause.

Example 6. Given the following knowledge base:

i) If a student studying more hard and his university is
high-raking, then he will be a good employee is more
very true.

ii) The university where Mary studies is very high-raking
is possibly true.

iii) Mary is studying very hard is more true.

Find the truth value of the sentence: “Mary will be a good
employee”

By formalizing. (i) - (iii) an be rewritten by follow:
(studying(x;MHard) ∧ is(Univ(x);Hi-ra)

→ emp(x; good)),MV True)
(Base on the hypothesis (i))

(is(Univ(Mary);V Hi-ra), PTrue))

≡ (is(Univ(Mary);Hi-ra), PV True)) (ii and
RT1)

(Base on (ii))
(studying(Mary;V Hard),MTrue)

≡ (studying(Mary;MHard),M−(MV True))
(iii, RT1 and GRT2)

(Base on (iii))
Set: a = (studying(x;MHard);

b = is(Univ(x);Hi-ra); c = emp(x; good). Based on
the knowledge base (i-iii), (Under Example 5, Table 1 and
Definition 9) we have following result:

1. ((a&b) ⇒ c), v27) (i)

2. (a, v24) (iii)

3. (b, v25) (ii)

4. (⊥ ∇ ((⊤&b) ⇒ c) , v24 ⊗ v27) (rR on 1, 2)

4a. ((b ⇒ c), v22)

5. (⊥ ∇ (⊤ ⇒ c) , v25 ⊗ v22) (rR on 3, 4a)

5a. (c, v18) ≡ (c,MPTrue)

Therefore, the truth value of the sentence “Mary will be a
good employee” is (emp(Mary; good),MPTrue))),
which means Mary will be a good employee is More
Possibly True.

5. Conclusion

With the studies on finite monotonous hedge algebra as
the linguistic truth value domain, the linguistic truth value
domain is finite and the linearly order organized elements
can act as base value set for truth domain of linguistic
many-valued logic system. Then we was presented the
formal system for linguistic many-valued logic based on
resolution. Based on rR, rs∇, rs⇒ and hedge moving
rules, we build a deduction procedure and use it to solve
the language deduction problem. In the future work, we
will expand rMP with linguistic modifiers for linguistic
reasoning based on resolution.
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