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Abstract: Newton’s iterative method, which is quadratically convergent, is often used to calculate water surface profile of a river. But
when the river is long, it will be spent much of time on calculating. In this paper, a new fourth-order iterative method for non-linear
equations is proposed. Analysis of convergence shows that the method has at least third-order convergence, and if the parameter φ of
the method is equal to 3, it will have fourth-order convergence. Several numerical examples are given to illustrate the efficiency and
performance of the proposed method. In the end, the new method is used in water surface profile computing, which performs better
than Newton’s iterative method and Potra’s method.
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1. Introduction

Non-linear Equations have been used to model a wide
variety of phenomena that involve wave motion and the
advective transport of substances, such as sediment
transport, pollutant advection and heat transfer, and so
on[1,2]. When it is applied to natural problems, it is hard
to get the exact solution for the equations. Therefore,
many numerical methods have been developed to get the
numerical solution of the equations[3–5]. Newton’s
method is one of the most important tools in numerical
analysis, especially in solving non-linear equations. In
this paper, we consider the problem of numerical
approximation of a real root α of the non-linear equation
f (x) = 0 . The α is called to be a simple root if f (α) = 0
and f ′(α) ̸= 0.

Newton’s method for a single non-linear equation is
defined as

xn+1 = xn −
f (xn)

f ′(xn)
(1)

The above method is quadratically convergent [6].
Many efficient modifications of Newton’s method with
cubic convergence have been developed [7–10]. One
classical third-order modification of Newton’s method is

given by Potra [11]. It is defined as

xn+1 = xn −
f (xn)+ f (x∗n+1)

f ′(xn)
(2)

where x∗n+1 = xn − f (xn)
f ′(xn)

Recently, Chun [12] gives a new approximation as

f ′(x∗n+1) =
f (xn)− f (x∗n+1)

f (xn)+ f (x∗n+1)
f ′(xn) (3)

Using the approximation in the following formula

xn+1 = xn −
3
2

f (xn)

f ′(xn)
+

1
2

f (xn)

f ′(xn)

f ′(yn)

f ′(xn)
(4)

They obtain a new modifications of Newton’s method
as the following

xn+1 = xn −
f (xn)+2 f (x∗n+1)

f (xn)+ f (x∗n+1)

f (xn)

f ′(xn)
(5)

The method also has third-order convergence. Eq. 2
and Eq. 5 do not require the second derivative, which are
quite practical.
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In this paper, we propose a new method based on the
combination of Eq. 2 and Eq. 5. The method has
fourth-order convergence, and per iteration the new
method requires two evaluations of the function and one
evaluation of its first derivative. According to function
evaluations, the new method is found to be efficient than
the classical Potra’s method. Furthermore, the efficiency
and performance of the proposed method is illustrated
through several numerical examples.

2. Development of method and convergence
analysis

Eq. 2 and Eq. 5 both have cubical convergence. So we can
consider the linear combination of Eq. 2 and Eq. 5 which
can produce a method with high order convergence. Now,
the equation can be written as

xn+1 = xn −
(

φ
f (xn)+ f (x∗n+1)

f ′(xn)
(6)

+(1−φ)
f (xn)+2 f (x∗n+1)

f (xn)+ f (x∗n+1)

f (xn)

f ′(xn)

)
where x∗n+1 is Newton iteration.

Let α be a simple zero of f and using Taylor expansion,
we get

f (xn) = f ′(α)
(

en + c2e2
n + c3e3

n + c4e4
n +o(e5

n)
)

(7)

and

f ′(xn) = f ′(α)
(

1+2c2en +3c3e2
n +4c4e3

n +o(e4
n)
)

(8)

where ck = 1
k!

f (k)(α)
f ′(α) ,k = 2,3,4 . . . and en = xn − α .

Dividing Eq. 7 by Eq. 8 gives us

f (x)
f ′(x)

= en − c2e2
n +2(c2

2 − c3)e3
n (9)

+(7c2c3 −4c3
2 −3c4)e4

n +o(e5
n))

As x∗n+1 = xn − f (xn)
f ′(xn)

we get

x∗n+1 = α + c2e2
n −2(c2

2 − c3)e3
n +o(e4

n) (10)

Expanding f (x∗n+1) about α and using (10), we obtain

f (x∗n+1) = f ′(α)
(

c2e2
n −2(c2

2 − c3)e3
n (11)

−(7c2c3 −5c3
2 −3c4)e4

n +o(e5
n)
)

From Eq. 7 and Eq. 11, we have

f (xn)+ f ′(xn+1) = f ′(α)
(

en +2c2e2
n − (2c2

2 (12)

−3c3)e3
n − (7c2c3 −5c3

2 −4c4)e4
n +o(e5

n)
)

and

f (xn)+2 f (x∗n+1) = f ′(α)
(

en +3c2e2
n − (4c2

2 − (13)

5c3)e3
n − (14c2c3 −10c3

2 −7c4)e4
n +o(e5

n)
)

Dividing Eq. 12 by Eq. 8 gives us

f (xn)+ f (x∗n+1)

f ′(xn)
= en −2c2

2e3
n − (7c2c3 −9c3

2)e
4
n +o(e5

n)

(14)
Again, dividing Eq. 13 by Eq. 8 gives us

f (xn)+2 f (x∗n+1)

f (xn)+ f (x∗n+1)
= 1+ c2en − (4c2

2 (15)

−2c3)e2
n − (14c2c3 −15c3

2 −3c4)e3
n +o(e4

n)

From Eq. 9 and Eq. 15 we have

f (xn)+2 f (x∗n+1)

f (xn)+ f (x∗n+1)

f (xn)

f ′(xn)
= en −3c3

2e3
n (16)

+(17c3
2 −11c2c3)e4

n +o(e5
n)

From Eq. 6, we get

en+1 = en −
(

φ
f (xn)+ f (x∗n+1)

f ′(xn)
(17)

+(1−φ)
f (xn)+2 f (x∗n+1)

f (xn)+ f (x∗n+1)

f (xn)

f ′(xn)

)
Substituting Eq. 14 and Eq. 16 into Eq. 17, we obtain

en+1 = (3−φ)c2
2e3

n −
(
(17−8φ)c3

2 +(4φ −11)c2c3

)
e4

n +o(e5
n)

(18)
This means that the method defined by Eq. 9 has at least
cubical convergence. If we take φ = 3 , the convergence is
fourth-order. And from Eq. 18 we have the error equation
as

en+1 = (17c3
2 − c2c3)e4

n +o(e5
n) (19)

The new method has fourth-order convergence, which can
be expressed as

xn+1 = xn −
(

3
f (xn)+ f (x∗n+1)

f ′(xn)
(20)

−2
f (xn)+2 f (x∗n+1)

f (xn)+ f (x∗n+1)

f (xn)

f ′(xn)

)
where x∗n+1 = xn − f (xn)

f ′(xn)
It is easy to know that the Eq. 20

requires two evaluations of the function and one
evaluation of its first derivative. If we consider the
definition of efficiency index [13] as p

1
m , where p is the

order of the method and m is the number of function
evaluations per iteration required by the method, the
method defined by Eq. 20 has the efficiency index equal
to 4

1
3 ≈ 1.587, which is better than Newton’s method

2
1
2 ≈ 1.414.
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3. Numerical examples

In this section, the methods including Classical Newton’s
method (NM) defined by Eq. 1, Potra’s method (PM)
defined by Eq. 2, Chun’s method (CM) defined by Eq. 5
and the new method proposed in this paper (CNK)
defined by Eq. 20 are applied to solve some non-linear
equations, and the efficiency and performance of them are
compared. Depending on the precision of the computer,
an approximate solution rather than the exact root is
accepted. A stopping criterion is used for the computing
programs. When the stopping criterion is satisfying,xn+1
is taken as the solution. The stopping criterion is set as
10−14 here. The following test functions, referred in
reference [13], are used, and the rootα for each function
that we have computed is displayed as:

f1(x) = x3 +4x2 −10 α = 1.365230013414097 (21)

f2(x)= x2−ex−3x+2 α = 0.2575302854398607 (22)

f3(x) = xex2 − sin2(x)+3cos(x)+5 (23)
α =−1.207647827130919

f4(x) = (x−1)2 −1 α = 2.0000000000000000 (24)

f5(x) = (x−1)3 −2 α = 2.259921049894873 (25)

f6(x) = (x−1)6 −1 α = 2.000000000000000 (26)

f7(x) = cos(x)− x α = 0.7390851332151606 (27)

f8(x) = sin2(x)−x2 +1 α = 1.404491648215341 (28)

f9(x) = ex2+7x−30 +1 α = 3.0000000000000000 (29)

The number of iterations (n) and function evaluations
(NFE) are shown in Table 1 and Table 2. The
computational results indicate that the total number of
functional evaluations and iterations required for the CNK
method is less than NM method, PM method and CM
method. The proposed method converges more rapidly
than Newton’s method and the other two methods.

Table 1 The number of iterations of various iterative methods

f(x) x0 NM PM CM CNK
f1 1 5 4 4 3

2 5 4 4 3

f2 2 5 4 4 3
3 6 4 4 4

f3 -3 14 10 10 9
-2 8 6 6 5

f4 2.5 5 3 4 3
3.5 6 4 4 3

f5 3 6 4 4 3
3.2 6 4 4 4

f6 2.1 5 3 4 3
3 9 6 6 5

f7 0.5 4 3 3 3
1 4 3 3 2

f8 1.5 4 3 3 2
2 5 4 4 3

f9 3.25 8 6 6 5
3.5 12 8 9 7

Table 2 Function evaluations (NFE) of various iterative methods

f(x) x0 NM PM CM CNK
f1 1 10 12 12 9

2 10 12 12 9

f2 2 10 12 12 9
3 12 12 12 12

f3 -3 28 28 30 27
-2 16 18 18 15

f4 2.5 10 9 12 9
3.5 12 12 12 9

f5 3 12 12 12 9
3.2 12 12 12 12

f6 2.1 10 9 12 9
3 18 18 18 15

f7 0.5 8 9 9 9
1 8 9 9 6

f8 1.5 8 9 9 6
2 10 12 12 9

f9 3.25 16 18 18 15
3.5 24 24 27 21
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4. Application of the new method

Channel regulation is one of the most important methods
to keep a good navigation condition for rivers. On some
rivers, channel regulations are carried out every year. To
verify the feasibility of the regulation schemes, hydraulic
computation on the regulation projects is necessary. Water
surface profile is the key hydraulic parameter on channel
regulation, and some studies have been done on
calculating the water surface profile [14]. The classical
method to calculate the water surface profile is by the
following equation

Z(2)+
α(2)V 2

(2)

2g
=Z(1)+

α(1)V 2
(1)

2g
+

1
2

(n2V 2
(1)

R
4
3
(1)

+
n2V 2

(2)

R
4
3
(2)

)
∆L

(30)
where Z(2) is the upstream section water level, Z(1) is the
downstream section water level, V(2) is the average
velocity of the upstream section, V(1) is the average
velocity of the downstream section, α(2) is the upstream
section momentum coefficient, α(1) is the downstream
section momentum coefficient, and g is the gravitational
acceleration. ∆L is the distance between the upstream
section and the downstream section. From Eq. 30, a new
function can be constructed as

f (Z) = Z +
αV 2

2g
− 1

2
n2V 2

R
4
3

∆L− (31)

(
Z(1)+

α(1)V 2
(1)

2g
+

n2V 2
(1)

R
4
3
(1)

∆L
)

And Z(2) is the solution of formula Eq. 31. Again, from
Eq. 31 it can get

f ′(Z) = 1− αQ2B
gA3 +

n2V 2

R
4
3

∆L
(B

A
+

2
3

dR
RdZ

)
(32)

where R is hydraulic radius, Z is water level and H is water
depth. Substituting Eq. 32 into the following Eq. 33, we
can get the CNK method’s solution as

Zn+1 = Zn −
(

3
f (Zn)+ f (Z∗

n+1)

f ′(Zn)
(33)

−2
f (Zn)+2 f (Z∗

n+1)

f (Zn)+ f (Z∗
n+1)

f (Zn)

f ′(Zn)

)
Select a river is 2550 meter long, and is divided into four
sections. The characteristic parameters about the river are
list in table 3 [15].

The discharge is 700 m3/s , and roughness coefficient
is 0.025. Downstream water level is 43.9 m, α = 1 and
g=9.81 m/s2. The water surface profile of the river is
required to calculate. According to the data, Eq. 34 is
adopted to calculate the water surface profile of the river.
The computing precision is controlled by the following
formula [16].

−0.00001 ≤ Zn+1 −Zn

Zn+1
≤ 0.00001 (34)

Table 3 Characteristics of the river

Elevation Surface width Area Interval
(m) (m) (m2) (m)

1 41 16 30
Section 1 2 43.5 360 500 0

3 44 465 706.3
4 44.5 510 950

1 42 407 507
Section 2 2 43.5 583 1249.5 575

3 44 690 1567.8
4 45 815 2320.3

1 43 488 482
Section 3 2 43.8 554 898.8 1140

3 44.3 612 1190.3
4 45 674 1640.4

1 42.6 303 355
Section 4 2 43.8 427 793 1840

3 44.4 491 1068.4
4 45 532 1375.3

1 42.2 553 547
Section 5 2 43.7 637 1477 2550

3 44.2 735 1832.5
4 44.8 781 2287.3

Table 4 and Table 5 is the computing results by
various iterative methods. The results indicate that the
water surface profiles calculated by Newton’s method and
CNK method are very close. They all well meet to the
precision required. But the iterative times by CNK
method are two, which is less than that by Newton’s
method. The CNK method has a more rapid convergence
speed than Newton’s method in calculating water surface
profile, especially in a long river with large numbers of
computing sections.

Table 4 Computing results of Newton’s method

Section number Water level (m) Iterative times
1 43.90000 0
2 44.07402 3
3 44.10602 3
4 44.18548 3
5 44.25760 3

5. Conclusions

(1) CNK method proposed in the paper has fourth-order
convergence and requires two evaluations of the function
and one evaluation of its first derivative. Through the
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Table 5 Computing results of CNK method

Section number Water level (m) Iterative times
1 43.90000 0
2 44.07402 2
3 44.10603 2
4 44.18548 2
5 44.25761 2

efficiency index analysis and numerical examples
comparison, the method is indicated to be better than
Potra’s method and the other representative methods in
the paper.

(2) CNK method can be used to calculate water
surface profile of a river. The result proves it highly
efficient. Compared with Newton’s method, it can
decrease the iterative times and increase computation
speed.
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