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Abstract: In this paper, we introduce the concepts of soft lattice implication subalgebras, endow a parameter set as a lattice implication
algebra, and further discuss its equivalent characterization. Then, new operations of soft lattice implication subalgebras are introduced,
under which two soft lattice implication subalgebras is also a soft lattice implication subalgebra. Finally, the concepts of image and
preimage of a soft lattice implication subalgebra and their properties are presented.
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1. Introduction

There still exist some complicated problems in
engineering, economics, sociology, medical science and
many other fields [1], which cannot be successfully dealt
with by classical methods. The reason is that various
uncertainties are typical for these problems. Thus, in
order to solve these problems, many scholars proposed a
great deal of theories gradually, such as probability
theory, fuzzy set theory [2,3], rough set theory [4,5,6],
vague set theory [7] and interval mathematics [8]. Though
they are all feasible me-
thods to describe uncertainties, each of these theories has
its inherent difficulties, as mentioned by Molodtsov [9].
Therefore, Molodtsov proposed soft set theory, which can
model vagueness and uncertainty. With the introduction
of soft sets by Molodtsov, plenty of scholars did
researches on its properties and application. Maji et
al.[10]defined several operations on soft sets and showed
the applications of soft set theory in decisions making
problem. Chen et al.[11]proposed a definition for soft set
parameterization reduction and investigated an
application to another decision making problem. Aktas et
al. [12] compared soft sets to the related concepts of fuzzy
sets and rough sets. Meanwhile, they defined soft groups
and obtained some related properties. Sezgin et
al.[13]introduced the concepts of normalistic soft group
and normalistic soft group homomorphism. Kong et

al.[14]further studied the problem of the reduction of soft
sets and fuzzy soft sets by introducing a definition of
normal parameter reduction.

In 2008 , Yuan Xuehai’s graduated student presented
the new definitions of soft subgroups and normal soft
subgroups and obtained some primary results. These
work greatly enriched the algebraic structure of soft set
theory. Yi Liu and Yang Xu introduced and studied soft
lattice implication algebras[15]. So far, there did not exist
so many profound results on the study of soft algebra.
Lidong Wang and Xiaodong Liu, Cesim Temel [16,17]
presented homomorphisms on some special algebras. We
see that variable threshold concept lattice was proposed
by Ma et al., which provide a new parameterized way to
obtain formal concepts from data with fuzzy attributes
[18]. The way that we endow a parameter set as a lattice
implication algebra can make more achievements.

The purpose of the present paper is a further attempt
to broaden the theoretical aspects of soft lattice
implication algebras. In this paper, we endow a parameter
set as a lattice implication algebra. On the above basis,
new operations of soft lattice implication subalgebras are
introduced, under which two soft lattice implication
subalgebras is also a soft lattice implication subalgebra.
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2. Preliminaries

In this section, we present the concepts of lattice
implication algebras and soft sets. Then we list some
preliminary theorems that are needed in this paper.

2.1 The Related Concepts of Lattice Implication
Algebra

Definition 2.1[19] (Lattice implication algebra) Let
(L,
∨ ,∧ ,O,I) be a bounded lattice with an order-reversing
involution “ ′ ”, I and O the greatest and the smallest
element of L respectively, and → :L × L → L be a
mapping. (L, ∨ , ∧ ,′ , → ,O,I) is called a lattice
implication algebra if the following conditions hold for
any x,y,z ∈ L:

(I1) x → (y → z) =y → (x → z);
(I2) x → x=I;
(I3) x → y=y′ → x′;
(I4) x → y=y → x=I implies x=y;
(I5) (x → y)→ y= (y → x)→ x;
(I6) (x∨ y)→ z= (x → z)∧ (y → z);
(I7) (x∧ y)→ z= (x → z)∨ (y → z).

Theorem 2.1.1[19]Let L be a lattice implication
algebra, then for any x,y,z ∈ L,

(1) I f I → x = I, thenx = I;
(2) I → x = x and x → O = x′;
(3) O → x = I and x → I = I;
(4) (x → y)→ ((y → z)→ (x → z)) = I;
(5) (x → y)→ x′ = (y → x)→ y′;
(6) x∧ y = ((x → y)→ x′)′;
(7) x∧ y = ((x → y)→ x′)′.

Definition 2.1.2[19] (Lattice implication subalgebra)
Let L be a lattice implication algebra. S ⊆ L is called a
lattice implication subalgebra of L , if the following
conditions hold :

(1) (S,∨ ,∧ ,′ ) is bounded sublattice of (L,∨ ,∧ ) with
an order-reversing involution ′;

(2) If x,y ∈ S, then x → y ∈ S.
It is clear that lattice implication subalgebra S is a

lattice implication algebra.

Theorem 2.1.2[19] Let L be a lattice implication
algebra, S ⊆ L , if

(1) O ∈ S;
(2) For any x,y ∈ S implies x → y ∈ S.
Then S is a lattice implication subalgebra of L .

Definition 2.1.3[19] (Homomorphism) Let L1 and L2
be lattice implication algebras, f :L1 → L2 a mapping
from L1 to L2. Then f is called a lattice implication
homomorphism from L1 to L2 , if the following
conditions hold for any x,y ∈ L :

(1) f (x → y) = f (x)→ f (y);
(2) f (x∨ y) = f (x)∨ f (y);

(3) f (x∧ y) = f (x)∧ f (y);
(4) f (x′) = ( f (x))′.

2.2 The Related Concepts of Soft Set

Definition 2.2.1(Cartesian product) Let L1,L2 be non-
empty sets. L1 × L2 = {(x,y)|x ∈ L1,y ∈ L2} is cartesian
product of L1,L2.

Definition 2.2.2[20] (Soft set) Let U be an initial
universe set and E a set of parameter. Let P(U) denote the
power set of U and A ⊂ E . A pair (F,A) is called a soft
set over U , where F is a mapping given by

F : A → P(U).

Definition 2.2.3[21] Let (H,E) be a soft set over X , a
pair (AH ,X) is called the duality of (H,E) , where AH is a
mapping given by:

AH : X → P(E), x 7→ AH(x)={ε ∈ E|x ∈ H(ε)}
for all x ∈ X .

Definition 2.2.4[20] Intersection of two soft sets
(F ,A) and (G,B) over a common universe U is the soft set
(H,C), where C=A ∩ B, and for any x ∈ C
,H(x)=F(x)∩G(x).We write (F ,A)∩ (G,B)= (H,C) .

Definition 2.2.5[20] (AND operation on two soft sets)
If (F ,A) and (G,B) are two soft sets, then ” (F ,A) AND(G,
B) ” denoted by (F,A)∧ (G,B) is defined as (F ,A)∧ (G,
B)= (H,A×B) , where H(α,β )=F(α)∩G(β ), for any
(α ,β ) ∈ A×B.

3. Soft Lattice Implication Subalgebra

In this section, we introduce the concepts of soft lattice
implication subalgebras. We endow a parameter set as a
lattice implication algebra, and discuss its equivalent
characterization.

Definition 3.1 Let L be a lattice implication algebra,
U an initial universe set, and H a soft set. If the following
conditions hold for any x,y ∈ L:

(1) H(O)⊇ H(x);
(2) H(x∨ y)⊇ H(x)∩H(y);
(3) H(x∧ y)⊇ H(x)∩H(y);
(4) H(x′)⊇ H(x);
(5) H(x → y)⊇ H(x)∩H(y).
Then soft set H is called a soft lattice implication

subalgebra of L.

Theorem 3.1 H is a soft lattice implication subalgebra
of L if and only if the following conditions hold for any
x,y ∈ L :

(1) H(O)⊇ H(x);
(2) H(x → y)⊇ H(x)∩H(y).
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Proof.Suppose that H is a soft lattice implication
subalgebra of L , by Definition3.1, H(O) ⊇ H(x),
H(x → y) ⊇ H(x) ∩ H(y), holds for any x,y ∈ L .
Conversely, assume (1) and (2) holds, it follows that

(i) H(x∨ y) = H((x → y)→ y) ⊇ H(x → y)∩H(y) ⊇
(H(x)∩H(y))∩H(y)=H(x)∩H(y);

(ii) H(x′)=H(x → O)⊇ H(x)∩H(O) = H(x);
(iii) H(x∧ y) = H((x′∨ y′)′)⊇ H(x′∨ y′)⊇ H(x′)

∩H(y′)⊇ H(x)∩H(y).
Therefore, H is a soft lattice implication subalgebra of

L.

Theorem 3.2 Let L be a lattice implication algebra and
H a soft lattice implication subalgebra of L , where H is
a mapping given by H : L → P(U). Then the following
statements hold:

(1) H is a soft lattice implication subalgebra of L if
and only if AH(u) is a lattice implication subalgebra of L,

where the condition AH(u)
∆
= {x|u ∈ H(x)} holds for any

u ∈U ;
(2) If A : U → P(L) is a soft set , then A(u) is a lattice

implication subalgebra of L for any u ∈ U if and only if
HA is a soft lattice implication subalgebra of L, where the
condition HA(x)

∆
= {u|x ∈ A(u)} holds.

Proof.(1) “⇒” For any x,y ∈ AH(u) , then u ∈ H(x)
and u ∈ H(y) , it follows that
u ∈ H(x)∩H(y)⊆ H(x → y), thus (x → y) ∈ AH(u). And
u ∈ H(x) ⊆ H(O), so O ∈ AH(u). Then AH(u) is a lattice
implication subalgebra of L by Theorem 2.1.2.

“⇐” For any u ∈ H(x), since AH(u) is a lattice
implication subalgebra, we have O ∈ A(u) . Then
u ∈ H(O) . Thus H(O) ⊇ H(x) . And for any
u ∈ H(x) ∩ H(y) , obviously, u ∈ H(x) and u ∈ H(y).
Then x ∈ AH(u) and y ∈ AH(u). Since AH(u) is a lattice
implication subalgebra of L, we have (x → y) ∈ AH(u).
Then u ∈ H(x → y) . That is to say,
H(x → y) ⊇ H(x)∩H(y) , H is a soft lattice implication
subalgebra of L by Theorem 3.1.

(2) “⇒” (i) For any x,y ∈ L, u ∈ HA(x)∩HA(y), then
u ∈ HA(x) , u ∈ HA(y) . Hence x ∈ A(u) , y ∈ A(u). Since
A(u) is a soft lattice implication subalgebra of L , and
(x → y) ∈ A(u), we have u ∈ HA(x → y). Hence
H(x → y)⊇ H(x)∩H(y).

(ii) For any u ∈ HA(x) , since A(u) is a lattice
implication subalgebra of L , there exists O ∈ A(u). Then
u ∈ HA(O) , hence HA(O)⊇ HA(x) .

Consequently, we have HA is a soft lattice implication
subalgebra of L.

“⇐” For any x ∈ A(u) , there exists
u ∈ HA(x) ⊆ HA(O). Then O ∈ A(u). But also for any
x,y ∈ A(u) , hence u ∈ HA(x) and u ∈ HA(y). Thus
u ∈ HA(x) ∩ HA(y) ⊆ HA(x → y) . It follows that

(x → y) ∈ A(u) holds. Thus A(u) is a soft lattice
implication subalgebra of L by Theorem 3.1.

Theorem 3.3 Let L1,L2 be lattice implication
subalgebras of L , then L1 ∩L2 is also lattice implication
subalgebra of L .

Proof. Because L1,L2 are lattice implication
subalgebras of L , then O ∈ L1 and O ∈ L2 , we have
O ∈ L1 ∩L2. For any x,y ∈ L1 ∩L2, thus x,y ∈ Li(i = 1,2)
. Since Li(i = 1,2) are lattice implication subalgebras of
L, hence (x → y) ∈ Li(i = 1,2) and so (x → y) ∈ L1 ∩L2.
By Theorem 2.1.2, L1 ∩ L2 is a lattice implication
subalgebra of L .

Theorem 3.4 Let L1,L2 be lattice implication
subalgebras of L. Suppose H1,H2 be soft lattice
implication subalgebras of L1,L2 respectively, and
(H,L1 ∩L2) = (H1,L1)∩ (H2,L2) , then H is a soft lattice
implication subalgebra of L1 ∩L2.

Proof. By Theorem 3.3, we have L1 ∩ L2 is a lattice
implication subalgebra of L . For any x,y ∈ L1 ∩ L2 ,we
have H(x) = H1(x) ∩ H2(x) ⊆ H1(O) ∩ H2(O) = H(O),
and H(x → y) = H1(x → y) ∩ H2(x → y) ⊇
(H1(x) ∩ H1(y)) ∩ (H2(x) ∩ H2(y)) =
(H1(x)∩ H2(x))∩ (H1(y)∩ H2(y)) = H(x)∩ H(y) , thus
H is a soft lattice implication subalgebra of L1 ∩L2 .

Definition 3.2 Let L1,L2 be lattice implication
algebras, L = L1 ×L2 , for any x,y ∈ L , denote

x → y ∆
= (x1 → y1,x2 → y2) ,

x∨ y ∆
= (x1 ∨ y1,x2 ∨ y2),

x∧ y ∆
= (x1 ∧ y1,x2 ∧ y2) ,

x′ ∆
= (x1

′,x2
′) ,

where x = (x1,x2) , y = (y1,y2) , xi,yi ∈ Li(i = 1,2) .

Definition 3.3 (Lattice implication algebra operation
of cartesian product) Let L1,L2 be two lattice implication
algebras. Define operations on L1 × L2 by for any
(x1,x2),(y1, y2) ∈ L1 ×L2

(1) (x1,x2)∨ (y1,y2) = (x1 ∨ y1,x2 ∨ y2) ;
(2) (x1,x2)∧ (y1,y2) = (x1 ∧ y1,x2 ∧ y2) ;
(3) (x1,x2)

′ = (x1
′,x2

′) ;
(4) (x1,x2)→ (y1,y2) = (x1 → y1,x2 → y2) .

Theorem 3.5 Let L1,L2 be two lattice implication
algebras. Then L1 × L2 under the above operations
constructs is a lattice implication algebra.

Proof. For any x = (x1,x2),y = (y1,y2),z = (z1,z2)
∈ L1 ×L2 ,then
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(I1) x → (y → z)
= (x1,x2)→ (y1 → z1,y2 → z2)
= (x1 → (y1 → z1),x2 → (y2 → z2))
= (y1 → (x1 → z1),y2 → (x2 → z2))
= (y1,y2)→ (x1 → z1,x2 → z2)
= y → (x → z).

(I2)x → x
= (x1,x2)→ (x1,x2)
= (x1 → x1,x2 → x2)
= (I1, I2) = I.

(I3)x → y
= (x1 → y1,x2 → y2)
= (y1

′ → x1
′,y2

′ → x2
′)

= (y1
′,y2

′)→ (x1
′,x2

′)
= y′ → x′.
(I4) If (x1 → y1,x2 → y2) = x → y = I = y → x =

(y1 → x1,y2 → x2) ,
then x1 → y1 = y1 → x1 = I1 , and x2 → y2 = y2 → x2 =

I2 .
Hence x1 = y1 , x2 = y2 .
Thus x= (x1,x2) = (y1,y2) =y .

(I5)(x → y)→ y
=((x1 → y1)→ y1,(x2 → y2)→ y2)
=((y1 → x1)→ x1,(y2 → x2)→ x2)
=(y → x)→ x.

(I6)(x∨ y)→ z
= (x1 ∨ y1,x2 ∨ y2)→ (z1,z2)
= ((x1 ∨ y1)→ z1,(x2 ∨ y2)→ z2)
= ((x1 → z1)∧ (y1 → z1),(x2 → z2)∧ (y2 → z2))
= (x1 → z1,x2 → z2)∧ (y1 → z1,y2 → z2)
= (x → z)∧ (y → z).
(I7)(x∧ y)→ z
= (x1 ∧ y1,x2 ∧ y2)→ (z1,z2)
= ((x1 ∧ y1)→ z1,(x2 ∧ y2)→ z2)
= ((x1 → z1)∨ (y1 → z1),(x2 → z2)∨ (y2 → z2)).
By Definition 2.1.1, we have L1 × L2 is a lattice

implication algebra.

Theorem 3.6 Let L1,L2 be lattice implication
algebras, H1,H2 be soft lattice implication subalgebras of
L1, L2 respectively, and L = L1 × L2 . Then
(H,L) = (H1,L1)
∧ (H2,L2) is a soft lattice implication subalgebra of L .

Proof. Since L1,L2 are lattice implication algebras, by
Theorem 3.5, we know that L = L1 × L2 is a lattice
implication algebra.

(i) For any x ∈ L , x = (x1,x2) , xi ∈ Li(i = 1,2) , we
have

H(x) =H(x1,x2) =H1(x)∩H2(x)⊆H1(O)∩H2(O)
= H(O).

(ii) For any x,y ∈ L , x = (x1,x2) , y = (y1,y2) , xi,yi ∈
Li(i = 1,2) , we have

H(x → y) = H(x1 → y1,x2 → y2)
= H1(x1 → y1)∩H2(x2 → y2)⊇
(H1(x1)∩H1(y1))∩ (H2(x2)∩H2(y2))
= (H1(x1)∩H2(x2))∩ (H1(y1)∩H2(y2))
= H(x1,x2)∩H(y1,y2) = H(x)∩H(y).

Hence H is a soft lattice implication subalgebra of L .

4. Image and Preimage of a Soft Lattice
Implication Subalgebra

In this section, we introduce the image and preimage of a
soft lattice implication subalgebra. Then their properties
are discussed.

Definition 4.1 Let L1,L2 be lattice implication
algebras, U an initial universe set, f : L1 → L2 a mapping,
and H1 : L1 → P(U),H2 : L2 → P(U) soft sets. Define

f (H1)(x2) =

{
∪

f (x1)=x2
H1(x1) f−1(x2) ̸= ϕ

ϕ f−1(x2) = ϕ
and f−1(H2)(x1) = H2( f (x1)).

Then f (H1) , f−1(H2) are soft sets of L1 and L2
respectively. f (H1) is called the image of H1 under f and
f−1(H2) is called the preimage (or inverse image) of H2
under f .

Theorem 4.1 Let L1,L2 be lattice implication algebras,
U an initial universe set, f : L1 → L2 a lattice implication
homomorphism from L1 to L2 , and H1 : L1 → P(U) is a
soft set, then

(1) If H1 is a soft lattice implication subalgebra of L1,
then f (H1) is a soft lattice implication subalgebra of L2 .

(2) If H2 is a soft lattice implication subalgebra of L2,
then f−1(H2) is a soft lattice implication subalgebra of
L1.

Proof. (1) (i) For any x2 ∈ L2, , u ∈ f (H1)(x2), then

u ∈ ∪
f (x1)=x2

H1(x1) ⊆ H1(O) ⊆ ∪
f (x)=O

H1(x) =

f (H1)(O).

Hence f (H1)(O)⊇ f (H1)(x2) .

(ii) For any x2,y2 ∈ L2, u ∈ f (H1)(x2)∩ f (H1)(y2) ,

we have u ∈ f (H1)(x2) ∪
f (x1)=x2

H1(x1) and u ∈

f (H1)(y2) = ∪
f (y1)=y2

H1(y1). Hence exist x1 ∈ L1,

y1 ∈ L1 , thus x2 = f (x1),u ∈ H1(x1), y2 = f (y1),
u ∈ H1(y1). Since H1 is a soft lattice implication
subalgebra of L1 , we have
u ∈ H1(x1)∩ H1(y1) ⊆ H1(x1 → y1), and f is a lattice
implication homomorphism, it follows that
f (x1 → y1) = f (x1)→ f (y1) = x2 → y2 ,
f (H1)(x2 → y2) = ∪

f (x)=x2→y2
H1(x)⊇ H1(x1 → y1).

That is u ∈ f (H1)(x2 → y2), therefore
f (H1)(x2 → y2)⊇ f (H1)(x2)∩ f (H1)(y2).

Consequently, we have f (H1) is a soft lattice
implication subalgebra of L2 by Theorem 3.1.
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(2) (i) For any x1 ∈ L1, we have f−1(H2)(x1) =
H2( f (x1))⊆ H2(O) = H2( f (O)) = f−1(H2)(O).

(ii) For any x1,y1 ∈ L1, we have
f−1(H2)(x1) ∩ f−1(H2)(y1) = H2( f (x1)) ∩ H2( f (y1)) ⊆
H2( f (x1) → f (y1)) = H2( f (x1 → y1)) = f−1(H2)(x1 →
y1). By Theorem 3.1, thus f−1(H2) is a lattice implication
subalgebra of L1.

5. Conclusion

First, we introduced the concepts of soft lattice
implication subalgebras, endowed a parameter set as a
lattice implication algebra, and further discussed its
equivalent characterization. Then, new operations of soft
lattice implication subalgebras were introduced, under
which two soft lattice implication subalgebras was also a
soft lattice implication subalgebra. Finally, the concepts
of image and preimage of a soft lattice implication
subalgebra and their properties were presented. To extend
this work, one could study on it to get further profound
results.
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