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Abstract: With the advancement of the Internet of Things (IoT), smart cities have evolved from traditional urbanization to 
contemporary urbanization of technology. IoT networks enable scattered smart devices to gather and analyze data through 
an open channel known as the Internet. As a result, security, privacy, centralization, scalability, and transparency in which 
smart cities may be developed. Detecting malicious Uniform Resource Locators (URLs) in an IoT context is critical for 
protecting the network and devices from security risks. Malicious URLs identification is an essential aspect of 
cybersecurity for interconnected devices of smart cities, employing various techniques and technologies to identify 
potentially harmful links. Recently, a number of machine learning methods has been used in several studies to classify 
URLs into malicious or benign classes based on their statistical characteristics and features. However, selecting the most 
significant features in the preprocessing stage plays a key role in improving the detection accuracy of trained machine 
learning classifiers. In this paper, we propose an effective approach for detecting malicious websites with a particular 
emphasis on attack payloads and broader feature space. The importance of URLs’ features is first obtained and ranked 
using a random forest-based comprehensive analysis. Then, Pearson’s correlation analysis is used to select the most 
important features that have a strong correlation with the class labels. The proposed approach is evaluated using four 
machine learning algorithms: k-nearest neighbor (k-NN), random forest (RF), support vector machine (SVM), and logistic 
regression (LR). The experimental results show the efficiency of our approach, achieving 96% accuracy using an RF 
algorithm. 
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1 Introduction 

With the advancement of the Internet of Things (IoT), smart cities have evolved from traditional urbanization. 
Malicious website is one that tries to download a malware onto a device, which is a catch-all word for anything that 
may obstruct computer operation, collect personal data, or, in the worst case, take complete control of the system [1,2]. 
Malicious website detection is an important aspect of cybersecurity for protecting interconnected devices of smart 
cities, employing various techniques and technologies to identify potentially harmful links. In the instance of a drive by 
download, however, the websites may attempt to install software on a computer without first requesting permission; 
normally, this necessitates some action on the user side [3]. Malicious attackers infiltrate systems and use them to install 
malware [4,5], gain access and privileges, compromise private or sensitive information, sabotage systems, or engage in 
other attacks like DDoS [6].  

Preventing the devices and information systems from being compromised is almost difficult and sometimes impossible. 
Attackers actually employed a variety of methods to be successful with the incursions, such as drive-by downloads from 
websites that took advantage of browser flaws [7] or network-accessible flaws [8]. Additionally, social engineering 
attacks similar to phishing and malicious attachments in emails allow for the user-authorized installation of destructive 
software [9]. The purpose of malicious programmers is to gain access to a machine and interfere with its functionality. 
There are several different methods that malicious software can get onto a computer. Now more than ever, it is critical 
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to recognize these URLs since they have the capacity to corrupt systems or store passwords secretly. Machine learning 
techniques are being utilized to automate the classification of URLs. Overall performance is improved, and human 
participation is reduced. For both identifying websites and preventing cyberattacks, a variety of strategies have been put 
forth and implemented [10-12]. One of the most common tactics is to keep a central blacklist of dubious and malicious 
domains, IP addresses, and websites [13]. 

Confidentiality, integrity, and availability are the three components of information security [14]. For Internet systems, 
Internet gadgets, Internet of Things services, and information security is necessary. In attacks involving DDoS [15], 
buffer overflows, drive by downloads, phishing websites, SQL injection, and Internet system services are most 
frequently utilized. The assault using drive-by downloads is shown in Figure 1. When a user visits malicious URLs, one 
of the website's programmers searches for security holes in the user's system before attempting to launch an attack. The 
terminal device immediately downloads and runs a virus or a malware program if the attack is successful. The user's 
system or device is now a component of the hacker's botnet. The primary issue addressed in this study is to distinguish 
between dangerous and benign URLs and to give an analyst 21 types of features based on Alexa-based, domain-based, 
and complication technique-based information from the Internet. 

The creation of malicious URLs detection systems and the provision of 22 features, including applications layer and 
network layer features, constitute the contribution to this work. We can identify which traits are more significant than 
others based on a feature analysis. This can attest to the usefulness of the functionality we suggested for this 
assignment. Then, accuracy and precision performance are improved accordingly. 

 
Fig. 1: The type of drive-by downloads flow attack. 

The remainder of the paper is organized as follows. Section 2 provides a detailed literature review of malicious website 
related work. Section 3 explains the proposed framework for classifying website URLs. This includes an explanation on 
how dataset is collected for training and testing, and how the best features are selected, as well as, how classifiers are 
built and trained to detect malicious website URLs. Section 4 presents the experimental results. Finally, Section 5 gives 
the conclusion and future work. 

2 Related Work 

In order to get the greatest outcomes and fit into the situation at hand, numerous academics have researched a variety of 
ways for malicious website identification [16]. As a background for the study included in the remaining sections of the 
paper, we give an overview of related work. Given a website's Uniform Resource Locator (URL) as input, Vyawhare et 
al. [17] created a method for categorizing malicious and benign websites. Malicious URL categorization models are 
tested for accuracy and stability using the XGBoost (eXtreme Gradient Boosting) algorithm. With great classification 
performance and efficiency, the XGBoost classified the malicious URLs using just nine features. With a focus on a 
broad of attack-payloads, feature space, and flexibility of the methods that should be adaptive with changes in 
characteristics of the malicious web pages, and the usability of all real-world systems for defending the users against the 
malicious attacks. Eshete and Weldemariam [18] presented a comprehensive approach for detecting and analyzing 
malicious websites. An innovative method for identifying and thwarting attacker efforts to get around malicious website 
detection algorithms was put out by Singhal et al. [19]. 
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Results demonstrate that the suggested approach is practical for spotting concept deviations. A machine learning 
framework for intelligently detecting malicious URLs was put forth by Chen et al. [12]. From domain, obfuscation, and 
Alexa data procedures, 41 features of malicious URLs are retrieved. The 17 most crucial traits are determined using the 
XGBoost algorithm and the ANOVA (Analysis of Variance) test. The XGBoost classifier is learned on the collected 
dataset and has achieved a detection accuracy of more than 99%. The authors in [20] presented a novel approach to 
analyze holistically the characteristics necessary for identifying fraudulent websites using machine learning. Singh and 
Goyal compared machine learning attributes to identify fraudulent websites.  

A total of 25 criteria that are typically used to identify fraudulent websites were taken into consideration. The 
computational resources needed for extraction and processing, as well as the classification accuracy in identifying 
harmful websites, were examined in relation to these features. The top 5 attributes for identifying fraudulent websites 
were determined based on the analysis.  

By examining and comparing honey clients with low and high levels of engagement, Zhang and Qassrawi [21] 
addressed honey clients. In order to compare the two varieties of honey, they established a comparison feature. 
Additionally, they discussed ways malicious websites could avoid detection and fingerprint honey clients and offered 
suggestions for getting around these evasion methods. They developed criteria to specify and gauge the efficiency of 
honey clients by looking at honey client features. 

First, they assessed a combination of features that had not previously been examined in the previous works, principally 
involving embedding obtained using a type of neural networks-based transformer, according to the two methodologies 
provided in [22]. The second part of the contributions is a brand-new dataset for this issue called GAWAIN that was 
created in a way that gives other researchers access to all of our data collection and processing methods as well. The 
investigation of unexpected finding is the absence of characteristics linked to content (such as HTML and JavaScript) 
from the top-10 list. When contrasting the results of predictions made by models trained on widely used features. 

A model for Feed Forward Neural Network-based Malicious Website URL Detection was presented by Emmah, Victor 
Thomas, and Ukorma [23]. Object-Oriented Analysis and Design is used to design the methodology employed in their 
research. The model employs a dataset of 98,012 website URLs that include 48,006 genuine instances and 48,006 
malicious instances. They trained a feed-forward neural network and achieved a competitive accuracy result. For the 
purpose of identifying malicious URLs, Alazab and Soman [24] tested a number of cutting-edge character-level 
embedding techniques based on deep learning. 

A DeepURLDetect (DURLD) is a character-level embedding model used to encode raw URLs in order to capitalize on 
and transform the performance advantage. Comparing DURLD to other related deep learning-based character level 
embedding approaches shows that it is computationally less expensive and can detect harmful URL variants. Table 1 
provides a summary of the prior work methodologies.  

While preprocessing is a vital step in developing a website malicious detection system, there are several issues that need 
to be considered to ensure the effectiveness of the preprocessing step. Some of the problems of preprocessing for 
websites' malicious detection are: 

• Data imbalance: The distribution of benign and malicious websites in the dataset may not be balanced, with a much 
larger number of benign websites than malicious ones. This can lead to bias in the model, as the model may better 
detect benign websites than malicious ones. Some techniques, such as under-sampling, over-sampling, or synthetic 
data generation, can help address data imbalance. 

• Data quality: The quality of the data can affect the accuracy of the detection model. Poor quality data, such as 
incomplete or inconsistent data, can negatively impact the model's performance. Therefore, data cleaning and 
normalization can help improve the data quality. 

• Feature selection: The selection of features for analysis can also impact the accuracy of the detection model. 
Feature selection or dimensionality reduction can help to classify the most important features and reduce the data 
dimensionality. 

• Overfitting: It occurs if the model fits the training set and achieves a poor performance on a test set. The 
preprocessing techniques, such as regularization or cross-validation, can reduce overfitting problem and enhance 
the model's generalization.  

• Time sensitivity: Some malicious websites are designed to operate for a short period of time and may be taken 
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down quickly. Feature extraction must be conducted in real-time or near-real-time to ensure the data is up-to-date 
and accurate. 

Table 1: A summary of the previous work to detect malicious websites. 
Author Datasets Algorithm Techniques 

Chaitanya [17] Benign URL’s Website 
[25] XGBoost Machine learning 

Classification 

Birhanu Eshete [18] HoneyMonkey [26] 

A holistic approach combines 
page identity, URLs tokens, 
page contents, and execution 
trace 

Feature extraction 

Singha [19] PhishTank [27] 
Gradient Boosted Trees, 
Random Forest, 
Feed Forward Neural Networks 

Machine learning 
Classification 

Chen [12] 
Alexa [28] urlquery.net 
[29], urlscan.io Rao et al. 
[28] and GitHub [30] 

ANOVA, 
XGBoost 

Machine learning 
Classification 

Singh & Goyal [20] MalCrawler [30] C4.5 and Naive Bayes. Machine learning 
Classification 

Chaiban et al. [22] Singh et al. [31] XGBoost Machine learning 
Classification 

Emmah et al. [23] Emmah et al. [23] Neural Network Deep learning 
classification 

Srinivasan et al. [24] 

Two types of datasets are 
utilized, derived from 
Singh research [30] and 
[31] 

Malicious URL Detection 
Engine 

Deep learning-based 
character level 
embedding 
techniques 

In summary, preprocessing for website malicious detection can be challenging due to issues such as data imbalance, 
data quality, feature selection, overfitting, and time sensitivity. It is important to carefully consider these issues when 
developing a preprocessing pipeline to ensure the effectiveness of the detection model. There are several methodologies 
that can be used to preprocess websites to detect malicious activity. Here are some possible steps: 

1. Collecting a large data set of website's code, content, and behavior. This can include static analysis of the HTML, 
CSS, and JavaScript files, as well as dynamic analysis of the website's behavior when accessed with a browser. 

2. Processing and cleaning the collected data of the previous step. This can include the values of features such as the 
presence of certain keywords or phrases associated with malicious activity, the use of obfuscation techniques in the 
website's code, or abnormal patterns of user behavior. It also normalizes the values of the collected dataset. 

3. Extracting the important features by removing any irrelevant or noisy features and ensuring that the remaining data 
is formatted in a consistent manner. 

4. Selecting the most informative features for detecting malicious activity. This can be done using various techniques, 
such as correlation analysis or machine learning algorithms. 

5. Training a number of machine learning models on the selected features to classify websites as either benign or 
malicious. This can include techniques such as decision trees, support vector machines, or deep learning 
algorithms. 

6. Evaluating the performance of models using some metrics such as recall, precision, and F1-score. This can be done 
using a test dataset of known benign and malicious websites. 

Overall, the methodology of malicious detection depends on the specific requirements of the task and the available data. 
However, the steps outlined above can provide a useful framework for building an effective detection system. 

3 Proposed Framework 

To improve the limitations of current related work, a framework is proposed to detect malicious websites effectively. A 
malicious website is defined as a URL that is used to upload a file, download a file, install an application, collect data, 
display an advertisement, open a pop window, or any mixture of the above operations without any knowledge or 
consent of the user. The framework utilizes a dataset of websites’ URLs with their labels, which are either malicious or 
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benign, based on trusted website directories for training the machine learning models: SVM, RF, k-NN, and LR. The 
components of the proposed framework are illustrated in Figure 2.  

 
Fig. 2: Proposed framework to detect malicious websites. 

It contains four components: URLs evaluator, feature generator, cleaner, and machine learning module. The URLs 
evaluator is designed to assess the legitimacy, safety, or potential risks associated with a given URL, known as a web 
address. It determines whether a website is malicious, or benign for users. The output of URLs evaluator is a list of 
available URLs. This output will be an input to the feature generator component that generates a set of features related 
to URLs for network and application layer protocols. It considers the specific characteristics and contexts in which 
these URLs are encountered. These features can be extracted from network packets, HTTP traffic logs, web server logs, 
or through dedicated URL analysis tools. They provide valuable insights into the characteristics and behaviors of URLs 
at both the network and application layers, facilitating the detection of malicious activities and ensuring network and 
application security. Cleaner component is designed to preprocess the URLs before they are subjected to be prepared as 
a dataset for training the models of machine learning module, or even for classification in the deployment phase. It 
removes noise, irrelevant information, or obfuscation techniques from URLs to enhance the effectiveness and efficiency 
of subsequent steps. 

The next subsections describe the data collection and feature importance process along with the feature selection and 
classification tasks. Moreover, we explain how the dataset is collected and divided for training and testing. It also 
explains how the machine learning classifiers work. Finally, a description of the evaluation matrices is provided. 

3.1 Data Collection 

The dataset used for this study includes both malicious and benign URLs. The benign websites’ URLs are the general 
URLs for organizations in the Internet network service systems. The malicious URLs are gathered from the malware 
domain list and other open-source datasets [32], getting a total of 185,181 websites’ URLs. On the other hand, the 
benign links are taken from KAGGLE [33], which acquired 345,000 URLs. Check the status of each web page in the 
URL dataset. For this, a tool was developed in Python, and with the library urllib2, it will be verified whether each URL 
is active or inactive. A result, a total of 35,279 malicious links were obtained active (19%), and a sample was selected 
from a random number of benign URLs to which they have applied the process, and as a result, a size list of 27,912. 
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The URLs mainly consist of four parts: top-level domain, hostname, paths, and port of the web address, as shown in 
Figure 3. 

 
Fig. 3: URL structure. 

3.2 Data Collection 

The feature generation step follows the same characteristics studied by Xu [3]. We analyze the data generated from a set 
of active URLs to obtain the capacities of a honeypot type low interaction client using a Thug tool. A Thug is a public 
Python tool released in March 2012 and used to mimic the behaviors of a web browser. Each URL is run on Thug for 4 
seconds with its normal setup, concurrent with our process script that captures web traffic using PyShark. Finally, the 
method produced 1,743 recordings of benign network traffic and 756 records of malicious network data. 

Application Layer Features: The application layer features extracted from collected data are given as follows: 

(A1): Content length represents the size of the total characters in the URL. 

(A2): Number of special characters is the total of special characters that appear on the URL (for example: ’?’, ‘%’, ‘#’, 
‘&’, ‘,’). 

(A3): HTTP Header content length represents to the size of the header content HTTP.  

(A4): HTTP Header server provides information about the web page server, including its name, type, and version. 

(A5): HTTP Header charset indicates the code - cation of each web page (for example, ANSI, ISO-8859-1, UTF8). 

(A6): Whois registration date indicates the date on which the website server was registered. 

(A7): Who is updated date is the last date when the server was updated. 

(A8): Whois country specifies the country where the website server. 

(A9): WHOIS state Pro represents the location on where the website was registered. 

(A10): Whose Domain indicates the domain of the website. 

Network Layer Features: The features of the network layer, which are extracted from the collected data, are given as 
follows: 

(R1): TCP conversation exchange sums the number of packets between the honeypot and website by TCP protocol. 

(R2): Destination remote TCP port is the total number of ports rather than those exposed in TCP.  

(R3): Remote IPS represents the number of addresses IPs connected to the honeypot. 

(R4): PKT without DNS is an array of all non-DNS packets. 

(R5): TCP URG packets represent the number of TCP packets with the URG flag. 

(R6): Source app packets are the number of packets sent by the honeypot to the server remote.  

(R7): Remote app packets are the variable of the volume in bytes of communication between the web servers and the 
honeypot. 

(R8): Duration is the duration time of the website. 

(R9): AVG. local PKT rate is the average of local IP packets per second (packets sent over duration) sent from the 
crawler to the web server. 
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(R10): AVG. The remote PKT rate is the average number of remote IP packets sent per second from the remote server 
to the crawler. 

(R11): Application packets are the total number of IP packets generated in the query of the URL, in which the DNS 
ones are included. 

(R12): DNS query times list of DNS layers. 

Once the mentioned characteristics have been obtained, a normalization rule is applied to the numerical data in order to 
represent them in a range between 0 and 1. Additionally, the data categories are symbolized as binary, apart from raw 
data, which are consolidated, as shown in Figure 4. 

 
Fig. 4: Row data features. 

3.3 Machine Learning Classifiers 

Various machine learning (ML) classification methods, including k-nearest neighbor (k-NN), support vector machine 
(SVM), logistic regression (LR), and random forest (RF) are built using a training part of a collected dataset to classify 
the malicious website in the test set. The following subsections briefly explain these classification algorithms. 

K-Nearest Neighbor (k-NN): It is a common machine learning method that may be used for both classification and 
regression. The k-NN approach is non-parametric, which means it makes no assumptions about the data's underlying 
distribution. 

The basic idea of the k-NN algorithm is to predict the class or value of a new data point by looking at the k nearest data 
points in the training set and taking a majority vote or averaging their values. The choice of k is a hyper-parameter that 
can be tuned to achieve better data performance. 

For classification, the k-NN algorithm assigns the most common class label among the k-NN of a test point. For 
regression, the k-NN algorithm computes the mean or median of the k-nearest neighbors' target values and uses this as 
the predicted value for the test point. 

The k-NN algorithm has some advantages, such as being easy to understand and implement and having the ability to 
handle multi-class problems. However, it can also have some disadvantages, such as being sensitive to irrelevant 
features and being computationally expensive for large datasets. The k-NN is a machine learning algorithm used for 
classification and regression problems. The algorithm is based on the idea that similar data points are likely to have 
similar class labels or output values. 

The mathematical representation of the k-NN algorithm can be described as follows: 

Given a dataset	𝑥 = {𝑥!, 𝑥", 𝑥#, … , 𝑥$} and the corresponding class labels or output values	𝑦 = {𝑦!, 𝑦", 𝑦#, … , 𝑦$}. 

1- The k-NN algorithm finds the k nearest neighbors’ values of a new data point 𝑥 based on some distance metric 
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(e.g., Euclidean distance, Manhattan distance, etc.). 

2- For classification problems, the class label of the new data point is predicted based on the class labels of the k-
nearest neighbors. The majority class label among the k nearest neighbors is assigned as the predicted class label. 

3- For regression problems, the output value of the new data point is predicted based on the output values of the k-
nearest neighbors. The average or median of the output values among the k-nearest neighbors is assigned as the 
predicted output value. 

Overall, k-NN is a simple and effective algorithm that works well in low-dimensional spaces and is widely used in 
various applications, including recommender systems, image recognition, and anomaly detection. Estimating the 
number of neighbors, k, is discovered experimentally. It starts with the classifier's error rate at k=1 and then repeats the 
process with each additional k to check a different neighbor. The number of training trails typically rises as a k value 
increases, and the best k value is chosen based on the lowest error rate. Because distance-based comparisons are used, 
which give each attribute equal weight, the main drawback of the k-NN classifier is its low accuracy, particularly with 
noise and irrelevant attributes [34]. 

Support Vector Machine (SVM): The SVM is a learning method used for classification and regression problems. In 
classification, SVM tries to find the hyperplane that best separates the two classes, while regression tries to fit a curve 
that best fits the data. The mathematical representation of SVM can be described as follows: 

Given a dataset	𝑥 = {𝑥!, 𝑥", 𝑥#, … , 𝑥$}	and corresponding binary labels	y = {𝑦!, 𝑦", 𝑦#, … , 𝑦$}, where 𝑦% is either -1 or 1. 

The SVM can find the hyperplane 𝑤 ∗ 𝑥	 + 	𝑏	 = 	0 that maximizes the margin between the two classes. Here, 𝑤 is the 
weight vector, and 𝑏 is the bias term. 

The SVM can also be represented mathematically as an objective function, written in the following equation: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒	 5!
"
∗ 	 6|𝑤|6"𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	𝑦𝑖(𝑤 ∗ 𝑥	 + 	𝑏) >= 	1B𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖                    (1) 

Here, the objective is to minimize the magnitude of the weight vector while ensuring that all data points are correctly 
classified by the hyperplane. The inequality constraint ensures that the hyper-plane separates the two classes with a 
margin of at least one. The margin is well-defined as the perpendicular distance between the hyperplane and the closest 
data point. The optimization problem can be solved using quadratic programming (QP), which involves solving a set of 
linear equations to find the optimal values of w and b. The QP formulation can be written as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒	 5!
"
∗ 	𝑥& ∗ 𝑃 ∗ 𝑥 + 𝑞& ∗ 𝑥B	                                                                      (2) 

Subject to 

𝐺𝑥 <= ℎ, 	𝐴𝑥	 = 	𝑏                                                                                    (3) 

Here	𝑥 = (𝑤, 𝑏), 𝑃 is a matrix, 𝑞 is a vector, 𝐺 is a matrix, ℎ is a vector, 𝐴	is a matrix, and 𝑏 is a vector. The 
optimization problem is subject to constraints that ensure that the solution is feasible. 

Once the optimal values of 𝑤 and 𝑏 are obtained, the decision function for classifying a new data point 𝑥 can be defined 
as follows: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝑤 ∗ 𝑥 + 𝑏)                                                                                (4) 

Here, 𝑓(𝑥) returns -1 or 1 depending on which side of the hyper-plane the point 𝑥 falls on. If the value is less than 0, the 
data point is classified as the negative class, and if the value is greater than 0, it is classified as the positive class. SVM 
is a powerful algorithm that works well in high dimensional spaces and is widely applied in various applications, 
including bioinformatics, image classification, and natural language processing.  

The SVM algorithm employs a nonlinear mapping technique to raise the dimension of the original training data before 
attempting to locate the linearly ideal separation hyper-plane using margins and support vectors. SVM can accurately 
simulate complex nonlinear decision boundaries despite being incredibly sluggish. SVM labels classes with one of two 
values, either +1 or -1, when there are two linearly separable classes. 

The optimal line with the least amount of classification error must be found, but if there are an infinite number of 
separating lines that might be drawn. In other words, the optimum hyper-plane must be identified if we generalize to n 
dimensions. This is done by looking for the hyperplane with the highest margin, known as the maximum marginal 
hyperplane [34]. 

Logistic Regression (LR): It is a machine learning algorithm used for classification problems where the goal is to predict 
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binary class labels (e.g., 0 or 1). It models the probability of the positive class as a function of the input variables using 
a logistic function, which maps any real-valued input to a probability between 0 and 1. 

The mathematical representation of the Logistic Regression algorithm can be described as follows: 

Given a dataset	𝑥 = {𝑥!, 𝑥", 𝑥#, … , 𝑥$}; and corresponding binary class labels	𝑦 = {𝑦!, 𝑦", 𝑦#, … , 𝑦$}. 

LR can model the probability of the positive class as follows: 

𝑝(𝑦 = 1|𝑥) = 	 !
'!	)	*+,(./)1

                                                                     (5) 

Here, z is a linear function of the input variables	𝑥, i.e. 

𝑧 = 𝑤2 +	𝑤!𝑥! +𝑤"𝑥"	+	. . . +	𝑤3𝑥3                       (6) 

Where 𝑤2, 𝑤!, 𝑤", 𝑤3	are the model parameters or weights that are learned from the training data, and 𝑑 is the number 
of input variables. 

The LR uses Maximum Likelihood Estimation (MLE) to learn the model parameters that maximize the likelihood of the 
observed data. The likelihood function 𝐿(𝑤) is defined as follows: 

𝐿(𝑤) = 𝑝𝑟𝑜𝑑{𝑝(𝑦% = 1|𝑥%)^𝑦% ∗ (1 − 𝑝(𝑦% = 1|𝑥%))^(1 − 𝑦%)}                                       (7) 

Here, 𝑦% is the binary class label of the ith data point, and 𝑥% is its corresponding input variables. The product is taken 
over all 𝑛 data points in the training set. 

The log-likelihood function is easier to optimize than the likelihood function, and it is defined as follows: 

𝐿(𝑤) = 𝑠𝑢𝑚{𝑦% ∗ 𝑙𝑜𝑔(𝑝(𝑦% = 1|𝑥%)) + (1 − 𝑦%) ∗ 𝑙𝑜𝑔(1 − 𝑝(𝑦% = 1|𝑥%))}                               (8) 

Here, the sum is taken over all	𝑛 data points in the training set. The LR uses Gradient Descent or other optimization 
methods to find the values of 𝑤 that maximize the log-likelihood function	𝑙(𝑤). 

LR is a simple and effective algorithm that works well in many applications, including medical diagnosis, fraud 
detection, and credit scoring. It can be extended to handle multiclass classification problems using one-vs-all or softmax 
methods. 

Statistical and data mining researchers regularly use the LR algorithm, one of the most important methodologies, to 
examine and classify binary and proportional response datasets. One of its important benefits is that LR can be applied 
to multi-class classification problems and calculate probability automatically. Another benefit is that most techniques 
employed in LR model analysis adhere to the same fundamentals as those in linear regression. Furthermore, LR is 
amenable to most unconstrained optimization techniques [35] 

The logistic function can be given by the following formulas: 

𝐿𝑜𝑔𝑖𝑡	(𝑝%) 	= 	1/	(1 + 	𝑒𝑥𝑝	(−𝑝%))                                                              (9) 

𝑙𝑛(𝑝%/(1 − 𝑝%)) 	= 	𝐵𝑒𝑡𝑎2 + 𝐵𝑒𝑡𝑎! ∗ 𝑥! +	…	+	𝐵4 ∗ 𝐾4                                                     (10) 

In Eq. (9), 𝑙𝑜𝑔𝑖𝑡(𝑝%) is a response or a dependent variable, and the variable 𝑥 is an independent variable. The model's 
coefficient parameter, or beta parameter, is usually projected via a maximum likelihood estimation (MLE). 

Random Forest Algorithm (RF): Random Forest is a machine learning technique that operates on an ensemble basis. It 
combines numerous decision trees to increase accuracy while minimizing overfitting. The algorithm consists of two 
primary steps: training and prediction. During the training process, a portion of the training data is chosen at random, 
followed by a set of features. The selected characteristics and data subset are then used to create a decision tree. The 
previous stages are then repeated for a certain number of times (or until a stopping requirement is reached). Finally, the 
decision trees are kept or stored. In the prediction stage, the new data points are routed through each decision tree in the 
forest, and the class of each decision tree is projected using the tree's decision rule. The forecasts from all of the trees 
are then added together. Following that, categorization may be done with a majority vote, and regression can be done 
with an average of the projected values. Mathematically, the random forest algorithm can be represented in the 
following algorithms: 

Algorithm 1. Training algorithm of RF. 

1. Given a training dataset 𝑥 = {𝑥!, 𝑥", 𝑥#, … , 𝑥$} with corresponding labels	y = {𝑦!, 𝑦", 𝑦#, … , 𝑦$}. 
2. for t = 1 to T (where T is the number of decision trees): 
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2.1. Randomly select a subset of the training data 𝐷5 of size	𝑛5, where 𝑛5 <=	𝑛. 
2.2. Randomly select a subset of the features 𝐹5 of size	𝑚5, where 𝑚5<= 𝑚 (where 𝑚 is the total 

number of features). 
2.3. Construct a decision tree by 𝐷5 and	𝐹5. 

3. Store the decision trees as a forest, 𝐹 = {𝑇!, 𝑇", . . . , 𝑇5} 

Algorithm 2. Prediction algorithm of RF.  
1. Given a new data point	𝑥. 
2. for t = 1 to T: 

2.1. Predict the class label of 𝑥 using the decision tree	𝑇5. 
2.2. Aggregate the predictions from all the trees to get the final prediction. For classification, this can 

be done by majority vote. For regression, this can be done by taking the average of the predicted 
values. 

3. Return the class label of	𝑥. 

3.4 Evaluation Metrics  

To evaluate the performance of a model that classifies websites as either benign or malicious, we can use the following 
measures: 

• Accuracy (Acc.): The accuracy measures the percentage of correct predictions made by the model out of all 
predictions in terms of true positive (TP), true negative (TN), false negative (FN), and false positive (FP). It is 
calculated as: 

Accuracy	(Acc. ) = 67)68
67)68)97)98

			                       (11) 

• Precision (Pre.): It measures the proportion of true positives out of all positive predictions. Precision is calculated 
as: 

Precision	(Pre. ) = 67
(67)97)	

		                        (12) 

• Recall (Rec.): It measures the proportion of true positives out of all actual positives. Recall is calculated as: 

Recall	(Rec. ) = 67
(67)98)	

                         (13) 

• F1 Score: It is the harmonic mean of precision and recall and is a way to balance these two metrics. F1 Score is 
calculated as: 

F1-score = 2 ∗ (7:;<=>=?@∗	B;<CDD)
(7:;<=>=?@)B;<CDD)	

                        (14) 

We would use a test dataset of known benign and malicious websites to evaluate the model using these measures. We 
first use the model to predict each website's class (benign or malicious) in the test dataset and then compare these 
predictions to the actual class labels. We then compute the accuracy, recall, precision, and F1-score of the model based 
on these predictions and actual labels. 

A good model would generally have high accuracy, high precision, high recall, and high F1- score, indicating that it 
correctly identifies most malicious websites while minimizing false positives. However, the importance of each 
measure would depend on the specific use case and the consequences of false positives or negatives 

4 Experimental Results of Proposed Approach  

This section gives the experimental results of each step in the proposed approach. First, an explanation of the results of 
the data preprocessing step on the collected dataset will be introduced, including the results of feature selection and 
extraction. Then, the classification results of adopted ML methods will be described with a performance comparison 
between them in terms of accuracy, precision, recall, and F1-score metrics. 

4.1 Results of Data Preprocessing and Feature Importance 

The data preprocessing involves preparing the dataset to be suitable for machine learning models and also selecting the 
significant features for improving their accuracy. Feature analysis is the main step in our proposed framework. The data 
features with string values are transformed to integer values by using the one-hot encoding of the data, in which the 
URLs are split into different parts, and patterns of each part are encoded, creating columns for each unique data point of 
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the string data. After preparing the data features, the random forest method is used to get the rank of important features. 
Table 2 shows the importance of the features and their ranking, as obtained by the comprehensive analysis of the 
random forest. 

4.2 Results of Feature Selection  

Feature extraction is the second step, which is important for effectively building the machine learning models, 
optimizing their accuracy, and reducing the computational time. In this step, we have employed Pearson’s correlation 
analysis to select the features strongly correlated with the URLs dataset class label feature. Figure 5 presents the 
correlation between features, as shown as a heat map. The heat map provides a visual tool for understanding the 
relationships between the features in the dataset. It can interpret the patterns and identify potential insights, such as 
identifying groups of features that move together, indicating the dependencies or relationships of features, and detecting 
multicollinearity issues, where multiple features are highly correlated with each other, which can affect the stability and 
interpretability of models. There are some features, such as, 'URL_LENGTH', 'APP_BYTES', 
'TCP_CONVERSATION_EXCHANGE', 'REMOTE_APP_BYTES', 'SOURCE_APP_PACKETS', 
'REMOTE_APP_PACKETS', 'SOURCE_APP_BYTES', are highly correlated. Figure 6 shows the scatter and density 
plot selected features. The scatter and density plot are a commonly used visualization in data analysis and is particularly 
useful for understanding the distribution and relationship between features in the dataset. 

Table 2: Features importance 
No. Feature Name Score 
1 WHOIS_STATEPRO 0.1274 
2 WHOIS_COUNTRY 0.1010 
3 SERVER 0.0876 
4 WHOIS_REGDATE 0.0732 
5 DIST_REMOTE_TCP_PORT 0.0673 
6 SOURCE_APP_BYTES 0.0578 
7 REMOTE_APP_PACKETS 0.0569 
8 WHOIS_UPDATED_DATE 0.0482 
9 NUMBER_SPECIAL_CHARACTERS 0.0413 
10 URL_LENGTH 0.0400 
11 REMOTE_IPS 0.0378 
12 CONTENT_LENGTH 0.0368 
13 CHARSET 0.0362 
14 APP_BYTES 0.0357 
15 REMOTE_APP_BYTES 0.0356 
16 SOURCE_APP_PACKETS 0.0322 
17 APP_PACKETS 0.0320 
18 DNS_QUERY_TIMES 0.0265 
19 TCP_CONVERSATION_EXCHANGE 0.0264 

In Figure 6 we visualize the distribution and relationship between each pair of six selected features regarding the class 
labels, colored with orange and blue colors. For example, we can see an overlap between the distribution of 
REMOTE_IPS and URL_LENGTH, which makes the classification between malicious and benign URLs difficult. 

4.3 Results of Machine Learning Methods 

Through the use of the original collected data sample as both training and test sets for building the ML models, a 10-
fold cross-validation is used to evaluate the results of adopted models and select the best model as the recommended 
model for websites malicious detection. In the evaluation process of the 10-fold cross-validation technique, the dataset 
set is divided into 10 parts, using one distinct part as the test set and the other nine parts as the training set, as depicted 
in Figure 7. 

This step individually applies four typical machine learning algorithms (k-NN, LR, RF, and SVM), and their 
performance is compared to select the best model in the domain of malicious detection. The comparison results of 
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implemented ML models based on a 10-fold cross-validation technique is given in Table 3. Using accuracy as the main 
standard, it can be found that the RF algorithm performs better than the others. 

 
Fig. 5: Heat map correlation feature 

 
Fig. 6: Scatter and density plot. 
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Figures 8-11 show the learning curve of the learning classification algorithms. In Figure 8, we present the k-NN 
classifier's learning curve at different neighbors. It achieves 89% of testing accuracy. Figure 9 displays the learning 
curve of the LR classifier. It achieves 94% of testing accuracy. Figure 10 gives the learning curve of the RF classifier. It 
achieves 96% of testing accuracy. Finally, Figure 11 visualizes the learning curve of the SVM classifier. It achieves 
86% of testing accuracy. Among these classifiers, the RF model attains the best accuracy rate for classifying malicious 
and benign websites’ URLs. 

 
Fig. 7: a 10-fold cross-validation technique used for evaluating the proposed approach. 

Table 3: Comparisons of adopted machine learning algorithms. 
Algorithms Acc. Pre. Rec. F1-score 
KNN 0.89 0.88 0.89 0.88 
LR 0.94 0.94 0.94 0.93 
RF 0.96 0.96 0.96 0.95 
SVM 0.86 0.88 0.87 0.80 

 

 
Fig. 8: Learning curve of k-NN classifier. 

 
Fig. 9: Learning curve of LR classifier. 

 Test set 
Training set 

Iteration 1           
Iteration 2           
Iteration 3           
Iteration 4           
Iteration 5           
Iteration 6           
Iteration 7           
Iteration 8           
Iteration 9           
Iteration 10           

 
All data 
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Fig. 10: Learning curve of RF classifier. 

 
Fig. 11: Learning curve of SVM classifier. 

5 Conclusion and Future Work 

In malicious website detection, a preprocessing technique extracts features from the website data, such as URLs, HTML 
tags, and content, which can be used as input to machine learning models for classification. The preprocessing 
technique is important in building accurate and reliable machine-learning models for website malicious detection. 
However, it is important to continually evaluate and improve the effectiveness of the preprocessing technique as new 
threats and attack techniques emerge. Current methods for automated detection and analysis of malicious websites have 
some drawbacks in differentiating the ideal webpage and being resistant to potential evasion.  

Additionally, selecting effective features while maintaining feature composition still has significant issues that need to 
be resolved. In fact, in order to deal with changing features and attackers’ attempts, existing machine learning-based 
algorithms also need to be improved. This paper proposes an effective and efficient approach to detect and analyze 
malicious websites. Specifically, we enhanced the selection and extraction of the feature set for characterizing malicious 
payloads by merging URL tokens, page identity, execution trace, and page content of malicious websites. Extending the 
current related work, the effectiveness of preprocessing the data features using RF and Pearson’s correlation analysis is 
investigated to improve the detection task of malicious websites. The proposed approach is evaluated using four 
classification algorithms (k-NN, LR, RF, and SVM). 

The experimental results show the effectiveness of our approach, which has a detection accuracy of 96% with an RF 
algorithm due to its robustness and ability to handle noisy data and achieve a high accuracy result in classification tasks, 
especially when dealing with complex datasets. A potential direction for future study is fully training neural networks 
on the raw URLs, content, and images rather than depending on simple models and embedding to strengthen the feature 
type coverage. 

Classifying website URLs into malicious or benign classes in IoT environments presents unique challenges due to the 
constrained resources and heterogeneity of IoT devices. By developing the proposed framework, it can address these 
challenges and effectively classify website URLs into malicious or benign classes, enhancing cybersecurity in IoT 
deployments. The selected best model of the framework can be deployed in the IoT environment to classify website 
URLs in real-time. Continuous monitoring of model performance and retraining with updated data would be essential to 
maintain effectiveness over time. 
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