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Abstract: Sustainability considerations play a crucial role in informing the modeling and fitting of medical and engineering data,

ensuring the development of robust and environmentally conscious solutions. This paper delves into the investigation of a novel

continuous distribution, aiming to provide a thorough understanding of its various fundamental mathematical and statistical properties.

The analysis encompasses an exploration of survival functions, hazard rate functions, quantile, skewness, kurtosis, moments, mean

time to failure, mean time to repair, insurance pricing principles, availability, and mean residual (past) lifetime functions. The proposed

model demonstrates versatility in modeling both asymmetric and symmetric data across various kurtosis shapes. It can effectively

handle outlier observations and accommodate different shapes of failure rates, including unimodal, bathtub, increasing, or decreasing

patterns. This makes the proposed model suitable for modeling data in diverse fields. The maximum likelihood approach is employed

to estimate model parameters using complete and upper recorded values. A simulation study is conducted to evaluate the performance

of the estimators under different sample sizes for both complete and upper recorded values. To further demonstrate the flexibility and

effectiveness of the new model, two datasets from medical and engineering domains are utilized for validation and testing purposes.

Keywords: Statistical model, Failure analysis, Accessibility, Maximum likelihood method, Upper record values, Sustainability,

Simulation, Statistics and numerical data.

1 Introduction

In the realm of lifetime data analysis, researchers
frequently rely on a range of common distributions, such
as the Weibull (W), exponential Weibull (EW),
generalized exponential (GE), Rayleigh, Gompertz,
Gumbel, Lomax and their extensions. These distributions
are pivotal due to their varied hazard function
characteristics. Specifically, the exponential distribution is
known for its constant hazard function, contrasting
sharply with the Rayleigh and GE distributions that
display monotonic hazard functions, where the Rayleigh’s
hazard function increases and the GE’s decreases over
time. The pursuit of refining and expanding our toolkit for
analyzing lifetime data has led to innovative approaches
in recent years. The introduction of the EW family by [1]

stands out as a significant milestone in this journey. They
extended the Weibull family to include distributions that
can model a wider array of failure rates, including the
bathtub-shaped and unimodal, alongside expanding the
scope of monotonic failure rates. This development
marked a leap forward in the flexibility and applicability
of lifetime distributions. Furthering this innovation, [2]
introduced the exponentiated Weibull model. The
exponentiated Weibull model exemplifies the ongoing
effort to provide more comprehensive models that can
capture the complexity of real-world data more
accurately. These advancements highlight the dynamic
nature of statistical modeling in lifetime data analysis. By
building upon the foundational distributions with new
formulations and combinations, researchers continue to
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enhance the precision and applicability of statistical
methods to a wide range of disciplines and industries. [3]
introduced the generalized exponential (GE) distributions
characterized by three parameters. The applications of the
EW distribution can be found in the work by [4] and [5].
These studies explore the utilization of this distribution
within the context of reliability, where the CDF is a
critical component. [6] introduced a generalized modified
Weibull distribution that incorporates four parameters,
enhancing its flexibility and applicability in various
statistical analyses. This advanced version of the Weibull
distribution, due to its four parameters, allows for a more
precise modeling of data across a wide range of
disciplines, including reliability engineering and life data
analysis. Integrating sustainability principles into the
analysis and modeling of lifetime data, particularly
through innovative approaches like the integration of
traditional and discrete distributions, holds promise for
advancing both environmental consciousness and
analytical capabilities in medical and engineering fields.
Thus, in recent years, several probability models are
discussed in the leteratre for this purpose, for more
information, see [7-21], among others. This paper
introduces and discusses a novel generalization of the GE
model by incorporating an additional parameter, resulting
in a probability distribution characterized by four
parameters, including shape, location, and scale. Such a
distribution significantly enhances modeling flexibility
and accuracy for complex real-world data, allowing for a
closer alignment with observed behaviors, such as
unimodality, heavy tails, and skewness. This advancement
is particularly beneficial across various applications in
finance, engineering, and environmental science, where
standard distributions fall short. It improves the precision
in reliability and survival analysis by more accurately
representing life durations and failure rates. Additionally,
the four-parameter framework increases statistical power
and efficiency, potentially reducing the required sample
sizes for detecting significant effects, thereby offering a
more cost-effective research approach. It also serves as a
general model that includes simpler distributions as
special cases, facilitating the theoretical study of their
properties and interrelations. Importantly, this complex
distribution is robust against imperfections in real-world
data, such as outliers and missing values, leading to more
reliable analyses. Despite the challenges associated with
its complexity and computational demands, the benefits
of applying a four-parameter distribution in terms of
model fit, flexibility, and broad applicability significantly
outweigh these challenges, making it a valuable tool in
statistical analysis.

The subsequent sections of this paper are structured as
follows: Section 2 introduces the new model. Section 3
focuses on deriving various statistical properties of this
model. In Section 4, an in-depth discussion on two
sub-models within the proposed model is presented. The
estimation of the parameters of the proposed model using
the maximum likelihood method is delineated in Section

5. Section 6 includes a simulation study demonstrating
the application of these models. The effectiveness and
significance of the proposed model are further
demonstrated through the analysis of three real data sets
in Section 7. Finally, Section 8 offers concluding remarks
and reflections.

2 New Generalized Exponential Weibull

Distribution

The random variable X is defined to have a new
generalized exponential Weibull distribution (NGEWD) if
its CDF is characterized by the following parameters:
α,β , and θ are greater than 0, 0 < γ < x, and x > 0
expressed as follows:

FX (x) =

[
1− exp

{
−

(
1

θ
(x− γ)

)β
} ]α

, (1)

where α and β represent shape parameters, γ denotes a
location parameter, and θ signifies a scale parameter, this
distribution will be denoted by NGEWD(α,β ,γ,θ ). The
hazard rate function (HRF) of the NGEWD(α,β ,γ,θ )
exhibits increasing behavior for β > 1 and αβ > 1,
decreasing behavior for β < 1 and αβ < 1,
bathtub-shaped behavior for β > 1 and αβ < 1, and
constant behavior for β = 1 and α = 1. The probability
density function, say fX (x) , can be formulated as

fX (x) =
αβ (x− γ)β−1

θ β
exp

{
−

(
1

θ
(x− γ)

)β
}

×

[
1− exp

{
−

(
1

θ
(x− γ)

)β
} ]α−1

. (2)

The HRF can be reported as h(x) = fX (x)
SX (x)

where

SX (x) = 1−

[
1− exp

{
−

(
1

θ
(x− γ)

)β
} ]α

, (3)

is the survival function of NGEWD(α,β ,γ,θ ). In recent
observations, the reversed hazard function has emerged as
a significant factor in reliability analysis, as highlighted by
[22]. The reversed hazard function, denoted as r (x), for
the NGEWD(α,β ,γ,θ ), can be expressed as follows:

r (x) =
αβ θ−β (x− γ)β−1

exp
{
−
(

1
θ (x− γ)

)β
}

[
1− exp

{
−
(

1
θ (x− γ)

)β
} ] . (4)

The inverse (hazard) function is widely acknowledged as
the primary factor influencing its associated probability
density function. Figure 1 depicts the probability density
functions (PDFs) of NGEWD(α,β ,γ,θ ) for different
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parameter settings. Figure 1 also delves into the failure
rate function of NGEWD(α,β ,γ,θ ) across varying
parameter values. These graphical representations
demonstrate that the PDFs can display either decreasing
or unimodal patterns, while the hazard function can take
on unimodal, increasing, decreasing, or bathtub-shaped
forms.

The NGEWD(α,β ,γ,θ ) distribution yields several
special cases, including: the Weibull distribution
W(β ,γ ,θ ) when α equals 1; the exponential E(θ )
distribution when α and β all equal 1, with γ equaling 0;
the exponential Weibull EW(α ,β ,θ ) distribution when γ
equals 0; the generalized exponential GE(α ,θ )
distribution when β equals 1 and γ equals 0; the Rayleigh
R(b) distribution when α equals 1, β equals 2, γ equals 0,
and θ equals the square root of (2/b), where b is greater
than 0; the generalized Rayleigh GR(α ,b) distribution
when β equals 2, γ equals 0, and θ equals the square root
of (2/b), where b is greater than 0; the generalized
exponential GE(α ,γ ,θ ) distribution when β equals 1; the
Burr-type X BT(α ,b) distribution when β equals 2, γ
equals 0, and θ equals (1/b), where b is greater than 0;
and the generalized Burr-type X GBT(α ,b,β ) distribution
when γ equals 0, and θ equals (1/b), where b is greater
than 0.

3 Certain Statistical Properties

3.1 Quartile, mode, and associated concepts

As anticipated, it is noted that the mean of
NGEWD(α,β ,γ,θ ) cannot be expressed explicitly.
Instead, it can be derived through an infinite series
expansion, allowing for the determination of various
moments of NGEWD(α,β ,γ,θ ) in general. However, the
quantile xq of NGEWD(α,β ,γ,θ ) can be obtained in a
closed form using the following equation

FX (xq;α,β ,γ,θ )− q = 0,

thus

xq = γ +θ
(
−Ln

[
1− (q)

1
α

]) 1
β
. (5)

So, the median m(X) of NGEWD(α,β ,γ,θ ) can be

obtained at q = 1
2

x0.5 = γ +θ
(
−Ln

[
1− (0.5)

1
α

]) 1
β
.

The effects of the shape parameters on the skewness and
kurtosis can be studied by using quantile function. The
Bowley skewness is one of the earliest skewness

measures defined by S =
x3/4+x1/4−2x1/2

x3/4−x1/4
. The Moors

kurtosis is based on octiles, namely

K =
x3/8−x1/8+x7/8−x5/8

x6/8−x2/8
. Furthermore, the mode of

NGEWD(α,β ,γ,θ ) can be derived by solving the
subsequent non-linear equation. Consequently,

d

dx


 (x− γ)β−1

(
1− exp

{
−
(

1
θ (x− γ)

)β
} )α−1

×exp

{
−
(

1
θ (x− γ)

)β
}


= 0.

In the general case, obtaining an explicit solution is not
feasible; thus, numerical methods must be employed.
Explicit forms may be derived for various special cases.

3.2 Moments

Moments, mathematical descriptors of a probability
distribution, find applications in fields such as statistics,
physics, and engineering for summarizing and analyzing
data distributions. The following lemma gives the rth

moment of NGEWD(α,β ,γ,θ ), when α ≥ 1.

Lemma 1.

If X has NGEWD(α,β ,γ,θ ), then the rth moment of X ,

say Φ(r), is given as follows for β ,θ > 0 , α ≥ 1 and
0 < γ < x

Φ(r) = αθ r
∞

∑
i=0

r

∑
j=0

(−1)
i(

α − 1
i

)(
r

j

)( γ

θ

) j

× (1+ i)
j−r−β

β Γ

(
r− j+β

β
,(1+ i)

(
−γ

θ

)β
)
.

(6)

Proof.

Φ(r) =

∫ ∞

0
xr f (x;α,β ,γ,θ )dx,

thus,

Φ(r) =
αβ

θ β

∫ ∞

o
xr(x− γ)β−1

exp

{
−

(
1

θ
(x− γ)

)β
}

×

(
1− exp

{
−

(
1

θ
(x− γ)

)β
})α−1

dx,

since

0 < exp

{
−

(
1

θ
(x− γ)

)β
}

< 1 for 0 < γ < x ,
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Fig 1. The PDF (left panel) and HRF (right panel) plots of the NGEWD(α,β ,γ ,θ )

and using the binomial series expansion, we have

Φ(r) =
αβ

θ β

∞

∑
i=0

(−1)i

(
α − 1

i

)∫ ∞

o
xr(x− γ)β−1

× e−(1+i)( x−γ
θ )

β

dx

=
αβ

θ β

∞

∑
i=0

(−1)i

(
α − 1

i

)
θ β γr

β (1+ i)

×

∫ ∞

(1+i)(−γ
θ )

β

[
1+

θ

γ

(
y

1+ i

) 1
β

]r

e−ydy

= αθ r
∞

∑
i=0

r

∑
j=0

(−1)
i(

α − 1
i

)(
r

j

)( γ

θ

) j

× (1+ i)
j−r−β

β Γ

(
r− j+β

β
,(1+ i)

(
−γ

θ

)β
)
.

3.3 Mean time to failure (MTTF)

If the reliability function of a component is denoted by
R(t; .) and its probability density function by f (t; .), then
the expected failure time, representing the average
duration for which the component is anticipated to
function successfully, is expressed as:

MT TF =

∫ ∞

0
t f (t; .)dt =

∫ ∞

0
R(t; .)dt. (7)

The subsequent lemma calculates the mean time to failure
for the random variable T, which follows the
NGEWD(α,β ,γ,θ ) distribution.

Lemma 2.

For a random variable T following the
NGEWD(α,β ,γ,θ ) distribution, where
α ≥ 1,β > 0,θ > 0 and 0 < γ < x, the MTTF is
expressed as follows:

MTTF = αθ
∞

∑
i=0

Θ α
i





(1+ i)
−1
β
−1

× Γ
(

β+1

β ,(1+ i)
(−γ

θ

)β
)

− γe
−(1+i)(−γ

θ )
β

θ(1+i)




,

where Θ α
i = (−1)i

(
α − 1

i

)
.

proof. It is easy to prove this Lemma using the first
moment about zero (see Lemma 1).

3.4 Mean time to repair (MTTR)

Let T denote the random variable of the time to repair or
the total downtime. If the repair time T has a repair time
density function g(t; .), then the MTTR is the expected
value of the random variable repair time, not failure time,
and is given by

MT T R =

∫ ∞

0
t g(t; .) dt. (8)

In order to design and manufacture a maintainable
system, it is necessary to predict the MTTR for various
fault conditions that could occur in the system.

Lemma 3.
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If T is a random variable with the PDF g(t;α1,β1,γ1,θ1)
of the NGEWD(α1,β1,γ1,θ1) distribution, where
α1 ≥ 1, β1 > 0,θ1 > 0 and 0 < γ1 < x, the MTTR is
provided as follows:

MTTR= α1θ1

∞

∑
i=0

(−1)i

(
α1 − 1

i

)

×





(1+ i)
−1
β1

−1

×Γ

(
β1+1

β1
,(1+ i)

(
−γ1

θ1

)β1

)

− γ1e
−(1+i)

(
−γ1
θ1

)β1

θ1(1+i)





.

3.5 Insurance pricing principle: The principle

of expected value

Insurance premium methodologies are utilized to
compute insurance premiums for diverse occurrences,
taking into consideration the accompanying risk levels.
Throughout the years, numerous premium methodologies
have been formulated. This section introduces a selection
of them, assuming a loss distribution adhering to the
NGEWD(α,β ,γ,θ ). In this context, let ω ≥ 0 represent
the risk loading parameter. The principle of expected
value (PEV) is a fundamental concept in insurance and
risk management that guides the determination of
insurance premiums. It asserts that the premium for
insurance coverage ought to equate to the expected value
of losses, modified by a risk loading factor. Thus, the
PEV can be defined as:

PEV(ω ; .) = (1+ω)Φ(1),

where PEV(ω ; .) represents the insurance premium, ω

denotes the risk loading factor, and Φ(1) = E(X) denotes
the expected value of losses (or the expected value of the
distribution of losses). The term (1 + ω) denotes the
”Risk Loading” factor, which is added to the expected
value of losses to cover various expenses and provide the
insurer with a profit margin. The value of ω depends on
factors such as administrative costs, claims processing,
underwriting, and the insurer’s desired profit level. The
EVP of the NGEWD(α,β ,γ,θ ) distribution can be
derived using Lemma 1. The PEV stands as a
fundamental principle in insurance pricing, applied across
a spectrum of insurance categories such as property,
liability, health, and life insurance. Insurers determine
premiums by considering projected losses, with
adjustments made for risk loading to ensure equity. This
method aligns premiums with the anticipated costs of
coverage, allowing insurers to manage expenses and
generate profit, while also ensuring policyholders
contribute appropriate premiums relative to the risks
transferred. Economically, the PEV promotes risk
transfer, facilitating efficiency through risk pooling and

mitigating the financial ramifications of uncertainty.
Nevertheless, it assumes known and accurately estimated
loss distributions, disregarding factors such as moral
hazard and market competition that can influence pricing
and market dynamics.

3.6 Maintainability

Let T represent the random variable denoting the time to
repair or the total downtime. If the repair time T follows a
repair time density function g(t; .), then maintainability
V (t; .) is defined as the probability of isolating and
repairing a fault within a specified time frame in a system,
or equivalently, the probability that the system will be
restored to operation by time. If the repair time T is a
random variable with a repair time density function g(t; .)
following the NGEWD(α1,β1,γ1,θ1) distribution, then
maintainability V (t; .) is defined as:

V (t) =
∞

∑
i=0

∞

∑
m=0

(−1)i+m
im

θ
β1m

1 m!

(
α1

i

)
(t − γ1)

β1m. (9)

3.7 The mean residual (past) lifetime

In reliability theory and survival analysis, various
measures have been defined to study the lifetime
characteristics of living organisms, including the MRL
and the mean past lifetime (MPL). Assuming that each
component of the system has survived up to time t, the
survival function of Ti − t given that Ti > t, where
i = 1,2, ...,n, is given as

S (x|t) =
S(t + x; .)

S(t; .)
.

This represents the corresponding conditional survival
function of the components at age t. From the previous
equation, we derive that the MRL m(t; .) of each
component is equal to

m(t; .) =
∫ ∞

0
S (x|t)dx =

1

S(t; .)

∫ ∞

t
S (x; .)dx. (10)

Lemma 4.

If T is a random variable following the
NGEWD(α,β ,γ,θ ) distribution, then the MRL is
expressed as follows for α ≥ 1,β > 0,θ > 0 and
0 < γ < x,

m(t) =
[ I1(α,β ,γ,θ )− I2(α,β ,γ,θ )]

S(t)
,
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where

I1(α,β ,γ,θ ) = αθ
∞

∑
i=0

(−1)i

(
α − 1

i

)

×





(1+ i)
−1
β
−1

×Γ
(

β+1
β ,(1+ i)

(−γ
θ

)β
)

− γe
−(1+i)(−γ

θ )
β

θ(1+i)




,

I2(α,β ,γ,θ ) = t −
∞

∑
i=0

∞

∑
m=0

Λm,i

[
(t − γ)β m+1

−(−γ)β m+1

]
,

S (t) = 1−
∞

∑
i=0

∞

∑
m=0

(β m+ 1)Λm,i(t − γ)β m,

and

Λm,i =
(−1)i+m

im

(β m+ 1)θ β m
m!

(
α
i

)
.

The MRL function m(t) is known to uniquely
characterize the distribution function F(t), as stated in
[23]. On the other hand, the mean past lifetime (MPL)
corresponds to the average time elapsed since the failure
of Ti given that Ti ≤ t. In this scenario, the relevant
random variable is t − Ti where Ti ≤ t and
i = 1,2,3, . . . ,n. This conditional random variable
represents the time elapsed since the failure of Ti given
that it failed at or before time t. The expectation of this
random variable provides the MPL denoted as P(t),
where

P(t; .) = E (t −T ≤ t) =
1

F(t; ,)

∫ t

0
F(x; .)dx. (11)

Lemma 5.

If T is a random variable following the
NGEWD(α,β ,γ,θ ) distribution, then the MPL is given
by the following expression for α,β ,θ > 0 and 0 < γ < x

P(t) =

∑∞
i=0 ∑∞

m=0 Λm,i

[
(t − γ)β m+1

−(−γ)β m+1

]

∑∞
i=0 ∑∞

m=0 (β m+ 1)Λm,i (t − γ)β m
. (12)

The P(t) also uniquely characterizes the underlying
distribution, as demonstrated in [24].

4 Estimation for Different Sample Types

In this section, a comprehensive discussion has been
provided on both complete and upper recorded data,
offering detailed insights into their characteristics,
implications, and applications.

4.1 Estimators derived from complete dataset

This section focuses on obtaining the maximum
likelihood estimates for the unknown parameters α,β ,γ
and θ of the NGEWD(α,β ,γ,θ ), utilizing a complete
sample. Let’s consider a random sample X1,X2, . . . ,Xn

drawn from the NGEWD(α,β ,γ,θ ). The likelihood
function for this sample is given by:

LCom(α,β ,γ,θ ) = LCom =
n

∏
i=1

f (xi;α,β ,γ,θ )

=

[
αβ

θ β

]n

exp

(
−

n

∑
i=1

(
xi − γ

θ

)β
)

×
n

∏
i=1

(xi − γ)β−1

[
1− e

−
(

xi−γ
θ

)β
]α−1

.

(13)

The log-likelihood function becomes

Ln LCom = n(Ln αβ −β Ln θ )−θ−β
n

∑
i=1

(xi − γ)β

+(β − 1)
n

∑
i=1

Ln(xi − γ)

+ (α − 1)
n

∑
i=1

Ln

(
1− e

−
(

xi−γ
θ

)β
)
. (14)

So,

∂LnLCom

∂α
=

n

α
+

n

∑
i=1

Ln

[
1− e

−
(

xi−γ
θ

)β
]
,

∂LnLCom

∂β
= n

[
1

β
−Ln θ

]
−

n

∑
i=1

(
xi − γ

θ

)β

×Ln

(
xi − γ

θ

)
+

n

∑
i=1

Ln(xi − γ)+(α − 1)

×
n

∑
i=1

(
xi − γ

θ

)β

Ln

(
xi − γ

θ

)[
e

(
xi−γ

θ

)β

− 1

]−1

,

(α − 1)
n

∑
i=1

(
xi − γ

θ

)β

Ln

(
xi − γ

θ

)[
e

(
xi−γ

θ

)β

− 1

]−1

,

∂LnLCom

∂γ
=

β

θ β

n

∑
i=1

(xi − γ)β−1 − (β − 1)

×
n

∑
i=1

1

xi − γ
−

(α − 1)β

θ β

n

∑
i=1

(xi − γ)β−1

×

[
e

(
xi−γ

θ

)

− 1

]−1

,
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∂LnLCom

∂θ
=

−nβ

θ
+

β

θ β+1

n

∑
i=1

(xi − γ)β

−
(α − 1)β

θ β+1

n

∑
i=1

(xi − γ)β

[
e

(
xi−γ

θ

)β

− 1

]−1

.

The normal equations lack an explicit solution and are
typically solved numerically. The MLE of α , denoted as
α̂ , can be obtained as follows:

α̂ =−n

(
n

∑
i=1

Ln

[
1− exp

{
−

(
1

θ
(xi − γ)

)β
} ])−1

.

(15)
The MLEs of β , γ and θ are obtained by solving three
non-linear equations. Additionally, in this section, we
derive the asymptotic confidence intervals of these
parameters when α,β ,θ > 0 and 0 < γ < x, since the
MLEs of the unknown parameters β ,γ and θ cannot be
obtained in closed forms. This is done by utilizing the
variance-covariance matrix (VCM). The derivatives in
VCM are given as follows:

∂ 2LnLCom

∂α2
=

−n

α2
,

∂ 2LnLCom

∂α∂β
=

n

∑
i=1

(
xi−γ

θ

)β
Ln( xi−γ

θ )(
e

(
xi−γ

θ

)β

− 1

) ,

∂ 2LnLCom

∂α∂γ
=

−β

θ β

n

∑
i=1

(xi − γ)β−1

(
e

(
xi−γ

θ

)β

− 1

) ,

∂ 2LnLCom

∂α∂θ
=

−β

θ β+1

n

∑
i=1

(xi − γ)β

(
e

(
xi−γ

θ

)β

− 1

) ,

∂ 2LnLCom

∂β 2
=

−n

β 2
−

n

∑
i=1

(
xi − γ

θ

)β[
Ln

(
xi − γ

θ

)]2

+ (α − 1)
n

∑
i=1

( xi−γ
θ )

β
[Ln( xi−γ

θ )]
2
e(

xi−γ
θ )

β

×[1−
(

xi−γ
θ

)β
− e−(

xi−γ
θ )

β

]
(

e

(
xi−γ

θ

)β

− 1

)2
,

∂ 2LnLCom

∂β ∂γ
=

1

θ β

n

∑
i=1

(xi − γ)β−1

[
β Ln

(
xi − γ

θ

)
+ 1

]

−
n

∑
i=1

1

xi − γ
−

(α − 1)

θ β

×


 ∑n

i=1




(xi−γ)β−1
[
β Ln

(
xi−γ

θ

)
+1
]

(
e

(
xi−γ

θ

)β

−1

)

+
(xi−γ)2β

θβ
[Ln(

xi−γ
θ )e

(
xi−γ

θ )
β

]

(
e

(
xi−γ

θ

)β

−1

)2







,

∂ 2LnLCom

∂β ∂θ
=

−n

θ
+

1

θ β+1

n

∑
i=1

(xi − γ)β

×

[
β Ln

(
xi − γ

θ

)
+ 1

]
+

(α − 1)

θ β+1


∑n

i=1




(xi−γ)β
[
β Ln

(
xi−γ

θ

)
+1
]

(
e

(
xi−γ

θ

)β

−1

)

+
β(xi−γ)2β

θβ

[
Ln(

xi−γ
θ )

]
e
(

xi−γ
θ

)
β

(
e

(
xi−γ

θ

)β

−1

)2







,

∂ 2LnLCom

∂γ2
=

−β (β − 1)

θ β

n

∑
i=1

(xi − γ)β−2

− (β − 1)
n

∑
i=1

1

(xi − γ)2
+

(α − 1)β

θ β

×
n

∑
i=1

(xi − γ)β−2



(β − 1)(e

(
xi−γ

θ

)β

− 1)

− β

θ β (xi − γ)β
e

(
xi−γ

θ

)β




×

(
e

(
xi−γ

θ

)β

− 1

)−2

,

∂ 2LnLCom

∂γ∂θ
=

−β 2

θ β+1

n

∑
i=1

(xi − γ)β−1 −
(α − 1)β 2

θ 2β+1

n

∑
i=1

(xi − γ)β−1
e

(
xi−γ

θ

)β

[(xi − γ)

−θ β (1− e
−
(

xi−γ
θ

)β

)]

(
e

(
xi−γ

θ

)β

− 1

)−2

,
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∂ 2LnLCom

∂θ 2
=

nβ

θ 2
−

β (β + 1)

θ 2β+2

n

∑
i=1

(xi − γ)β

+
(α − 1)β

θ 2β+1

n

∑
i=1

(xi − γ)β [β (xi − γ)

× e

(
xi−γ

θ

)β

+(β + 1)θ β (e

(
xi−γ

θ

)β

− 1)].

We can derive the (1−δ )100% confidence intervals of the
parameters α,β ,γ,θ by using variance-covariance matrix
as in the following forms

α̂ ±Z δ
2

√
var(α̂), β̂ ±Z δ

2

√
var(β̂),

γ̂ ±Z δ
2

√
var(γ̂), θ̂ ±Z δ

2

√
var(θ̂ ),

where Z δ
2

is the upper ( δ
2
)th percentile of the standard

normal distribution.

4.2 Estimators derived from upper record values

Upper record values play a significant role in various
fields such as reliability theory, extreme value theory, and
environmental studies. These values represent the
maximum observed values in a dataset or sequence,
providing critical insights into the tail behavior of a
distribution. They are important for assessing the extreme
behavior of a system or phenomenon, identifying
potential outliers, and estimating extreme quantiles or
probabilities. Additionally, upper record values are used
in modeling extreme events such as floods, earthquakes,
and financial crises, where understanding the tail behavior
of the distribution is crucial for risk assessment and
decision-making. Moreover, studying upper record values
helps in designing reliable systems, optimizing resource
allocation, and developing robust statistical models to
handle extreme events effectively. Therefore, the analysis
of upper record values is essential for understanding and
managing risks associated with extreme events in various
fields. When considering a sequence of independently and
identically distributed random variables following the
NGEWD(α,β ,γ,θ ) and observing n upper record
(UP-RC) values X =

{
XU(1),XU(2), ...,XU(n)

}
, the

likelihood function can be expressed as follows for the
NGEWD(α,β ,γ,θ ):

LUP−RC(α,β ,γ,θ |x) = f (xU(n);α,β ,γ,θ )

×
n−1

∏
i=1

f (xU(i);α,β ,γ,θ )

R(xU(i);α,β ,γ,θ )
;0 ≤ xU(1) < xU(2) < .. < xU(n).

(16)

Differentiating Equation (16) with respect to α,β ,γ and
θ yields nonlinear likelihood equations. These equations
necessitate an iterative procedure such as the
Newton-Raphson method to solve them numerically.

5 Investigation into Estimator Properties via

Simulation Analyses

In this section, we utilize the MLE approach to estimate
the parameters α,β ,γ and θ of the NGEWD. The
population parameters are generated using the R software
package. Sampling distributions are derived for various
sample sizes, specifically n = 50, 100, 150, 250, 350, and
400, across N = 1000 replications. This research evaluates
the characteristics of the MLE method regarding bias and
mean square error (MSE). Table 1 presents the MLE
outcomes for complete samples and UP-RC values,
showcasing two scenarios: Case I with NGEWD
parameters (0.2, 0.3, 0.8, 0.7) and case II with NGEWD
parameters (0.1, 0.8, 0.6, 0.9). The findings are illustrated
in Figures 2 and 3 for these respective cases.

Observations from Table 1, Figure 2, and Figure 3
suggest that as the sample size n increases towards
infinity, both the bias and mean square errors tend to
diminish, indicating the consistency of the estimators.
This phenomenon underscores the effectiveness of MLE
for data analysis.

6 Modeling and Analysis of Data

In this section, we demonstrate the practical significance
of the NGEWD distribution through two real-world
applications. Dataset I is examined using complete data,
while data set II is analyzed based on UP-RC values. The
comparison of fitted distributions employs various
criteria, including the negative maximized log-likelihood
(−LCom), Akaike information criterion (AIC), corrected
AIC (CAIC), Bayesian information criterion (BIC),
Hannan-Quinn information criterion (HQIC),
Cramér-Von Mises (W∗), Anderson-Darling (A∗)
statistics. The key idea behind AIC is to penalize the
complexity of the model to avoid overfitting, ensuring
that the model is as simple as possible while still
capturing the underlying data patterns. In practice, you
compare the AIC values of different models; the model
with the lowest AIC is generally preferred. AIC is more
prone to favor complex models than BIC, as its penalty
for additional parameters is less severe. This makes it
suitable for models where the primary goal is predictive
accuracy. BIC tends to select simpler models than AIC,
especially as sample size grows, due to its stronger
penalty on model complexity. This can make it more
appropriate for models where understanding the
underlying process in a parsimonious manner is
important. Incorporating a detailed discussion on AIC and
BIC in the data analysis section should emphasize their
theoretical foundations, the practical implications of their
penalty terms, and how they guide the selection of an
optimal model in terms of balance between fit and
complexity. This will not only illuminate the rationale
behind model selection but also guide readers in applying
these criteria to their own analyses effectively.
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Table 1. The values of bias and MSE for the estimated parameters of NGEWD.

Size α β γ θ
Method n Bias MSE Bias MSE Bias MSE Bias MSE

50 0.0441 0.0262 0.0665 0.0271 0.0436 0.0288 0.0413 0.0315

100 0.0348 0.0244 0.0605 0.0212 0.0366 0.0214 0.0366 0.0263

Case ICom 150 0.0254 0.0233 0.0493 0.0152 0.0273 0.0169 0.0222 0.0216

250 0.0192 0.0226 0.0346 0.0126 0.0204 0.0113 0.0189 0.0137

350 0.0121 0.0155 0.0181 0.0086 0.0139 0.0097 0.0097 0.0072

400 0.007 0.0093 0.0085 0.0043 0.0094 0.0053 0.0036 0.0027

50 0.0468 0.0292 0.0697 0.0288 0.0452 0.0292 0.0445 0.0364

100 0.0355 0.0275 0.0655 0.0246 0.0395 0.0255 0.0383 0.0292

Case IIUP−RC 150 0.0276 0.0226 0.0523 0.0169 0.0363 0.0185 0.0286 0.0247

250 0.0179 0.0187 0.0498 0.0157 0.0296 0.0109 0.0198 0.0199

350 0.0167 0.0168 0.0339 0.0113 0.0169 0.0093 0.0111 0.0125

400 0.0091 0.0137 0.0172 0.0104 0.0127 0.0078 0.0081 0.0083
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Fig 2. The bias and MSE values for the NGEWD estimated from complete samples.

Additionally, the Kolmogorov-Smirnov (K-S) statistic
and its associated P-value are utilized for comparison
purposes. The K-S test assesses the similarity between
two empirical probability distributions or a sample
distribution and a reference distribution by comparing
their cumulative distribution functions.

6.1 Dataset I: Strengths of glass fibers

The dataset used in this study was previously utilized by
[25]. The dataset comprises simulated strengths of glass
fibers and is represented by the following values: 1.014,
1.081, 1.082, 1.185, 1.223, 1.248, 1.267, 1.271, 1.272,
1.275, 1.276, 1.278, 1.286, 1.288, 1.292, 1.304, 1.306,
1.355, 1.361, 1.364, 1.379, 1.409, 1.426, 1.459, 1.460,
1.476, 1.481, 1.484, 1.501, 1.506, 1.524, 1.526, 1.535,
1.541, 1.568, 1.579, 1.581, 1.591, 1.593, 1.602, 1.666,
1.670, 1.684, 1.691, 1.704, 1.731, 1.735, 1.747, 1.748,

1.757, 1.800, 1.806, 1.867, 1.876, 1.878, 1.910, 1.916,
1.972, 2.012, 2.456, 2.592, 3.197, 4.121. Figure 4 shows
the initial visualization of this dataset using
non-parametric plots. In relation to this dataset, we will
assess the appropriateness of the NGEW distribution by
comparing it with several alternative models, including
exponential (E), Burr X (BX), Rayleigh (R), Burr-Hatke
(BH), Lindley (L), Weibull (W), Gompertz (Go), odd
Lindley Burr-Hatke (OLBH), and odd exponentiated
Burr-Hatke (OEBH). The maximum likelihood estimators
(MLEs) for the data and goodness-of-fit measures are
presented in Tables 2 and 3, respectively.

The estimated CDF and PDF plots of the best seven
fitted models are displayed in Figure 5, whereas the PP
plots of all models are depicted in Figure 6. The values in
Table 3 are supported by the plots in Figures 5 and 6,
showing that the NGEWD provides the best fit for the
dataset I.
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Fig 3. The bias and MSE values for the NGEWD estimated from UP-RC values.
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Fig 4. Non-parametric plots for dataset I.
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Table 2. The MLEs with their corresponding SE for dataset I.

Model α β γ θ
MLE SE MLE SE MLE SE MLE SE

E 0.619 0.078 − − − − − −
BX 8.047 1.014 − − − − − −
R 0.352 0.044 − − − − − −
BH 0.233 0.078 − − − − − −
L 0.938 0.089 − − − − − −
W 3.062 0.240 1.788 0.078 − − − −
Go 0.179 0.0408 1.051 0.117 − − − −
OLBH 0.626 0.082 0.246 0.049 − − − −
OEBH 0.824 0.108 0.085 0.025 − − − −
NGEW 261.979 0.543 0.542 0.107 0.608 0.308 0.034 0.033

Table 3. The goodness-of-fit test for the dataset I.

Models Statistic

−LCom AIC CAIC BIC HQIC W∗ A∗ K-S P-value

E 93.223 188.446 188.511 190.589 189.289 0.305 2.103 0.472 2.08×10−13

BX 30.752 63.503 63.569 65.646 64.346 0.267 1.877 0.109 0.409

R 56.847 115.694 115.760 117.838 116.537 0.470 3.050 0.346 3.03×10−7

BH 113.364 228.729 228.794 230.872 229.572 0.235 1.685 0.610 2.22×10−16

L 85.476 172.952 173.018 175.095 173.795 0.333 2.269 0.435 2.41×10−11

W 46.367 96.734 96.934 101.020 98.419 0.708 4.325 0.205 0.008

Go 64.384 132.768 132.968 137.054 134.454 1.181 6.699 0.296 2.11×10−5

OLBH 56.532 117.064 117.264 121.351 118.750 1.009 5.854 0.246 0.0007

OEBH 62.545 129.091 129.291 133.377 130.777 1.137 6.481 0.287 4.23×10−5

NGEW 20.377 48.754 49.444 57.326 52.125 0.071 0.564 0.078 0.814
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Fig 5. The PP plots of the fitted models using the dataset I.
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Fig 6. Estimated PDFs (left panel) and CDFs (right panel) for the dataset I.
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Fig 7. The fitted PDF, the estimated CDF and PP plot of NGEWD using UP-RC values from dataset II.

6.2 Dataset II: Bladder cancer patients

The data is reported in [26] which represents remission
times (in months) of 90 bladder cancer patients. The
MLEs, KS and its P-value are listed in Table 5. The
MLEs, KS and P-values using UP-RC values from dataset
II based on the NGEWD can be reported as α̂ = 1.70,

β̂ = 0.24, γ̂ = 1.56, θ̂ = 1.64 with P-value more than
0.05. Thus, the NGEW model provides a good fit for this
data. The empirical PDF, CDF and PP plots are displayed
in Figure 7 which supports the results.

7 Reflections and Future Prospects

This study undertook an extensive analysis of the
NGEWD, thoroughly examining its mathematical and

statistical characteristics. Through an investigation of its
HRF, which displayed a variety of patterns such as
decreasing, increasing, bathtub, or unimodal shapes, the
study emphasized the NGEWD’s adaptability in
effectively modeling diverse data types. Additionally, the
distribution showcased significant versatility by
accommodating positive and negative skewness, as well
as symmetric datasets with varying forms of kurtosis. The
study utilized the maximum likelihood method to
estimate the model parameters, and simulation results
illustrated the effectiveness of approaches based on
complete and upper record samples. It was noted that both
bias and MSE decreased as the sample size increased.
Furthermore, an analysis of a real-world dataset provided
a compelling demonstration of the NGEWD’s importance
and flexibility, highlighting its potential practical utility in
various statistical applications.
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