
*Corresponding author e-mail: wawad@ahlia.edu.bh © 2024 NSP
Natural Sciences Publishing Cor.

 Appl. Math. Inf. Sci. 18, No. 3, 653-657 (2024) 653

 Applied Mathematics & Information Sciences
An International Journal

 http://dx.doi.org/10.18576/amis/180317

Study of Different GP Parameters in Automatic Cryptosystems
Design
Wasan S. Awad*

Department of Information Technology, College of Information Technology, Ahlia University, Manama, Bahrain

Received: 7 Jan. 2024, Revised: 17 Mar. 2024, Accepted: 22 Mar. 2024
Published online: 1 May 2024

Abstract: There are several parameters, such as, operation rates and population size, must be set in order to apply Genetic
Programming (GP) to solve a particular problem. The values of these parameters may affect the performance of GP.
Mutation operation is used to introduce a small perturbation in the population from time to time to maintain its diversity.
Several mutation operations have been proposed for GP. This paper is to study different mutation operations used in GP for
designing cryptosystems. Experiments performed to study the effectiveness of these operations in solving the underlying
problem. It has been shown that mutation operations play an important role in improving the performance of GP.

Keywords: Genetic Programming, Simulated Annealing, Encryption, Genetic Algorithm Parameters.

1 Introduction

Evolution is an optimization process, where the aim is to
improve the ability of a system to survive in dynamically
changing environment. There are a number of evolutionary
computation techniques, such as genetic programming
(GP). In GP, the population individuals are computer
programs represented usually as expression trees [1], and a
number of operations are used to update the population
individuals, such as crossover and mutation.

In general, the inclusion of mutation step the evolutionary
algorithms is very important. The main aim of mutation
operation is to keep certain amount of randomness and to
introduce a small perturbation in the population from time
to time so as to maintain its diversity. Most of the times the
mutation operation is applied according to some fixed
probabilistic rule. In the past few years mutation operations
based on different probability distributions (like Normal,
Gaussian, and Cauchy etc) have become popular. Also, in
our previous work [2] adaptive mutation has been applied
and it has been shown its effectiveness comparable with
fixed rate mutation.

Mutation in GP is frequently treated as a secondary
operator. However, it has been shown that mutation can
significantly improve performance when combined with
crossover [3] [4]. Few of Koza’s [1] [5] early experiments
include mutation. Koza states two reasons for the omission
of mutation in the majority of problems. First, it is rare to
lose diversity when using a sufficient population size;
therefore, mutation is simply not needed in GP. Second,
when the crossover operation occurs using endpoints in
both trees, the effect is very similar to point mutation. Koza
wished to demonstrate that mutation was not necessary and

that GP was not performing a simple random search. This
has significantly influenced the field, and mutation is often
omitted from GP runs. While mutation is not necessary for
GP to solve many problems, it can perform as well as
crossover based GP in some cases. O'Reily [6] argued that
mutation in combination with simulated annealing or
stochastic iterated hill climbing can perform as well as
crossover-based GP in some cases. Nowadays, mutation is
widely used in GP, especially in solving complex problems.
Koza also advises to use of a low level of mutation [7]. In
[8], the authors suggested that the situation is complex, and
that the relative performance of crossover and mutation
depends on the problem.

Several mutation operations have been proposed to be used
in Genetic Algorithms (GA) and GP; some of them are
listed bellow [1][5][6][9][10][12] [13][14]:

§ Subtree mutation replaces a randomly selected subtree
with another randomly created subtree.

§ Node replacement mutation (also known as point
mutation) is similar to bit string mutation in that it
randomly changes a point in the individual. A node in
the tree is randomly selected and randomly changed.

§ Hoist mutation creates a new offspring individual
which is copy of a randomly chosen subtree of the
parent. Thus, the offspring will be smaller than the
parent and will have a different root node.

§ Shrink mutation replaces a randomly chosen subtree
with a randomly created terminal.

§ Zigzag Mutation follow the zigzag pattern and making
sudden and noticeable mutants in the gene.

mailto:wawad@ahlia.edu.bh
http://dx.doi.org/10.18576/amis/180317

 654 W. Awad: Study of Different GP Parameters …

© 2024 NSP
Natural Sciences Publishing Cor.

§ Permutation mutation selects a random function node
in a tree and then randomly permuting its arguments
(subtrees).

In addition to these types, two new methods for
implementing the mutation operator in GP called Semantic
Aware Mutation (SAM) and Semantic Similarity based
Mutation (SSM) have been proposed [15].

Designing an effective stream cipher automatically is a
complex process, therefore GP has been chosen to solve
this problem [2], for designing one class of stream cipher
systems, and it has been proven that GP can be used
successfully to solve this problem. In [2] GP, integrated
with simulated annealing, (SA) [16] i.e., simulated
annealing programming (SAP), has been used successfully
to design Linear Feedback Shift Register (LFSR)-based
stream cipher systems with the desired properties, such as
random keystream, and large period length. However, we
still expect some improvements. Thus, this paper is to study
the impact of various mutation operations on the
effectiveness of SAP algorithm for designing stream
ciphers.

Six types of mutation operation are applied in this work,
which are:

§ GA-Based Terminal Node Mutation

§ Random Terminal Node Mutation

§ GA-Based Semantic Terminal Node Mutation

§ Random Sub-expression Mutation

§ GA-based Shrink Mutation

§ GA-based Semantic Shrink Mutation

2 Design Algorithm Overveiw

SAP is a general automated design approach for designing
stream ciphers that satisfy the desired properties. It is an
integration of GP and SA in order to work on a population
of individuals and to preserve good individuals into the
next generation [17] [18]. The output of SAP is a keystream
generator, which is the main component of stream cipher
that generates pseudorandom Binary sequence (keystream)
of length size and fulfills the security and efficiency
requirements. Stream ciphers [19][20][21][22] are of great
importance in applications, and there are different types of
stream ciphers, only LFSR-bassed stream ciphers are
considered here, in which, the main component of the
keystream generators is LFSR, where LFSR is a shift
register with linear feedback function.

§ The following is the complete SAP algorithm as
described in [2]:

Algorithm: SAP

Input : Keystream period length (size).

Output : LFSR-based keystream generator.

Begin

Generate the initial population (pop)
randomly;

Evaluate pop;

Temp ß250.0; //temperature

Repeat

Generate a new population (pop1) by
applying crossover and mutation;

Evaluate the fitness of the new generated
chromosomes of pop1;

Calculate the averages of fitness values
for pop and pop1, av1 and av2
respectively;

If (av2 > av1) then replace the old
population by the new one, i.e.

pop ß pop1;

 Else

 Begin

e ß av1-av2;

Pr ß e / Temp;

Generate a random number (rnd);

If (exp(-pr) > rnd) then pop ß
pop1;

 End;

Temp ß Temp * 0.95;

Until (Max Number of generations);

Return the best chromosome of the last
generation;

End.

In SAP algorithm, SA is the technique used for the
construction of the keystream generators. The structure
under adaptation is the set of GP expressions, and the GA
operations are used to update the population of expressions.

In this algorithm, the genetic operations used are 1-point
crossover with probability pc=1.0, and terminal node
mutation with probability pm=0.1. The mutation operation
used to replaces a randomly selected one gene from a LFSR
feedback function with a new one. The function library
includes the functions: LFSR, XOR, AND, OR. The
terminal nodes are strings of characters (which are
converted to Binary digits during the process of fitness
evaluation) that represent the linear feedback functions of
LFSRs.

For example, the following population individual
(chromosome):

"& SR adfe SR daeab" is an expression of two shift
registers combined by AND function, and "adfe" and

Appl. Math. Inf. Sci. 18, No. 3, 653-657 (2024)/ http://www.naturalspublishing.com/Journals.asp 655

 © 2024 NSP
 Natural Sciences Publishing Cor.

"daeab" are feedback functions of the LFSRs in the
expression.

3 Mutation Operation Descriptions
Different types of mutation operation are applied in SAP
algorithm. The descriptions of theses operations are given
bellow.

3.1 Terminal Node Mutation
This operation randomly changes a point (terminal node) in
the individual. The point is the feedback function of a
LFSR. Three variations of this operation are considered in
this study, as follows.

I. GA-Based Terminal Node Mutation

Here, Genetic Algorithm (GA) is used to find the best
LFSR feedback function to replace a randomly selected
terminal node (LFSR feedback function) of an individual.
The description of this operation is as follows.

The population chromosomes in GA are represented as
fixed length Binary strings. The lengths of these strings are
equal to the length of the randomly selected terminal node S
of SAP individual, where S is the Binary feedback function
of a LFSR. Each chromosome in GA population is a mask
used to modify S, by Xoring GA chromosome with S. The
probability of generating the gene "1" in the GA initial
population is 0.2, while the probability of the gene "0" is
0.8.

The fitness value is a measurement of the goodness of the
keystream generator, and it is used to control the
application of the operations that modify a population. The
fitness function used in SAP is also used in GA. After
modifying S, the SAP program is executed to generate the
keystream. The generated keydtream is then evaluated as
described in [2]. Eqs. (1), (2), and (3) are used to evaluate
the GA chromosomes. Eq. (1) is used for the evaluation of
keystream randomness using the frequency and serial tests,
in which, nw is the frequency of w (where w = 00, 01, 10,
or 11) in the generated binary sequence.

𝑓1 = |𝑛! − 𝑛"| + ∑)𝑛𝑤 −
#$%&
'
) (1)

There is another randomness requirement which is: (1/2i *
nr) of the runs in the sequence are of length i, where nr is
the number of runs in the sequence. Thus, we have eq. (2).

 (2)

where M is maximum run length, and ni is the desired
number of runs of length i. Thus, the fitness function used
to evaluate the chromosome x will be as given by eq. (3),
where wt is a constant and size is the keystream period
length:

 (3)

The parameters used in this work were set based on the
experimental results, the parameter value that show the

highest performance was chosen to be used in the
implementation of the algorithm. Thus, the genetic
operations used to update the population are 1-point
crossover with probability pc=1.0. The selection strategy,
used to select chromosomes for the genetic operations, is
the 2- tournament selection. The old population is
completely replaced by the new population which is
generated from the old population by applying the genetic
operations. The run of GA is stopped after a fixed number
of generations. The solution is the best chromosome of the
last generation.

II. Random Terminal Node Mutation

Using this operation, S is replaced by randomly generated
LFSR feed back function.

III. GA-Based Semantic Terminal Node Mutation

GA is used to find the best LFSR feed back function, in
term of the big differences in the generated keystreams, to
replace a randomly selected terminal node (LFSR feed back
function) of an individual. The description of this operation
is as follows.

The population chromosomes GA are represented as fixed
length Binary strings. The lengths of these strings are equal
to the length of the randomly selected terminal node S of
SAP individual. Each chromosome in GA population
represents the candidate LFSR feedback function to replace
S.

The chromosomes of GA population are evaluated based on
the big difference in the generated keystreams generated by
S and GA individuals. Thus, eq. (4) used to compute the
fitness value of the GA chromosome x.

 (4)

Where keystreami is the ith bit of the keystream generated
by S, and keystreami' is the ith bit of the keystream
generated by the LFSR with the GA chromosome x as
feedback function.

The genetic operations used to update the population are 1-
point crossover with probability pc=1.0. The selection
strategy, used to select chromosomes for the genetic
operations, is the 2- tournament selection. The old
population is completely replaced by the new population
which is generated from the old population by applying the
genetic operations. The run of GA is stopped after a fixed
number of generations.

3.2 Sub-Expression Mutation
By applying this operation, a sub-tree is selected randomly
from SAP expression, and then is replaced by a new sub-
expression. In this work, different sub-expression mutations
have been studied. The following is the description of each
one.

å
=

-=
size

i
ii keystreamkeystreamxfit

1

')(

 656 W. Awad: Study of Different GP Parameters …

© 2024 NSP
Natural Sciences Publishing Cor.

I. Random Sub-expression Mutation

Using this operation the sub-expression of SAP expression
is replaced by randomly generated expression.

II. GA-based Shrink Mutation

This operation is used to reduce the size of SAP expression,
by finding a LFSR that is equivalent to a randomly selected
sub-expression. The root node of the sub-expression
should be any function other than LFSR. GA is used to find
an equivalent LFSR that generates the same keystream
generated by the selected sub-expression.

The population chromosomes in GA are represented as
variable length Binary strings. Each chromosome in GA
population represents the candidate LFSR feedback
function.

The solution of GA is an equivalent LFSR that generates
the same keystream generated by the sub-expression
selected randomly from a SAP expression.

III. GA-based Semantic Shrink Mutation

It is the similar to previous operation, but GA is used here
to find an equivalent LFSR that generated different
keystream, thus the fitness function used is given by eq. (4).

4 Results

This section presents the findings and results of the
experiments carried out to demonstrate the impact of
different types of mutation operations on the effectiveness
of SAP algorithm. Therefore, SAP has been implemented
with six types of mutation operations mentioned above.

The six algorithms have been applied with different
mutation rates. The best algorithms parameters used in the
experiments are:

§ Max number of generations of SAP = 30

§ Max number of generations of GA = 10

Thus, Eq. (6) is used to compute the fitness value of the GA
chromosome x.

 (5)

 (6)

Where keystreami is the ith bit of the keystream generated
by the sub-expression, and keystreami' is the ith bit of the
keystream generated by the LFSR with the GA
chromosome x as feedback function.

The genetic operations used to update the population are 1-
point crossover with probability pc=1.0. The selection
strategy, used to select chromosomes for the genetic
operations, is the 2- tournament selection. The old
population is completely replaced by the new population
which is generated from the old population by applying the
genetic operations. The run of GA is stopped after a fixed
number of generations. The solution is the best
chromosome of the last generation.

§ Pop size of SAP = 100

§ Pop size of GA (if used) = 10

The results of applying the six algorithms are presented in
table 1. These results are obtained by running each
algorithm 100 times for different values of mutation rates.
The results of table 1 represent the average of the fitness
values of the best chromosomes in 100 runs. According to
the results and by applying Wilcoxon signed-rank test, GA-
Based Terminal Node Mutation has been greatly improved
the performance of SAP algorithm; it can evolve keystream
generators that generate keystreams of good statistical
properties and of large period length. Also, increasing the
mutation rate improves the results. That is because; the
feedback function of LFSR has great effect on the output
the keystream generators. Thus, by using GA to find the
best feedback function can highly improve the results.

å
=

-=
size

i
ii keystreamkeystreamf

1

'3

Table 1: Fitness values averages of 100 runs.

Mutation
Rate%

GA-Based
Terminal
Node
Mutation

Random
Terminal
Node
Mutation

Random
Sub-
expression
Mutation

GA-Based
Semantic
Terminal
Node
Mutation

GA-based
Shrink
Mutation

GA-based
Semantic
Shrink
Mutation

0 31.6738
 5 37.3666 30.4139 31.1553 29.4109 24.4812 29.2382
10 43.7615 31.3691 31.4582 33.307 27.5608 29.8604
15 44.2341 31.3691 33.2401 35.4674 26.6744 26.5393
20 44.4663 33.5122 34.5481 35.4996 23.0873 25.3877
30 45.1159 32.8931 35.4401 32.9202 24.6556 23.365
40 47.338 34. 264 35.9812 37.2787 30.7147 25.3943
50 47.452 33.8621 35.5944 38.1934 30.6348 25.9628
60 49.1361 35.3515 36.1849 37.4782 31.3748 26.4893

Appl. Math. Inf. Sci. 18, No. 3, 653-657 (2024)/ http://www.naturalspublishing.com/Journals.asp 657

 © 2024 NSP
 Natural Sciences Publishing Cor.

5 Conclusion

In this paper, different types of mutation operations have
been applied in SAP algorithm in order to study the impact
of mutation operation on the algorithm performance. It has
been shown that mutation operation can affect the
performance of GP, especially when it is used to solve
complex problems, such as designing stream ciphers. Six
mutation operations have been applied. We found that GA-
Based Terminal Node Mutation that replaces the feedback
function of LFSR (terminal node) by a new feedback
function evolved by GA can highly improve SAP
algorithm. This because the feedback functions of shift
registers play an important role in generating random
keystream.

References

[1] Koza, J. R.; 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press.

[2] Awad, W. S.; 2011. Designing stream cipher systems
using GP. LNCS, Vol. 6683, PP. 308-320.

[3] Banzhaf, W., Francone, F. D., and Nordin, N.; 1996.
The effect of extensive use of the mutation operator
on generalization in genetic programming using
sparse data sets. LNCS, Vol. 1141, PP. 300–309.

[4] Poli, R., and Langdon, W. B.; 1997. Genetic
programming with one-point crossover. In Soft
omputing in Engineering Design and Manufacturing.
Springer-Verlag, PP. 180–189.

[5] Koza, J. R.; 1994. Genetic Programming II:
Automatic Discovery of Reusable Programs. MIT
Press.

[6] O'Reilly, U.; 1995. An Analysis of Genetic
Programming. PhD thesis, Carleton University,
Ottawa-Carleton Institute for Computer Science,
Ottawa, Ontario, Canada.

[7] Koza, J. R., F. H. B., Andre, D., and Keane, M. A.;
1999. Genetic Programming III: Darwinian Invention
and Problem Solving. Morgan Kaufmann Press.

[8] Luke, S., and Spector, L.; 1997. A comparison of
crossover and mutation in genetic programming. In
Proceedings of the Second Annual Conference on
Genetic Programming. Morgan Kaufmann, PP. 240–
248.

[9] Kinnear, K. E.; 1994. Fitness landscapes and
difficulty in genetic programming. In Proceedings of
the IEEE World Conference on Computational
Intelligence. Vol. 1, PP. 142-147.

[10] Angeline, p. j.; 1996. An investigation into the
sensitivity of genetic programming to the frequency of
leaf selection during subtree crossover. In

Proceedings of the First Annual Conference on
Genetic Programming. Stanford University, CA,
USA. PP 21-29.

[11] Xing, Li-Ning & Chen, Ying-Wu & Yang, Ke-Wei,
2009. "A novel mutation operator based on the
immunity operation," European Journal of
Operational Research, Elsevier, vol. 197(2), pages
830-833, September.

[12] Devasenathipathi N. Mudaliar; Nilesh K Modi,
Applying m-Mutation Operator in Genetic Algorithm
to Solve Permutation Problems, 2019 IEEE
International Conference on System, Computation,
Automation and Networking (ICSCAN), 29-30 March
2019, Pondicherry, India.

[13] Mingcheng Zuo, Guangming Dai & Lei Peng, A
new mutation operator for differential evolution
algorithm, Volume 25, pages 13595–13615, (2021)
Springer.

[14] Harifi, S., Mohamaddoust, R. Zigzag mutation: a new
mutation operator to improve the genetic
algorithm. Multimed Tools Appl 82, 45411–45432
(2023). https://doi.org/10.1007/s11042-023-15518-3

[15] Nguyen Quang Uy, Nguyen Xuan Hoai, and Michael
O’Neill; 2009. Semantics based mutation in genetic
programming: the case for real-valued symbolic
regression. In Mendel09, 15th International
Conference on Soft Computing. PP. 73-91.

[16] Kirkpatrik, S., et al.; 1983. Optimization by simulated
annealing. Science, 220(4598), 671-680.

[17] Yuichiro, U., Mitsunori, and M., Tomoyuki H.; 2009.
Simulated Annealing Programming Using Effective
Subtrees. Doshisha Daigaku Rikogaku Kenkyu
Hokoku, 49(4), 205-209.

[18] Miki, M., Hashimoto, M., and Fujita, Y.; 2007.
Program Search with Simulated Annealing. In
Proceeding of the 9th Annual Conference on Genetic
and Evolutionary Computation. PP. 1754 – 1754.

[19] Forouzan, B. A.; 2008. Cryptography and network
security. McGRAW-HILL, New York, USA.

[20] Rueppel, R. A.; 1986. Analysis and Design of Stream
Cipher. Springer-Verlag.

[21] Schneier, B.; 1996. Applied cryptography. John Wiley
and Sons.

[22] Golomb, S. W.; 1967. Shift Register Sequence.
Holden-Day, San Francisco, USA.

https://ideas.repec.org/a/eee/ejores/v197y2009i2p830-833.html
https://ideas.repec.org/a/eee/ejores/v197y2009i2p830-833.html
https://ideas.repec.org/s/eee/ejores.html
https://ideas.repec.org/s/eee/ejores.html
https://ieeexplore.ieee.org/author/38646487300
https://ieeexplore.ieee.org/author/37089040833
https://ieeexplore.ieee.org/xpl/conhome/8870340/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8870340/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8870340/proceeding
https://link.springer.com/article/10.1007/s00500-021-06077-6#auth-Mingcheng-Zuo-Aff1
https://link.springer.com/article/10.1007/s00500-021-06077-6#auth-Guangming-Dai-Aff2-Aff3
https://link.springer.com/article/10.1007/s00500-021-06077-6#auth-Lei-Peng-Aff2-Aff3-Aff4

