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Abstract: There are several parameters, such as, operation rates and population size, must be set in order to apply Genetic 
Programming (GP) to solve a particular problem. The values of these parameters may affect the performance of GP. 
Mutation operation is used to introduce a small perturbation in the population from time to time to maintain its diversity. 
Several mutation operations have been proposed for GP. This paper is to study different mutation operations used in GP for 
designing cryptosystems.   Experiments performed to study the effectiveness of these operations in solving the underlying 
problem.  It has been shown that mutation operations play an important role in improving the performance of GP. 
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1 Introduction  

Evolution is an optimization process, where the aim is to 
improve the ability of a system to survive in dynamically 
changing environment. There are a number of evolutionary 
computation techniques, such as genetic programming 
(GP). In GP, the population individuals are computer 
programs represented usually as expression trees [1], and a 
number of operations are used to update the population 
individuals, such as crossover and mutation.  

In general, the inclusion of mutation step the evolutionary 
algorithms is very important. The main aim of mutation 
operation is to keep certain amount of randomness and to 
introduce a small perturbation in the population from time 
to time so as to maintain its diversity. Most of the times the 
mutation operation is applied according to some fixed 
probabilistic rule. In the past few years mutation operations 
based on different probability distributions (like Normal, 
Gaussian, and Cauchy etc) have become popular. Also, in 
our previous work [2] adaptive mutation has been applied 
and it has been shown its effectiveness comparable with 
fixed rate mutation.  

Mutation in GP is frequently treated as a secondary 
operator. However, it has been shown that mutation can 
significantly improve performance when combined with 
crossover [3] [4]. Few of Koza’s [1] [5] early experiments 
include mutation. Koza states two reasons for the omission 
of mutation in the majority of problems. First, it is rare to 
lose diversity when using a sufficient population size; 
therefore, mutation is simply not needed in GP. Second, 
when the crossover operation occurs using endpoints in 
both trees, the effect is very similar to point mutation. Koza 
wished to demonstrate that mutation was not necessary and  

that GP was not performing a simple random search. This 
has significantly influenced the field, and mutation is often 
omitted from GP runs. While mutation is not necessary for 
GP to solve many problems, it can perform as well as 
crossover based GP in some cases. O'Reily [6] argued that 
mutation in combination with simulated annealing or 
stochastic iterated hill climbing can perform as well as 
crossover-based GP in some cases. Nowadays, mutation is 
widely used in GP, especially in solving complex problems. 
Koza also advises to use of a low level of mutation [7]. In 
[8], the authors suggested that the situation is complex, and 
that the relative performance of crossover and mutation 
depends on the problem. 

Several mutation operations have been proposed to be used 
in Genetic Algorithms (GA) and GP; some of them are 
listed bellow [1][5][6][9][10][12] [13][14]:   

§ Subtree mutation replaces a randomly selected subtree 
with another randomly created subtree. 

§ Node replacement mutation (also known as point 
mutation) is similar to bit string mutation in that it 
randomly changes a point in the individual. A node in 
the tree is randomly selected and randomly changed. 

§ Hoist mutation creates a new offspring individual 
which is copy of a randomly chosen subtree of the 
parent. Thus, the offspring will be smaller than the 
parent and will have a different root node. 

§ Shrink mutation replaces a randomly chosen subtree 
with a randomly created terminal. 

§ Zigzag Mutation follow the zigzag pattern and making 
sudden and noticeable mutants in the gene. 
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§ Permutation mutation selects a random function node 
in a tree and then randomly permuting its arguments 
(subtrees).  

In addition to these types, two new methods for 
implementing the mutation operator in GP called Semantic 
Aware Mutation (SAM) and Semantic Similarity based 
Mutation (SSM) have been proposed [15]. 

Designing an effective stream cipher automatically is a 
complex process, therefore GP has been chosen to solve 
this problem [2], for designing one class of stream cipher 
systems, and it has been proven that GP can be used 
successfully to solve this problem. In [2] GP, integrated 
with simulated annealing, (SA) [16] i.e., simulated 
annealing programming (SAP), has been used successfully 
to design Linear Feedback Shift Register (LFSR)-based 
stream cipher systems with the desired properties, such as 
random keystream, and large period length. However, we 
still expect some improvements. Thus, this paper is to study 
the impact of various mutation operations on the 
effectiveness of SAP algorithm for designing stream 
ciphers. 

Six types of mutation operation are applied in this work, 
which are: 

§ GA-Based Terminal Node Mutation 

§ Random Terminal Node Mutation   

§ GA-Based Semantic Terminal Node Mutation 

§ Random Sub-expression Mutation  

§ GA-based Shrink Mutation  

§ GA-based Semantic Shrink Mutation 

2 Design Algorithm Overveiw 

SAP is a general automated design approach for designing 
stream ciphers that satisfy the desired properties. It is an 
integration of GP and SA in order to work on a population 
of individuals and to preserve good individuals into the 
next generation [17] [18]. The output of SAP is a keystream 
generator, which is the main component of stream cipher 
that generates pseudorandom Binary sequence (keystream) 
of length size and fulfills the security and efficiency 
requirements. Stream ciphers [19][20][21][22] are of great 
importance in applications, and there are different types of 
stream ciphers, only LFSR-bassed stream ciphers are 
considered here, in which, the main component of the 
keystream generators is LFSR, where LFSR is a shift 
register with linear feedback function. 

§ The following is the complete SAP algorithm as 
described in [2]: 

Algorithm:  SAP  

Input : Keystream period length (size). 

Output : LFSR-based keystream generator. 

Begin 

Generate the initial population (pop) 
randomly; 

Evaluate pop; 

Temp ß250.0;   //temperature  

Repeat 

Generate a new population (pop1) by 
applying crossover and mutation;  

Evaluate the fitness of the new generated 
chromosomes of pop1; 

Calculate the averages of fitness values 
for pop and pop1, av1 and av2 
respectively; 

If (av2 > av1) then  replace the old 
population by the  new one, i.e.  

pop ß pop1; 

   Else 

 Begin 

e ß av1-av2;         

Pr ß  e / Temp; 

Generate a random number (rnd);  

If (exp(-pr) > rnd)   then   pop ß 
pop1; 

 End; 

Temp ß Temp * 0.95; 

Until (Max Number of generations);   

Return the best chromosome of the last 
generation; 

End. 

In SAP algorithm, SA is the technique used for the 
construction of the keystream generators. The structure 
under adaptation is the set of GP expressions, and the GA 
operations are used to update the population of expressions.  

In this algorithm, the genetic operations used are 1-point 
crossover with probability pc=1.0, and terminal node 
mutation with probability pm=0.1. The mutation operation 
used to replaces a randomly selected one gene from a LFSR 
feedback function with a new one. The function library 
includes the functions: LFSR, XOR, AND, OR. The 
terminal nodes are strings of characters (which are 
converted to Binary digits during the process of fitness 
evaluation) that represent the linear feedback functions of 
LFSRs.  

For example, the following population individual 
(chromosome):  

"& SR adfe SR daeab" is an expression of two shift 
registers combined by AND function, and "adfe" and 
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"daeab" are feedback functions of the LFSRs in the 
expression. 

3 Mutation Operation Descriptions 
Different types of mutation operation are applied in SAP 
algorithm. The descriptions of theses operations are given 
bellow. 

3.1 Terminal Node Mutation 
This operation randomly changes a point (terminal node) in 
the individual. The point is the feedback function of a 
LFSR. Three variations of this operation are considered in 
this study, as follows. 

I. GA-Based Terminal Node Mutation 

Here, Genetic Algorithm (GA) is used to find the best 
LFSR feedback function to replace a randomly selected 
terminal node (LFSR feedback function) of an individual. 
The description of this operation is as follows. 

The population chromosomes in GA are represented as 
fixed length Binary strings. The lengths of these strings are 
equal to the length of the randomly selected terminal node S 
of SAP individual, where S is the Binary feedback function 
of a LFSR. Each chromosome in GA population is a mask 
used to modify S, by Xoring GA chromosome with S. The 
probability of generating the gene "1" in the GA initial 
population is 0.2, while the probability of the gene "0" is 
0.8.  

The fitness value is a measurement of the goodness of the 
keystream generator, and it is used to control the 
application of the operations that modify a population. The 
fitness function used in SAP is also used in GA. After 
modifying S, the SAP program is executed to generate the 
keystream. The generated keydtream is then evaluated as 
described in [2]. Eqs. (1), (2), and (3) are used to evaluate 
the GA chromosomes. Eq. (1) is used for the evaluation of 
keystream randomness using the frequency and serial tests, 
in which, nw is the frequency of w (where w = 00, 01, 10, 
or 11) in the generated binary sequence. 

𝑓1 = |𝑛! − 𝑛"| + ∑ )𝑛𝑤 −
#$%&
'
)                                          (1) 

There is another randomness requirement which is: (1/2i * 
nr) of the runs in the sequence are of length i, where nr is 
the number of runs in the sequence. Thus, we have eq. (2). 

                        (2) 

where M is maximum run length, and ni is the desired 
number of runs of length i. Thus, the fitness function used 
to evaluate the chromosome x will be as given by eq. (3), 
where wt is a constant and size is the keystream period 
length: 

           (3) 

The parameters used in this work were set based on the 
experimental results, the parameter value that show the 

highest performance was chosen to be used in the 
implementation of the algorithm. Thus, the genetic 
operations used to update the population are 1-point 
crossover with probability pc=1.0. The selection strategy, 
used to select chromosomes for the genetic operations, is 
the 2- tournament selection. The old population is 
completely replaced by the new population which is 
generated from the old population by applying the genetic 
operations. The run of GA is stopped after a fixed number 
of generations. The solution is the best chromosome of the 
last generation.  

II. Random Terminal Node Mutation   

Using this operation, S is replaced by randomly generated 
LFSR feed back function. 

III. GA-Based Semantic Terminal Node Mutation 

GA is used to find the best LFSR feed back function, in 
term of the big differences in the generated keystreams, to 
replace a randomly selected terminal node (LFSR feed back 
function) of an individual. The description of this operation 
is as follows. 

The population chromosomes GA are represented as fixed 
length Binary strings. The lengths of these strings are equal 
to the length of the randomly selected terminal node S of 
SAP individual. Each chromosome in GA population 
represents the candidate LFSR feedback function to replace 
S.  

The chromosomes of GA population are evaluated based on 
the big difference in the generated keystreams generated by 
S and GA individuals. Thus, eq. (4) used to compute the 
fitness value of the GA chromosome x.   

        (4) 

Where keystreami  is the ith bit of the keystream generated 
by S, and keystreami'  is the ith bit of the keystream 
generated by the LFSR with the GA chromosome x as 
feedback function.  

The genetic operations used to update the population are 1-
point crossover with probability pc=1.0. The selection 
strategy, used to select chromosomes for the genetic 
operations, is the 2- tournament selection. The old 
population is completely replaced by the new population 
which is generated from the old population by applying the 
genetic operations. The run of GA is stopped after a fixed 
number of generations. 

3.2 Sub-Expression Mutation 
By applying this operation, a sub-tree is selected randomly 
from SAP expression, and then is replaced by a new sub-
expression. In this work, different sub-expression mutations 
have been studied. The following is the description of each 
one.  
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I.  Random Sub-expression Mutation  

Using this operation the sub-expression of SAP expression 
is replaced by randomly generated expression.  

II. GA-based Shrink Mutation  

This operation is used to reduce the size of SAP expression, 
by finding a LFSR that is equivalent to a randomly selected 
sub-expression.  The root node of the sub-expression 
should be any function other than LFSR. GA is used to find 
an equivalent LFSR that generates the same keystream 
generated by the selected sub-expression. 

The population chromosomes in GA are represented as 
variable length Binary strings. Each chromosome in GA 
population represents the candidate LFSR feedback 
function.  

The solution of GA is an equivalent LFSR that generates 
the same keystream generated by the sub-expression 
selected randomly from a SAP expression.  

 

 

 

 

 

 

 

 

 

 

 

 

III. GA-based Semantic Shrink Mutation 

It is the similar to previous operation, but GA is used here 
to find an equivalent LFSR that generated different 
keystream, thus the fitness function used is given by eq. (4). 

4 Results  

This section presents the findings and results of the 
experiments carried out to demonstrate the impact of 
different types of mutation operations on the effectiveness 
of SAP algorithm. Therefore, SAP has been implemented 
with six types of mutation operations mentioned above. 

The six algorithms have been applied with different 
mutation rates. The best algorithms parameters used in the 
experiments are: 

§ Max number of generations of SAP = 30 

§ Max number of generations of GA = 10 

Thus, Eq. (6) is used to compute the fitness value of the GA 
chromosome x. 

       (5) 

                      (6) 

Where keystreami  is the ith bit of the keystream generated 
by the sub-expression, and keystreami'  is the ith bit of the 
keystream generated by the LFSR with the GA 
chromosome x as feedback function.  

The genetic operations used to update the population are 1-
point crossover with probability pc=1.0. The selection 
strategy, used to select chromosomes for the genetic 
operations, is the 2- tournament selection. The old 
population is completely replaced by the new population 
which is generated from the old population by applying the 
genetic operations. The run of GA is stopped after a fixed 
number of generations. The solution is the best 
chromosome of the last generation. 

 

 

 

 

 

 

 

 

 

 

 

§ Pop size of SAP = 100 

§ Pop size of GA (if used) = 10 

The results of applying the six algorithms are presented in 
table 1. These results are obtained by running each 
algorithm 100 times for different values of mutation rates. 
The results of table 1 represent the average of the fitness 
values of the best chromosomes in 100 runs. According to 
the results and by applying Wilcoxon signed-rank test, GA-
Based Terminal Node Mutation has been greatly improved 
the performance of SAP algorithm; it can evolve keystream 
generators that generate keystreams of good statistical 
properties and of large period length. Also, increasing the 
mutation rate improves the results. That is because; the 
feedback function of LFSR has great effect on the output 
the keystream generators. Thus, by using GA to find the 
best feedback function can highly improve the results. 
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Table 1: Fitness values averages of 100 runs. 

Mutation 
Rate% 

GA-Based 
Terminal 
Node 
Mutation 

Random 
Terminal 
Node 
Mutation 

Random 
Sub-
expression 
Mutation 

GA-Based 
Semantic 
Terminal 
Node 
Mutation 

GA-based 
Shrink 
Mutation 

GA-based 
Semantic 
Shrink 
Mutation 

 
0 31.6738 
 5 37.3666 30.4139 31.1553 29.4109 24.4812 29.2382 
10 43.7615 31.3691 31.4582 33.307 27.5608 29.8604 
15 44.2341 31.3691 33.2401 35.4674 26.6744 26.5393 
20 44.4663 33.5122 34.5481 35.4996 23.0873 25.3877 
30 45.1159 32.8931 35.4401 32.9202 24.6556 23.365 
40 47.338 34. 264 35.9812 37.2787 30.7147 25.3943 
50 47.452 33.8621 35.5944 38.1934 30.6348 25.9628 
60 49.1361 35.3515 36.1849 37.4782 31.3748 26.4893 
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5  Conclusion  
 

In this paper, different types of mutation operations have 
been applied in SAP algorithm in order to study the impact 
of mutation operation on the algorithm performance. It has 
been shown that mutation operation can affect the 
performance of GP, especially when it is used to solve 
complex problems, such as designing stream ciphers. Six 
mutation operations have been applied. We found that GA-
Based Terminal Node Mutation that replaces the feedback 
function of LFSR (terminal node) by a new feedback 
function evolved by GA can highly improve SAP 
algorithm.  This because the feedback functions of shift 
registers play an important role in generating random 
keystream. 
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