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Abstract: In this study, we are interested in investigating the oscillatory behavior of solutions to a general class of functional differential
equations. We consider a neutral-type equation with multiple delays. We first test some monotonic properties of positive solutions to
the studied equation. Then, we use some techniques to obtain criteria that guarantee the oscillation of all solutions. We obtain three
different forms of oscillation criteria and compare them in terms of efficiency by applying them to a special case of the studied equation.
The results obtained are an extension and generalization of previous results in the literature.
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1 Introduction

Equations essentially appear as a basic and universal tool
for expressing the dynamics of the physical world,
making them one of the most important and active
research points in various eras until now. These
applications extend across various scientific branches,
from physics, medical and life sciences, environmental
and climate sciences, and even computer sciences [1–3].
For example, it is used to predict the positions and
velocities of celestial bodies, by combining the law of
universal gravitation and Newton’s second law, which
enables scientists to develop accurate models to describe
the movement of these bodies [4, 5].

Neutral differential equations (NDEs) are considered
one of the most important classes of differential equations
(DEs) in which the highest-order derivative of the
unknown function appears with and without delay. Which
means that this type of equation takes into account the
current and past state of the system. This provides an
accurate and complete description of many mathematical
models with delayed reactions. These equations are used
to represent ecology models, to study the interactions
between prey and their predators and to analyze the
dynamics of their behavior [6]. And in neuroscience, in
models of electrical networks, and models for reducing
the process of loss in transmission lines and distribution

networks in high-speed computers. See [7–9] for more
details.

On the other hand, second-order DEs, are considered
the most significant and active in the field of research due
to their appearance in various applications and natural
phenomena. As a result, there is a large amount of
literature interested in this class of equations. We
recommend to the reader the works of Agarwal et
al. [8–10], Došly and Řehák [11], Györi and Ladas [12],
and Erbe et al. [13].

In this study, we consider the following second-order
NDEs with p-Laplacian like operators:(

r (t)
∣∣z′ (t)∣∣p−2 z′ (t)

)′
+

m

∑
i=1

qi (t) |x(gi (t))|p−2 x(gi (t)) = 0,

(1)
where t ∈ I := [t0,∞), z(t) = x(t)+ b(t)x(δ (t)), and the

following assumptions are satisfied:

(A1)p ∈ R and p > 1;
(A2)r ∈ C1 (I,R+) , r′ (t)≥ 0, and r satisfies that∫

∞

t0
r−1/(p−1) (s)ds < ∞; (2)

(A3)b,qi ∈ C(I, [0,∞)), b(t) < 1 for i = 1,2, ...m, and b
satisfies that

b(t)
∫

∞

δ (t)
r−1/(p−1) (s)ds ≤

∫
∞

t0
r−1/(p−1) (s)ds;
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(A4)δ ,gi ∈ C(I,R) , δ (t) ≤ t, gi (t) ≤ t,
limt→∞ δ (t) = ∞, limt→∞ gi (t) = ∞ for i = 1,2, ...m,
and g′min (t) and g′max (t) are nondicreasing, where

gmin (t) : = min{gi (t) , i = 1,2, ...,m} ,
gmax (t) : = max{gi (t) , i = 1,2, ...,m} .

A solution of equation (1) is defined as a function
x ∈ C(I,R) which has the property r (z′)p−1 ∈ C1 (I,R)
and satisfies equation (1) on I. Our interest is directed to
the solutions of equation (1) that satisfy the condition
sup{|x(t)| : t ≥ T} > 0 for all T ≥ t0. A nontrivial
solution of (1) is said to be oscillatory if it has arbitrarily
large zeros and otherwise, it is called nonoscillatory.
Equation (1) is said to be oscillatory if all its solutions are
oscillatory. The NDE (1) is said to be in canonical form if
it satisfies that ∫

∞

t0
r−1/(p−1) (s)ds = ∞,

while it is called in the noncanonical form if the equation
achieves (2).

In the next sections, we provide new monotonic
properties for the positive solutions of (1) and use them to
obtain new oscillatory criteria. The provided results in
general improve the previous ones.

2 Literature Review

In the following, we present a historical summary to
illustrate the significant improvement in the paper’s
results and contents.

Many researchers have been interested in establishing
sufficient criteria for the oscillation of different types of
DEs over the past decades. Zhang [14], Muhib [15] and
Hassan et al. [16] studied the oscillation of second-order
nonlinear neutral equations in noncanonical form. in
contrast, Dzurina [17] and Bazighifan [18] are interested
in the canonical form. For the mixed-type NDDE Dzurina
and others [19–21] established new criteria to ensure the
oscillation of solutions. In a recent papers Agarwal et
al. [22], Almarri et al. [23] and Moaaz et al. [24–26]
interested in the oscillatory behavior of the even-order
NDEs. Lastly, many researchers have been interested in
obtaining sufficient conditions for the oscillation of
solutions of different classes of NDEs, see for
example [27–33].

In 1986, Koplatadze [34] studied the delay second
order linear DE

x′′ (t)+q(t)x(g(t)) = 0, (3)

where r(t) = 1 and b(t) = 0, he established that (3) is
oscillatory if

limsup
t→∞

∫ t

g(t)
q(s)g(s)ds > 1.

These results were obtained using the well-known
comparison method with lower orders. [35, 36] used the
same technique to provide improved results.

On other hand, Sun and Meng [37], used Riccati
inequality technique to extend the work on the half linear
equation (

r (t)
(
x′ (t)

)α
)′
+q(t)xα (g(t)) = 0, (4)

which is oscillatory if

∫
∞

t0

(
Rα (g(s))q(s)−

(
α

α +1

)α+1 g′ (s)
R(g(s))r1/α (s)

)
ds = ∞,

where α is a quotient of any two odd positive integers.
Other authors have improved and generalized this results,
see [38, 39].

Ladas et al. [40] studied the neutral differential
equation

(x(t)+b(t)x(t −δ ))′′+q(t)x(t −g) = 0, (5)

they proved that for 0 ≤ b(t)≤ 1, (5) is oscillatory if∫
∞

t0
q(s)(1−b(s−g))ds = ∞.

Please, see [41–43] and the references mentioned in them
for more information.

For the noncanonical form, Dzurina and
Jadlovská [44] recently established, in contrast to most
known results, a one-condition oscillation criteria for the
noncanonical form of (4). They showed in particular that
(4) is oscillatory for t1 ≥ t0, if

limsup
t→∞

π
α (t)

∫ t

t1
q(s)ds > 1 (6)

or ∫
∞ 1

r1/α (t)

[∫ t
π

α (σ (s))q(s)ds
]1/α

dt = ∞.

On other hand, Li and Han [45] considered the general
second-order NDEs(

r (t)(x(t)+b(t)x(δ (t)))′
)′
+q(t)x(g(t)) = 0, (7)

they established a new oscillation criteria for (7), if∫
∞

t0
Q∗ (s)ds = ∞,

where
Q∗ (t) = min{q(t) ,q(δ (t))} .

Many researches interested in the second order
noncanonical NDDE(

r (t)
(
z′ (t)

)α
)′
+q(t)xα (g(t)) = 0. (8)
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For more information see [46–49]. In 2017, Bohner et
al. [50] improved Theorems in [46], [47] by giving a new
sufficient condition ensures that (8) oscillates if

limsup
t→∞

π
α (t)

∫ t

t1
Q∗ (s)ds > 1, (9)

where

Q∗ (t) = q(t)
(

1−b(g(t))
π (δ (g(t)))

π (g(t))

)α

.

Our main aim of this paper is to study the oscillatory and
asymptotic properties of (1) in the noncanonical form
further by providing some additional finite and infinite
integral sufficient conditions. We present three different
forms of criteria that ensure the oscillation of all solutions
of the considered equation. This new results complements
and extend a number of results reported in the literature.
All functional inequalities are assumed to hold for all t
large enough in following sections. Without losing of
generality, we can only deal with the positive solutions to
(1).

3 Main Results
To facilitate the presentation of results, we assume that

φ (u) =
∫

∞

u
r−1/(p−1) (s)ds

and

H (t) =
m

∑
i=1

qi (s)
(

1−b(gi (s))
φ (δ (gi (s)))

φ (gi (s))

)p−1

.

3.1 Monotonic properties of positive solutions

In this section, we are interested in investigating the
classification of positive solutions as well as the
monotonic properties of these solutions. In addition, we
obtain some inequalities and relationships that help us
prove the main results.

Lemma 1.Assume that x is a positive solution of (1). Then,
the following cases of z holds:

C1 : z(t)> 0, z′ (t)> 0, and
(

r (t) |z′ (t)|p−2 z′ (t)
)′

≤ 0;

C2 : z(t)> 0, z′ (t)< 0, and
(

r (t) |z′ (t)|p−2 z′ (t)
)′

≤ 0.

Proof.Assume that x is a positive solution of (1). From (1),
we have

(
r (t)

∣∣z′ (t)∣∣p−2 z′ (t)
)′

= −
m

∑
i=1

qi (t) |x(gi (t))|p−2 x(gi (t))

≤ 0.

Therefore, we obtain that r (t) |z′ (t)|p−2 z′ (t) is
nonincreasing function, thus either z′ (t) > 0 or z′ (t) < 0,
eventually. Thus, the proof is complete.

Notation 1. We denote the class of eventually positive
solutions that have a corresponding function which
satisfies the properties in C1 (or C2) by S1 (or S2).

Lemma 2.Assume that

lim
t→∞

∫ t

t0
H (s)ds = ∞. (10)

Then, z is decreasing eventually.

Proof.Let x ∈ S1. By taking into account (A4), that
x(δ (t)) , x(gi (t)) and z are eventually positive, for
i = 1,2, ..,m. Then, x(t)> (1−b(t))z(t) , and so

0 ≥
(

r (t)(z′ (t))p−1
)′

+
m

∑
i=1

qi (t)(1−b(gi (t)))
p−1 zp−1 (gi (t))

≥
(

r (t)(z′ (t))p−1
)′

+ zp−1 (gmin (t))
m

∑
i=1

qi (t)(1−b(gi (t)))
p−1 . (11)

Integrating (11) from t1 to t, we get

r (t)(z′ (t))p−1 ≤ r (t1)(z′ (t1))
p−1

−
∫ t

t1
zp−1 (gmin (s))

m

∑
i=1

qi (s)(1−b(gi (s)))
p−1 ds

≤ r (t1)(z′ (t1))
p−1

−zp−1 (gmin (t1))
∫ t

t1

m

∑
i=1

qi (s)(1−b(gi (s)))
p−1 ds.

Since

1−b(t)≥ 1−b(t)
φ (δ (t))

φ (t)
,

we have
r (t)(z′ (t))p−1

≤ r (t1)(z′ (t1))
p−1

−zp−1 (gmin (t1))
∫ t

t1

m

∑
i=1

qi (s)
(

1−b(gi (s))
φ (δ (gi (s)))

φ (gi (s))

)p−1

ds

= r (t1)(z′ (t1))
p−1 − zp−1 (gmin (t1))

∫ t

t1
H (s)ds,

which with (10) contradicts to the positivity of z′ (t). Thus,
the proof is complete.

Lemma 3.Assume that x ∈ S2. Then,
z(t) ≥ −r1/(p−1) (t)z′ (t)φ (t) and z(t)/φ (t) is
increasing.

Proof.Assume that x ∈ S2. The monotonicity of
r−1/(p−1) (t)z′ (t) implies that

z(t) ≥ −
∫

∞

t

r1/(p−1) (s)z′ (s)
r1/(p−1) (s)

ds

≥ −r1/(p−1) (t)z′ (t)
∫

∞

t

1
r1/(p−1) (s)

ds

= −r1/(p−1) (t)z′ (t)φ (t) ,

which implies that(
z(t)
φ (t)

)′
=

r1/(p−1) (t)φ (t)z′ (t)+ z(t)
r1/(p−1) (t)φ 2 (t)

≥ 0.

Thus, the proof is complete.

© 2024 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


618 N. Alamri et al.: p-Laplacian functional differential equations with neutral delay arguments:...

Lemma 4.Assume that (10) holds. Then, eventually,(
r (t)

∣∣z′ (t)∣∣p−2 z′ (t)
)′
+H (t)zp−1(gmax (t))≤ 0. (12)

Proof.Let x ∈ S1 ∪S2. From Lemma 2, z is decreasing
eventually. Thus, x ∈ S2. It follows from Lemma 3 that
z(t)/φ (t) is increasing. So,

z(δ (t))≤ φ (δ (t))
φ (t)

z(t) .

By using the definition of z, we obtain

x(t) = z(t)−b(t)x(δ (t))
≥ z(t)−b(t)z(δ (t))

≥ z(t)−b(t)
φ(δ (t))

φ(t)
z(t)

=

(
1−b(t)

φ (δ (t))
φ (t)

)
z(t) .

Substituting from the above inequality into (1), implies
that(

r (t)
∣∣z′ (t)∣∣p−2 z′ (t)

)′
≤ −

m

∑
i=1

qi (t)
(

1−b(gi (s))
φ (δ (gi (s)))

φ (gi (s))

)p−1
zp−1(gi (t)).

Then,(
r (t)

∣∣z′ (t)∣∣p−2 z′ (t)
)′

≤ −zp−1(gmax (t))
m

∑
i=1

qi (t)
(

1−b(gi (s))
φ (δ (gi (s)))

φ (gi (s))

)p−1

= −H (t)zp−1(gmax (t)).

Thus, the proof is complete.

3.2 Oscillatory behavior of solutions

After investigating the monotonic properties of the
positive solutions, we are prepared to test the oscillation
of all solutions of equation (1). We use several techniques
to obtain different forms of the oscillation criteria for
equation (1).

Theorem 1.Assume that∫
∞

t0

(
1

r (u)

∫ u

t0
H (s)φ

p−1 (gmax (s))ds
)1/(p−1)

du = ∞.

(13)
Then (1) is oscillatory.

Proof.On the basis of assuming the opposite of the results
of this theorem, we assume that there is a positive solution
to the studied equation. It is easy to see that conditions (13)
and (A2) necessarily lead to the fact that∫ t

t0
H (s)φ

p−1 (gmax (s))ds

must be unbounded. Moreover, since φ ′ (s,∞) < 0, we
obtain that (10) holds. From Lemma 2, we have that z is
decreasing eventually. Now, from Lemma 4, we get that
(12) holds. Integrating (12) from t1 to t, we deduce that

r (t)
∣∣z′ (t)∣∣p−2 z′ (t)

≤ r (t1)
∣∣z′ (t1)∣∣p−2 z′ (t1)−

∫ t

t1
H (s)zp−1(gmax (s))ds

≤ −
∫ t

t1
H (s)zp−1(gmax (s))ds. (14)

From Lemma 3, we see that

zp−1(gmax (t))

≥
[
−r1/(p−1) (gmax (t))z′ (gmax (t))

]p−1
φ

p−1 (gmax (t)) ,

which with (14) gives

−r (t)
∣∣z′ (t)∣∣p−2 z′ (t)

≥
∫ t

t1
H (s)

[
−r1/(p−1) (gmax (s))z′ (gmax (s))

]p−1

×φ
p−1 (gmax (s))ds. (15)

Since gmax (t) is nondecreasing and r (t)(−z′ (t))p−1 is
decreasing, we have

r1/(p−1) (gmax (s))z′ (gmax (s))≤ r1/(p−1) (gmax (t1))z′ (gmax (t1))

for all s ≥ t1. Thus, (15) becomes

z′ (t) ≤ −
[
−r1/(p−1) (gmax (t1))z′ (gmax (t1))

]
×
(

1
r (t)

∫ t

t1
H (s)φ

p−1 (gmax (s))ds
)1/(p−1)

.

Integrating once more from t1 to t, we get

z(t) ≤ z(t1)−
[
−r1/(p−1) (gmax (t1))z′ (gmax (t1))

]
×
∫ t

t1

(
1

r (t)

∫ t

t1
H (s)φ

p−1 (gmax (s))ds
)1/(p−1)

.

Therefore, by (13) we have limt→∞ z(t) = −∞, which
contradicts with the fact that z(t) > 0. The proof is
complete.

Theorem 2.Assume that

limsup
t→∞

(
φ

p−1 (t)
∫ t

t0
H (s)ds

)
> 1. (16)

Then (1) is oscillatory.

Proof.On the basis of assuming the opposite of the results
of this theorem, we assume that there is a positive solution
to the studied equation. It is easy to see that conditions
(16) and (A2) necessarily lead to (10) holds. Then, from
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Lemma 2, we have that z is decreasing eventually.
As in the proof of Theorem 1, we arrive at

r (t)
∣∣z′ (t)∣∣p−2 z′ (t) ≤ −

∫ t

t1
H (s)zp−1(gmax (s))ds

≤ −zp−1(gmax (t))
∫ t

t1
H (s)ds

≤ −zp−1(t)
∫ t

t1
H (s)ds. (17)

From Lemma 3, we get

zp−1(t)≥ r (t)
(
−z′ (t)

)p−1
φ

p−1 (t) ,

which with (17) gives

−r (t)
∣∣z′ (t)∣∣p−2 z′ (t)≥ r (t)

(
−z′ (t)

)p−1
φ

p−1 (t)
∫ t

t1
H (s)ds,

and so
1 ≥ φ

p−1 (t)
∫ t

t1
H (s)ds.

By taking limsupt→∞ for both sides of the above
inequality, yields a contradiction with (16). Hence, the
proof is complete.

It is known that studying the oscillatory behavior of
differential equations in the canonical case is easier than
studying them in the noncanonical case. Therefore, we
find many studies that focus on investigating the
oscillatory behavior of equations in the canonical case
using many different techniques and methods. Based on
this, we can say that coupling the oscillation of equation
(1) with the oscillation of another equation, but in the
canonical case, allows us to benefit from previous studies
in finding many oscillation cariteria.

Theorem 3.Assume that (10) holds, and the cononical
delay DDE

0 =
(

r1/(p−1) (t)φ
2 (t)w′ (t)

)′
+

H (t)φ p−1 (t)
(p−1)

φ (gmax (t))w(gmax (t)) (18)

is oscillatory. Then (1) is oscillatory.

Proof.On the basis of assuming the opposite of the results
of this theorem, we assume that there is a positive solution
to the studied equation. From Lemma 2, we have that z is
decreasing eventually. It follows from Lemma 4 that (12)
holds.

Now, since z′ (t)< 0, we get z(gmax (t))≥ z(t). Hence,
it follows from Lemma 3 that

z(gmax (t))≥ z(t)≥−r1/(p−1) (t)z′ (t)φ (t) .

If p ≥ 2, then we have[
r1/(p−1) (t)(−z′ (t))

z(gmin (t))

]p−2

≤ φ
2−p (t) . (19)

Moreover, from (12), we obtain

−H (t)zp−1(gmax (t))

≥ −
(

r (t)
∣∣z′ (t)∣∣p−2 (−z′ (t)

))′
= −

([
r1/(p−1) (t)

(
−z′ (t)

)]p−1
)′

= −(p−1)
[
r1/(p−1) (t)

(
−z′ (t)

)]p−2(
r1/(p−1) (t)

(
−z′ (t)

))′
,

and so,(
r1/(p−1) (t)

(
z′ (t)

))′
≤ − 1

(p−1)

[
r1/(p−1) (t)

(
−z′ (t)

)]2−p
H (t)zp−1(gmax (t))

= − 1
(p−1)

[
z(gmax (t))

r1/(p−1) (t)(−z′ (t))

]p−2
H (t)z(gmax (t)) .

Using (19), we arrive at(
r1/(p−1) (t)

(
z′ (t)

))′
≤ − 1

(p−1)

[
z(gmax (t))

r1/(p−1) (t)(−z′ (t))

]p−2
H (t)z(gmax (t))

≤ − 1
(p−1)

φ
p−2 (t)H (t)z(gmax (t)) . (20)

Next, we find(
r1/(p−1) (t)φ

2 (t)
(

z(t)
φ (t)

)′)′

=
(

r1/(p−1) (t)
[
φ (t)z′ (t)+ r−1/(p−1) (t)z(t)

])′
=
(

φ (t)r1/(p−1) (t)z′ (t)+ z(t)
)′

= φ (t)
[
r1/(p−1) (t)z′ (t)

]′
−r−1/(p−1) (t)

[
r1/(p−1) (t)z′ (t)

]
+ z′ (t)

= φ (t)
[
r1/(p−1) (t)z′ (t)

]′
,

which with (20) gives

0 ≥
(

r1/(p−1) (t)φ
2 (t)

(
z(t)
φ (t)

)′)′

+
1

(p−1)
φ

p−1 (t)H (t)z(gmax (t)) .

Using Corollary 1 in [51], we get w(t) = z(t)
φ(t) is a positive

solution of the equation

0 =
(

r1/(p−1) (t)φ
2 (t)w′ (t)

)′
+

1
(p−1)

H (t)φ
p−1 (t)φ (gmax (t))w(gmax (t)) .

This contradicts the assumptions of the theorem. Thus, the
proof is complete.
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Corollary 1.Assume that (10) holds, and

liminf
t→∞

∫ t

gmax(t)
H (u)φ

p−1 (u)φ (gmax (u))

×

(∫ gmax(u)

t1

r−1/(p−1) (s)
φ 2 (s)

ds

)
du >

p−1
e

(21)

for some t1 ≥ t0. Then (1) is oscillatory.

Proof.Using Theorem 4 in [52], we find that condition (21)
guarantees the oscillation of equation (18). From Theorem
3, we conclude that equation (1) is also oscillatory.

3.3 Examples and discussion

Here, we verify the efficiency of previous theorems in
testing oscillation for a special case of the studied
equation.

Example 1.Consider the second-order NDE(
t p ∣∣z′ (t)∣∣p−2 z′ (t)

)′
+q0

m

∑
i=1

|x(λit)|p−2 x(λit) = 0, (22)

where t ≥ 1
z(t) = x(t)+b0x(δ0t) ,

p ≥ 2, q0 > 0, δ0 ∈ (0,1) , λi ∈ (0,1) , for i = 1,2, ...,m.
It is easy to see that r (t) = t p, b(t) = b0, q(t) = q0, δ (t) =
δ0t, gi (t) = git, and gmax (t) = λ t, where

λ := max{λi, i = 1,2, ...,m}

Then, we have

φ (t) =
∫

∞

t
s−p/(p−1) (s)ds =

(p−1)
t1/(p−1) ,

and φ (t0)< ∞ (noncanonical case). Moreover,

H (t) = mq0

(
1− b0

δ
1/(p−1)
0

)p−1

:= H0.

Now, we apply the theorem to obtain the oscillation criteria
for equation (22).
For Theorem 1, we see that∫

∞

t0

(
1

r (u)

∫ u

t0
H (s)φ

p−1 (gmax (s))ds
)1/(p−1)

du

=

(
H0 (p−1)p−1

λ

)1/(p−1) ∫
∞

t0

(
lnu
up ds

)1/(p−1)

du

=

(
H0 (p−1)p−1

λ

)1/(p−1)

(p−1)1/(p−1)
Γ

(
1

p−1

)
< ∞.

So condition (13) is not satisfied. Therefore, Theorem 1
fails to verify the oscillation of equation (22)
Using Theorem 2, we get

limsup
t→∞

(
φ

p−1 (t)
∫ t

t0
H (s)ds

)
= H0 (p−1)p−1 limsup

t→∞

(
1
t

∫ t

t0
ds
)

= H0 (p−1)p−1 .

Thus, condition (16) is satisfied if

H0 (p−1)p−1 > 1. (23)

Now, for Corollary 1, we have

liminf
t→∞

∫ t

λ t
H (u)φ

p−1 (u)φ

(
λu
)(∫ λu

t1

r−1/(p−1) (s)
φ 2 (s)

ds

)
du

= H0
(p−1)p

λ
1/(p−1)

liminf
t→∞

∫ t

λ t

1
u

1
u1/(p−1)

 1

φ

(
λu
) − 1

φ (t1)

du

= H0 (p−1)p−1 liminf
t→∞

∫ t

λ t

1
u

du

= H0 (p−1)p−1 ln
1

λ
.

Thus, condition (21) is satisfied if

H0 (p−1)p−1 ln
1

λ
>

p−1
e

. (24)

Hence, equation (22) is oscillatory if (23) or (24) hold.

Remark.To determine which criteria (23) and (24) are
most efficient in testing the oscillation of equation (22),
we apply them to the following special case:(

t2
[

x(t)+
1
4

x
(

1
2

t
)]′)′

+q0

10

∑
k=1

x
(

1
k+1

t
)
= 0,

where t ≥ 1 and q0 > 0. We note that λ = 1/2 and m = 10,
and so H0 = 5q0. Thus, criteria (23) and (24) reduce to

q0 >
1
5

and
q0 >

1
5eln2

respectively. This means that condition (24) guarantees the
oscillation of the equation(

t2
[

x(t)+
1
4

x
(

1
2

t
)]′)′

+
1
6

10

∑
k=1

x
(

1
k+1

t
)
= 0,

while condition (23) fails.
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4 Conclusion

The study of the oscillation of neutral differential
equations depends mainly on the monotonic properties of
the positive solutions as well as the relationships between
the derivatives of these solutions. Therefore, improving
these characteristics and relationships necessarily leads to
improving oscillation crtieria. In this article, we
investigated the monotonic properties of positive
solutions to equation (1), which is one of the neutral
equations with multiple delays. Then, we obtained three
different forms of criteria that guarantee the oscillation of
all solutions to the studied equation. Finally, we verified
the efficiency of these criteria through application to a
special case of the studied equation, and it became clear
that Theorem 3 provides us with the most efficient
criteria. It would be an interesting research point to use
the improved relationships between the solution and its
corresponding function, as in [53], to obtain new
oscillation criteria for equation (1).
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