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Abstract: Extending the investigation of the modified Van der Pol equation with its chaotic behaviour into the context of A-fractional
analysis, the solutions of the A-fractional Van der Pol oscillator are studied under the influence of a horizon restricting the region of
non-locality. The various solutions to the equation depend upon the horizon, however, the chaotic behaviour of the oscillator mainly
depends upon the fractional order. A comparison of the chaotic behaviour of the various Van der Pol oscillator systems is presented.

Keywords: fractional order, fractal dimension, fractional integral, Riemann-Liouville fractional derivative, A-fractional derivative,
left and right A-spaces, horizon.

1 Introduction

Although fractional calculus is a topic introduced almost three centuries ago, its significance has only recently been
appreciated, and it has been mainly used to mathematically address non-locality. Experiments, primarily in
micromechanics, have demonstrated the importance of the non-locality of particles, thus lifting Noll’s axiom of local
action [1]. The non-locality principle, applied mostly spatially, can also be applied in time, where phenomena present a
persistent “memory”. A particular case of a temporally non-local phenomenon is the behaviour of the Van der Pol
oscillator, as implemented by Lazopoulos et al. [2]. In the context of that work, the authors demonstrated the utility of
the A-derivative and of the A-space investigation for Van der Pol oscillators.

Fractional calculus and fractional derivatives were first introduced by Leibniz [3], Liouville [4], and Riemann [5],
and subsequently were investigated by many other mathematicians [6]. The most well-known fractional derivatives are
the Riemann-Liouville, Caputo, and Griinwald-Letnikov derivatives. The Riemann-Liouville and Caputo fractional
derivatives are the result of successive integration, whereas the Griinwald-Letnikov fractional derivative is the result of
successive differentiation.

Fractional derivatives are implemented in a wide range of applications in physics [7,8], mechanics [9,10,11,12,13,
14], chemistry, biology [15], control systems, and economics, among other fields. Although their application in science
has become extensive, fractional derivatives present a significant weakness: they do not comply with the prerequisites
of a proper derivative according to differential topology. Therefore, they do not correspond to differentials capable of
generating differential geometry. In turn, the implementation of fractional calculus in applications of differential geometry,
solution of differential equations, and variational approaches can be problematic.

This important theoretical gap was covered by the introduction of the A-fractional derivative (A-FD) along with
the A-fractional space (A-space) by Lazopoulos et al. [16]. Briefly, the mathematical problem is transferred from the
initial space to a virtual space where all quantities are conventional (non-fractional). The transferring is accomplished by
means of a particular transform, namely the A-transform. In A-space all terms are local and derivatives exist. In turn,
differentials are properly defined and capable of generating a fractional differential geometry. Then, the various results
can be transferred back to the initial space. It is pointed out that only functions can be transferred in this fashion, but not
derivatives. Thus, in order to solve a differential equation in A-space, terms are transferred back to the initial using the
transformation formula. For more details, the interested reader may refer to Lazopoulos et al. [16].
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The chaotic behaviour of the Van der Pol oscillator has been previously discussed in the context of A-fractional
analysis, with the introduction of the fractional order ¥ to the Van der Pol equation and its formulation in terms of the
A-FD [2]. In the present work, the chaotic behaviour of the Van der Pol oscillator is discussed in the context of A-
fractional analysis with a horizon. The idea has been adopted from the theory of peridynamics [17,18], and it accounts
for the influence of particles within an area of distance & from a specific particle x under consideration. In other words,
that distance defines the neighbourhood influences on a particular particle in space. Therefore, the horizon expresses non-
locality, a phenomenon also addressed by fractional calculus. The use of the horizon is decisive in the study of natural
phenomena as it highlights the effect of locality on the behaviour of each point in relation to its effect on the overall
system.

2 The A-Fractional Derivative

The current section presents a brief outline of fractional calculus. For more information on the subject, the interested
reader may refer to the literature [10,11,12].
The left and right fractional integrals for an actual fractional dimension 0 < y < 1 are defined as
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where I'(y) is Euler’'s Gamma function. Further, the left and right Riemann-Liouville (RL) fractional derivatives are
defined as
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For the left fractional integrals and derivatives, the following relation holds:
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A similar relation is true for the right fractional integral and RL-derivative.
The A-fractional derivative is defined as
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Recalling the definition of the RL-derivative, Eq. (3), A-FD can be expressed as
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Considering
X = I\ x,
F(X)=al,7f (x(X)),
A-FD behaves like a conventional derivative with local properties in A-space (X,F (X)), and a fractional differential

geometry can be generated as a conventional differential geometry therein. Subsequently, results can be transferred from
A-space to the initial space by invoking Eq. (5), in the following fashion:

f@x)=RDy7F (X (x) =KDy (o7 (). ©)

Let us now consider a function f(x) in the initial space (x, f(x)). Then, the corresponding function in A-space is
defined by (X,F(X)). Taking in to account the existence of a horizon A, the function f(x) corresponds in A-space to
F(X)— F(X — h). The Taylor expansion of F (X — h) reads:

®)

F(X—h)~F(X)—F (X)h+o(h). (10)
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Therefore, the function in A-space with horizon 4 becomes
F(X)—F(X—h)=~F (X)h. (11)
Finally, transferring the result to the initial space yields:

f(x)=hEDF (X (x)). (12)

3 Van der Pol Oscillator with Horizon

The present study investigates the initial space response y(¢) of the A-fractional forced Van der Pol oscillator, upon which
we have imposed the novel idea of the horizon. The investigation is performed for various values of the fractional order 7.
In a previous work, we examined the behaviour of this system without horizon, and highlighted the features and changes
of the response y(7) in the initial space, for different y values [2].

The forced Van der Pol oscillator in A-space is described by the following second order differential equation:

d*y

de—u(lsz)d—Y +Y =F cos(oT), (13)

dT

where T'(¢), Y(T(t)) are time and displacement, respectively, in A-space, U is a real-valued parameter expressing non-
linearity and strength of damping, F is the amplitude of the driving force and ® its frequency. The time variable in
A-space, T(t), is related to the time variable in the initial space, ¢, by means of the relation:

2

T(t):m.

(14)

In order to implement the idea of the horizon in the present context, we apply the differential operator hd/dT on the
left hand side of Eq. (13), and obtain
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where & is the extent (value) of the horizon. Differentiation takes place on the left hand side because, according to the
theory of peridynamics, only internal forces are considered to change.

The differential equation (15) is solved numerically to provide the solution Y (7' (7)) in A space. Subsequently, the
corresponding solution y(¢) in real time space is obtained from the relation

 RLAL-7 1 i LY (s)
v =80 0 = o [ ey (16)

In the following, the graphs of the orbit Y (T) versus time T, and the phase space dY /dT versus Y (T), are presented
in A-space for various values of the parameter u, along with the corresponding solutions y(¢) for various values of
fractional order ¥ in the initial space. In all solutions, the initial conditions were considered as: Y (0) =1, (dY /dT)(0) =0,
(d?Y /dT?)(0) = 0, the frequency was set to @ = 3, and the horizon value to 1 = 0.5.

The responses Y (7T') and phase plane graphs dY /dT in A-space of the non-damped (¢ = 0) forced Van der Pol
oscillator of fractional order y = 1, for the cases with and without horizon, are shown in Figures 1 and 2, respectively.

Compared to the system without horizon (Fig. 1), the system under the influence of horizon presents a markedly
different periodicity pattern, larger Y (T') oscillation amplitude, different phase plane plot, and smaller range of velocity
dY /dT values (Fig. 2). For non-unity fractional order, the values ¥ = 0.8 and 0.6 were considered. The responses y(¢) and
phase plane graphs dy/dt in real space of the non-damped forced Van der Pol oscillator of fractional order y = 0.8, for
the cases with and without horizon, are shown in Figures 3 and 4, respectively. For ¥ = 0.6, the same cases are shown in
Figures 5 and 6, respectively.

In all four cases, oscillation period and amplitude are not constant any more, with the former decreasing and the latter
increasing with increasing time ¢. For y = 0.8, oscillation amplitudes for the system without horizon are slightly smaller
than the system under the influence of the horizon, while the range of velocity values in the system with horizon is smaller
(Figs. 3, 4). For ¥ = 0.6, the converse is true regarding amplitudes, however, the range of velocity values in the system
with horizon is also smaller (Figs. 5, 6). Although periodicity is qualitatively and quantitatively different between same
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Fig. 1: Solution Y (T') (left) and phase plane (right) in A-space without horizon for g =0, F =10, and y= 1.
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Fig. 2: Solution Y (7') (left) and phase plane (right) in A-space with horizon for t =0, F =10, and y = 1.
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Fig. 4: Solution y(r) (left) and phase plane (right) in real space with horizon for 4 =0, F = 10, ® = 3, and y = 0.8.
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Fig. 6: Solution y(r) (left) and phase plane (right) in real space with horizon for u =0, F = 10, and y = 0.6.

fractional order systems with and without horizon (compare Fig. 3 with 4, and 5 with 6), it is only quantitatively different
between different fractional order systems with or without horizon (compare Fig. 3 with 5, and 4 with 6). In particular,
decreasing the fractional order from ¥ = 0.8 to 0.6 resulted in decrease of oscillation period, increase of amplitude, and
increase of the range of velocity values.

Subsequently, the behaviour of the forced Van der Pol oscillator was investigated in the presence of damping (i # 0).
The responses Y (T') and phase plane graphs dY /dT in A-space of the oscillator for 4 = 1 and y = 1, for the cases with
and without horizon, are shown in Figures 7 and 8, respectively.
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Fig. 7: Solution Y (T') (left) and phase plane (right) in A-space without horizon for g =1, F =5, and y = 1.

Contrary to previous cases, the behaviours of the systems with and without the influence of horizon are no longer
directly comparable. In the case of the oscillator with horizon, a purely chaotic behaviour emerged where response Y (7')
values are only positive and oscillations take place around an increasing median line (Fig. 8).

The responses y(¢) and phase plane graphs dy/dt in real space of the forced Van der Pol oscillator with damping
u =1 and fractional order y = 0.8, for the cases with and without horizon, are shown in Figures 9 and 10, respectively.
For 7= 0.6, the same cases are shown in Figures 11 and 12, respectively.
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Fig. 8: Solution Y (7') (left) and phase plane (right) in A-space with horizon for u =1, F =5, and y = 1.
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Fig. 10: Solution y() (left) and phase plane (right) in real space with horizon for gt =1, F =5, and y = 0.8.
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Fig. 11: Solution y(r) (left) and phase plane (right) in real space without horizon for u =1, F =5, and y = 0.6.
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Fig. 12: Solution y(r) (left) and phase plane (right) in real space with horizon for u =1, F =5, and y = 0.6.

Again, although the responses are markedly different between same fractional order systems with and without horizon
(compare Fig. 9 with 10, and 11 with 12), there are generally only quantitatively different between different fractional

order systems with or without horizon (compare Fig. 9 with 11, and 10 with 12).
Further, increasing the value of damping to pt = 10, the responses Y (T') and phase plane graphs dY /dT in A-space of
the oscillator for y = 1, for the cases with and without horizon, are shown in Figures 13 and 14, respectively.
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Fig. 13: Solution Y (T') (left) and phase plane (right) in A-space without horizon for u = 10, F = 10, and y = 1.
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Fig. 14: Solution Y (7') (left) and phase plane (right) in A-space with horizon for 4 = 10, F =10, and y= 1.

As demonstrated in these figures, the effect of the horizon on the system in A-space produces oscillations of
excessively small amplitude, keeping the system around a possible attractor (Fig. 14), as opposed to a limit cycle

behaviour in the case without horizon (Fig. 13).
The responses y(¢) and phase plane graphs dy/dt in real space of the forced Van der Pol oscillator with damping

1 = 10 and fractional order y = 0.8, for the cases with and without horizon, are shown in Figures 15 and 16, respectively.
For y = 0.6, the same cases are shown in Figures 17 and 18, respectively.
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Fig. 15: Solution y(r) (left) and phase plane (right) in real space without horizon for y = 10, F = 10, and y = 0.8.
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Fig. 16: Solution y(¢) (left) and phase plane (right) in real space with horizon for u = 10, F = 10, and y = 0.8.
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Fig. 17: Solution y(¢) (left) and phase plane (right) in real space without horizon for 4 = 10, F = 10, and y = 0.6.
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Fig. 18: Solution y(¢) (left) and phase plane (right) in real space with horizon for 4 = 10, F = 10, and y = 0.6.
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Once more, systems without horizon yet different fractional order values generally present only quantitative
differences in response (compare Fig. 15 with 17), and the same is true between different fractional order systems with
horizon (compare Fig. 16 with 18). For the employed fractional order values, the existence of a possible attractor for the
systems with horizon is implied from the figures (Figs. 16 and 18).

4 Conclusion

The chaotic behaviour of the Van der Pol oscillator in the context of the A-fractional analysis with horizon is quite different
not only from the classic van der Pol model, but also from the one considered in the A-fractional analysis with global
fractional derivatives. The Van der Pol oscillator was discussed in terms of the recently introduced A-fractional analysis
with horizon, restricting the region of global influence.
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