Progr. Fract. Differ. Appl. 10, No. 2, 261-270 (2024) %N =) 26l

Progress in Fractional Differentiation and Applications
An International Journal

http://dx.doi.org/10.18576/pfda/100207

Solution of Conformable Fractional Heat Equation Using
Fractional Bessel Functions

Almajeda Naamneh, Sharifa Alsharif* and Edris Rawashdeh

Department of Mathematics, Faculty of Sciences, Yarmouk Univeristy, Irbid, Jordan

Received: 2 Sep. 2022, Revised: 18 Oct. 2022, Accepted: 20 Jan. 2023
Published online: 1 Apr. 2024

Abstract: A second order linearly independent solution of the fractional Bessel equation is defined by utilizing the Wronskian matrix
and the fractional Bessel function of the first kind of complex order. Additionally, as an application, a precise solution to a reformulated
fractional type heat equation in one and two dimensions in a circular plate is produced.
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1 Introduction, Motivation and Preliminaries

Bessel functions and related integrals are constantly required in applied mathematics and physics. They arise in spherical
symmetry problems. Moreover, they are considered to be the basic solutions of Bessel’s differential equation

2y 1y + (tz - pz) =0, peR.

Bessel functions are named after the great mathematician W. Bessel (1784 — 1846), while D. Bernoulli (1732) is known
to be the first one who introduced Bessel functions. These function can be obtained by solving the wave equations

Pu_ 5 s
W =c"Vu
in spherical coordinates [1]. Therefore, Bessel functions form an essential pillar in Fourier analysis.

Bessel equations has two fundamental solutions J,, (x)and Y, (x). J,,(x) and ¥, (x) are called the Bessel function of first
and second order, respectively. For more details about Bessel functions, one can see the books by Luke [2] and Watson
[3].

Fractional calculus became a very attractive to mathematician and many different forms of fractional differential
operator were introduced; see [1,3,4,5]. Most of them used an integral form. All definitions appeared couldn’t satisfy the
usual properties of standard derivative except linearity property. In 2014, Khalil and et al. [6] give a new definition of
fractional derivative called “conformable fractional derivative”.

Definition 1./6] Let f : [0,00) — R be a function. The o' order “conformable fractional derivative” of f is defined by

Da(f)(l) — limf(t—’—gtlia) _f(t)

£—0 €

forallt >0,a € (0,1). If f is a—differentiable in some (0,a),a >0, and lim D*(f)(t) exists, then define D*(f)(0) =

lim D(1)(1). 0
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The conformable fractional derivative satisfies the multiplication rule, the quotient rule, however does not satisfy the
chain rule. In addition, the new definition has results that are a natural generalization of the corresponding Roll’s Theorem
and Mean Value Theorem [6,7]. Note that the function may be a—differentiable but not differentiable.

With the use of conformable fractional derivative, the fractional Bessel second order differential equation was
reformulated as follows

¥*D*D%y + ax®*D%y + (xza —o?p? )y=0.
Further, the fractional Bessel function of the first kind of order atp was obtained as

S (=1)* >
T ak+op
ap(¥ Z 2o 2"+Pk'F(k+p+ 1) ’

where aep € R and o € (0,1), [8].

In this paper for v € C, with the use of the fractional Bessel function of the first kind, we define a second order linearly
independent solution of the fractional Bessel equation and verify some of its orthogonality features, using complex order
av and the Wronskian matrix. Additionally, a reformulated fractional type heat equation in one and two dimensions has
been solved for a circular plate.

2 Fractional Bessel Functions of the Second Kind

For v € C, the complex order fractional Bessel function of the first kind av is defined as

¥) = - (_])k x2ak+ocv
Ja )_k;) 2a) .

VRN C(k+v+1)
To determine the second linearly independent solution, let us first discuss the behavior of Jg, (x) as x — 0.
Theorem 1.Let Jy,(x) be the fractional Bessel function of the first kind of complex order, then

0, Re(v)>0
limJg, (x) = 1, v=0
w0 +oo, Re(v)<0,v¢Z

ProofIf Re(v) > 0, then

20k+ov

(—1)k
lim /o, (x) =1
oo xg%z 2a) 2k+v1ar(k+v+1)

( 1)k 20tk+ow
¢ (200K (k+v + 1)Ho

HMs HMs

(
( )k hm(xa)Zk(xa)v
* (200K (k+ v+ 1)x—0
1
= 1lim(x*)" =0
o T ame) =0,

since Re(v) > 0.
Now if v =0, then

11 i (_])k xzak — 1

x=0 /= (200) k! (k+ 1)
Finally, if Re(v) < 0, we have

1)k 20tk+ov
hmJav ) =lim Z

0= (2a) 2k+vk'1"(k+v+ 1)

] v
oo rname)

::’:OO7

since Re(v) < 0.
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As a conclusion of Theorem 1, it is easy to see that the two solution Jy, (x) and J_ g, (x) are linearly independent and
any linear combination is also a solution if v ¢ Z, else they are linearly dependent. Thus we define

_cos(vt)Jo(x) — J_ay(x)
Yoo (x) = sin(vrr) ’

the fractional Bessel function of the second kind of order av.
For p € Z, we define

Y(xp(.x) = EE;I}JY(XV(.X)

Definition 2./9] For two functions y| and y, satisfying the conformable fractional linear differential equation
D*D%y+ P(x)D%y+ Q(x)y =0,
where 0 < o0 < 1. The fractional Wronskian of the solutions is defined by

_ Y1 V2
Wa(y1,y2) ‘Da(yl) D%(y,)

.y P(x)

—e xl-a

dx

Theorem 2.Jy,(x) and Yo, (x) are two linearly independent solutions of the fractional Bessel equation for all v € C.
Proof.This can be shown by computing the Wronskian determinant for conformable fractional differential equations [10].
First, rewrite the fractional Bessel second order differential equation in the form

2v2

0,

(04
D“D“y+x—aD“y+ (=g )=

then the Wronskian determinant of Jy, (x) and Yy, (x) turns out to be

Jow(x) Yo (x)

Since W (Jgy(x), Yo (x)) # 0; then the result holds.

3 Orthogonality and Normalization of Fractional Bessel Function

Given a fixed nonnegative integer p, the function Jo,(x) has an infinite number of positive zeros; zx o). Figure 1.1
describes the graph of Jq,(x) with oo = 0.75 and p = 2, where it is clear that it has infinitely number of positive zeros.
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Figure 1.1: Jo,(x) with o = 0.75 and p = 2.
To determine the coefficients Ay in a given series of the form
flx) = ZAkJap(Zk,apx)v
k=1
we need to determine the orthogonality relation as in the following theorem.

Theorem 3.For a fixed integer p > 0 and a,b are distinct positive zeros of Jop(X), we have

I
/ x*Jgp(ax)Jop(bx)d*x =0
0

and X
1
52, (@)d% = S Uaprala))
0

Proof.If we write the fractional Bessel equation
20 0t HO oo 20 2 2\, _
xX*DUD% + ax“DYy+ (x** —a"p”)y =0

in the form
xocDoc(anocy) + (x2a . a2p2)y -0

and replace x by ax, we get

x*D¥(x*D%y) + ((ax)** — a*p?)y = 0. 3.1
Thus, the equation has a solution
y =Jap(ax).
Similarly, replace x by bx, we get
x*D¥(x*D%y) + ((bx)** — a*p?)y = 0. (3.2)
Then
y =Jap(bx)

is also a solution. Multiply the differential equation 3.1 by Jq,(bx) and the differential equation 3.2 by Jg,(ax), subtract
the resulting equations and divide by x* then add and subtract the term x*D%*(Jq,(ax))D*(Jqp(bx)) to get

D¥[x%J g (bx) - D* (Jap(ax)) — x%Jgp(ax) - D* (Jaup (%)) + (a*% — b**)x%J g (ax)J o (bx) = 0.
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Integrate the resulting equation from O to 1 to obtain

[x*Jap(bx) - D*(Jop
—x%Jqp(ax) - D*(Jq

+/ — b*)x%J g (ax)J o (bx)d%x = 0.
If a and b are distinct positive zeros of Jo,(x), then

1
(a** — bm)/o x*Jgp(ax)Jop(bx)d*x = 0.

Thus |
/ x¥Jgp(ax)Jop(bx)d*x = 0.
0
Back to the fractional Bessel equation, replace x by ax to get
K*EDYD% + ax*D% + ((ax)** — o’ p*)y = 0.
Then
y =Jap(ax)
is a solution. Multiply the differential equation by 2D%y, we have
2x2%D*yDYD%y 4 2ax*D*yD%y + 2((ax)** — o> p*)yD%y = 0,
which is equivalent to
D% [x2a (Docy)Z] + D% [aZaXZayZ] 2060205 o 2 Da[azpzyz] 0.

Therefore
D¥[x**(D%Jgp(ax))?] + D* [azaxm]ép(ax)] — ZOcazax“Jép(ax) — D% [Ozzszép (ax)] =0.

Integrate from O to 1 for both side to obtain

1
200a* /xa.]ép(ax)dax = [P*(D%gp(ax))? + (a®%x*% — Oczpz).]ép(ax)](l).
0

Atx=0,Jq,(0)=0. Atx=1,
D%Jgp(ax) = a*D%Jgp(a) = a*D*[Jop(ax)]y=1.

So we have
1

/x“Jép(ax)dax =

0

20ta% [(aaDaJaP(a))z + (a2(x - azpz)‘]gtp( )]

Since a is a positive zeros of Jy, (x) then Jo,(a) = 0 and

1
1 1
/xajép(ax)dax = ﬁ(DaJap(a))z = ﬁ(-’apﬂx(a))z-
0

Corollary 1.Let f be a function defined on the interval 0 < x < 1, and that it has a Fourier-fractional Bessel series

expansion given by

x) = ZAkJO!p(Zk,(xpx)'
k=1

where z; ¢, are the zero’s of Jy,. Then the coefficients Ay are

20 ) /f(x)]a,, (2k,0pX)x%d%x.

Ay=——"——
(Jaera (Zk,ap 2 0
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Proof-Multiply both side of the series by x*J(zk,apx) and integrate from 0 to 1 to get

1 1

/f(x)]a,,(zk’a,,x)xadax = ZA" /xa‘]gzp(zk,anx)dax
k=1
0 0

=

R Z Ak(Jap+oc(Zk,ocp))2-
k=1

:_OcAr(JocHoc(Znaﬁ))z'

Therefore

1
20
Ar:—/ ) on (2 o) x%d%x.
Vap+alzrap))? ) S ap(zrapx)

4 Fractional Heat Equation in One Circular Plate

Using conformable fractional derivative, many authors tried to reformulate the general form of heat equation to fractional
form, see [10,11,12]. One of these forms is the homogeneous conformable heat equation defined on a radial symmetric
plate [12],

0% . %u  19u

W“(v ):B[th;g] @D

u(r,0) =T
u(0,£) =0

lu(1,¢)] <o as r—0"

forO<r<1,t>0and a € (0,1). Using separation of variable method, the general solution is

hnd 1 7212
u(rt) =27 Y, ———— e MPt jy(Aer), (4.2)
(r1) °£xm<u o(Ar)

where Ay is the k'th positive zero of Jy.
With the use of the fractional Bessel functions, we obtain an exact solution for the fractional heat conduction equation
in circular disk of radius 1 as follows:

Theorem 4. For 0 <r < 1,t > 0and o € (0,1), the exact solution of the fractional heat conduction equation

J L, 9% 9 a 9%
EM(V,I)—C (W(WM(V,I))-F”—&WM(V,I)) (43)
u(l,1) =0

lu(rt)| <ecasr—0

u(r,0) = f(r) =To

is given by
> 1 _j2a.2
u(nt) =2aT; — M Ty (Agr).
(k) =20 Y 7o o(Aer)
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Proof.By separation of variable method, let

Then ; e N
R(r)5.T(1) = CQT(I)(W(WR@) i %wR(V))-
So "
LTG0 1 . &g
270 ~ &) D P RO+ gDR(M) =k =A%

Thus, we obtain two ordinary differential equations
T'(t) +A*PT (1) =0 (4.4)

and
D*D*R(r)+ —O; D*R(r) 4+ A*R(r) = 0. (4.5)
r

Note that we choose the separation constant & to be negative since else the factor 7'(¢) doesn’t go to zero as t — o.
The solution of the ordinary differential equation (4.4) is

T(t) = e 4,

Multiply the differential equation (4.5) by 7%, we have
r**D*D*R(r) + or*D*R(r) + A*r**R(r) = 0,
which is a fractional Bessel differential equation of order 0. Therefore, the solution is
R(r) = c1Jo(A@r) + caYo(Aar).
Since Y is not bounded as r — 0, then we must have ¢, = 0. So the solution is
R(r) = c1Jo(A @ r).

Applying the boundary condition R(1) = 0, gives us

c1do(Aa) =0.

In order to get a nontrivial solution, we must have

RI—

Jo(A%) =0

and 17 = Ay Ao, A, (ké A, k=1,2,3,...) are the k'th positive root of Jy. Thus

Ri(r) = Jo(Agr)
and the fundamental solution given by
ug(rr) = e~ ()
satisfies the differential equation (4.3) and the boundary conditions for each positive integer k. The general solution

=)

200,.2
w(r,t) =Y Ay e M gy (Agr)
k=1
also satisfies the initial condition. To determine the coefficient Az, we must have

u(r.0) = £() = ¥ Ay Jo(ar),

k=1
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where
1

/ r‘xf J() lkr

0

20

Ta (M

Through integration by substitution, let Axr = x, and if f(r) = Ty, we have

Ak
20 Ty "

__ == v o o
= e |

20 Ty A
=720 Gyt e’
- 2aTy
- Mda(Ak)

Thus, the general solution is
7120:

N .- 1 2t
u(rt) = 206T0k2::l lk-/a(lk) Jo(Axr).

As an application of the fractional Bessel functions of the first and second order, an exact solution of the fractional
heat equation in two dimensional circular plate is given in the following Theorem.

1
Theorem 5.For 0 < r<1,0< 0 < 2an)a, t >0 and o € (0,1), the exact solution of the fractional heat conduction
equation in two dimension circular disk,

% 9 o 9% 1 9% 9%

u(raevt) (ara(a o (rG t)) awu(raevt) Zot 890‘(800‘ (rG t)))

9
ot
u(l,0,1) =
lu(r,0,1)] <o as r—0,

u(r,0,1) =u ( (2a7r)5,t),

o

00%

=
-
—

u(r,0,t) = 860‘ u(r,2am)«,
u(r,0,0) =f(r,0) =To,

is given by
20 m m
0,1) 2:2:] et —0%) + by msin(=0%)].
(r, m(Anmt)e [an,mcos(a )+ n,msm(a )]

m=0n=
Proof.By separation of variable method, let
u(r,0,t) =R(r)-®(0)-T(t).

Then

R()®(8) 2 T(1) = T @(O)] o (9 R + T R 4 ) (T (6]
and 1 1
1 1
2 TE ) = R(r_) (DaDaR(r) + %DQR(")) + 20 @(Q)DaDaé(e) =k=—2"%

Thus, we obtain the ordinary differential equation
T' (1) 4+ A*c*T (1) =0

and the solution is
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Also,
r?*D*D*R(r) + or®D*R(r) + A*r**R(r)  D*D*®(6)
R(r) e M
Thus
rzaDaDaR(r) +ar®*D*R(r) + (lzrm —WR(r)=0 (4.6)
and

D*D*®P(0)+ud(6) =0.
Case 1: If 4 < 0; u = —n?, then we have

a

@(9) = Cle%Ga +C2€77"9 .

But 1
P(0) = P((2am)«)

and
D*®(0) = DP((2am) # ).

Therefore C; = 0 = C,. We conclude that u cannot be negative.
Case 2: If u > 0; u = m? with m > 0 then we have

m .m
P(0)=C cos(aea) +C251n(59°‘).

But what is meant by boundary conditions on 0 is that @(68) and D*®(0) is o.—periodic with period P = (205717)%. So if

we apply the condition ®(0) = @((2an) é) to the solution, we get C; = C) cos(2mm) + Cy sin(27wm). This happens when
m = n € Z, and since we can take it to be nonnegative due to the constants C; and C5,

P(0) =Cycos(mB) +Cysin(mb), C1,Co € R, me NU{0}
Rewrite the differential equation (4.6) as follows
r**D*DR(r) + ar®DUR(r) + (A*r** — o> —)R(r) = 0,
which is fractional Bessel differential equation (p = g), hence
R(r) = AJ(A@r) + BY, (A r).
Since Y, is not bounded as » — 0, then we must have B = 0. So the solution is
R(r) = Al(Ar).

Applying the boundary condition R(1) = 0, gives us

RI—

Alw(A) = 0.

In order to get a nontrivial solution, we must have

RI—

Jn(A%) =0

1 ..
and A @ = A, ,, are the n'th positive roots of J,,. So that

Rn,m(r) = Jm(zfrz,mr)a

forn>1and m > 0. Also,
200 .2
Tom(t) = e Pumet
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The fundamental solution is
Unm(r,0,1) = Ry m(r) - §n(0) - Ty p(1).
The general solution is

oo oo

(0,) = ¥ ¥ Jn(Anur)e M5 (a1 cos( = 0%) + by sin( = 0%)].
m=0n=1 a a
Setting ¢ = 0, we have
F(r0) =u(r,0,0)= Y Y Ju(Anr) [an,mcos(ge“)+bn,msin(gea)],
m=0n=1

which is a Fourier series for f(r,0) on the interval [0, P] with P = (20677:)& holding r is fixed [13]. Therefore

= dae

Z’ Anor) ano—z / 91 =+ Jorm=0.
i]m(lnmr ) A = / f(r,6 cos(mea) a9 ., form>1.
n=1 ’ « 61—« -
d 1 /P . .m do
Y Jn ) bn,sz/O F00)sin(20%) o form>1.

n

These Fourier series coefficients are actually Fourier-fractional Bessel series expansion, so that

20 /l : /Pf( 0)d0 | Jo(Jon or)r®*d®
n0 =73 79 o I, n0f)r r
o J%(Anp) Jo |27 Jo om0

a Pt de
:m/o /0 f(r,G)Jo(lnyor)radarm, form:(), n> 1.

2a Pl m de
= . 0) cos(— 0%) (A yur) r%d® , >1,n>1.
anm = ) ) SO oGO i gi=g,  form 21,z

2a Pl .m do
b = m/ ./0 f(r,9)sm(a90‘)Jm(xnymr)r°‘dar617(1, form=>1,n>1.
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