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Abstract: In this paper, we are concerned with the existence of infinitely many solutions for the following fractional Hamiltonian

system
{

tD
α
∞(−∞Dα

t u)(t)+L(t)u(t) = ∇W (t,u(t)), t ∈ R

u ∈ Hα (R),
(1)

where −∞Dα
t and tD

α
∞ are left and right Liouville-Weyl fractional derivatives of order 1

2 < α < 1 on the whole axis respectively,

L ∈C(R,RN2

) is a symmetric matrix valued function unnecessary coercive and W (t,x) ∈C1(R×RN ,R). The novelty of this paper is

that, assuming that L is bounded from below and unnecessarily coercive at infinity, and W is only locally defined near the origin with

respect to the second variable, we show that (1) possesses infinitely many solutions via a variant Symmetric Mountain Pass Theorem.

Keywords: Fractional Hamiltonian systems, infinitely many solutions, variational methods, locally defined potentials, symmetric

mountain pass theorem.

1 Introduction

In the present paper, we are interested in the existence of infinitely many solutions for a class of fractional Hamiltonian
systems of the following form

(FH S )

{
tD

α
∞(−∞Dα

t u)(t)+L(t)u(t) = ∇W (t,u(t)), t ∈ R
u ∈ Hα(R),

where −∞Dα
t and tD

α
∞ are left and right Liouville-Weyl fractional derivatives of order 1

2
< α < 1 on the whole axis

respectively, L ∈ C(R,RN2
) is a symmetric matrix valued function unnecessary coercive and W : R×RN −→ R is a

continuous function, differentiable in the second variable with continuous derivative ∂W
∂x

(t,x) = ∇W (t,x).

Recently, equations including left and right fractional derivatives have attracted extensive attentions because of its
applications in mathematical modeling of processes in physics, mechanics, control theory, viscoelasticity,
electrochemistry, bioengineering, economics and others. Therefore, the theory of fractional differential equations is an
area intensively developed during the last decades. The existence and multiplicity of solutions for fractional differential
equations have been established by the tools of nonlinear analysis, such as fixed point theory [1], topological degree
theory [2], comparison methods [3], and so on.
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It should be noted that critical point theory and variational methods serve as effective tools in the study of integer-order
differential equations. The underlying idea in this approach rests on finding critical points for a suitable energy functional
defined on an appropriate function space. During the last three decades, the critical point theory has developed into a
wonderful tool for investigated the existence criteria for the solutions of differential equations with variational structures,
for example, see [4,5] and the references cited therein.
Motivated by the classical works in [4,5], for the first time, the authors [6] showed that critical point theory and variational
methods are an effective approach to tackle the existence of solutions for the following fractional boundary value problem

{
tD

α
T (0Dα

t u)(t) = ∇W (t,u(t)), t ∈ [0,T ]
u(0) = u(T ),

and obtained the existence of at least one nontrivial solution. Inspired by this work, Torres [7] consider the fractional
Hamiltonian system (FH S ). Assuming that the functional L is positive definite symmetric matrix for all t ∈ R and
coercive, and the potential W (t,x) satisfies some suitable conditions, he showed that (FH S ) possesses at least one
nontrivial solution using the Symmetric Mountain Pass Theorem. Since then, the existence and multiplicity of solutions
for problem (FH S ) via critical point theory have been investigated in many papers, see [7]-[22] and the references
cited therein. In all these papers, W (t,x) was always required to satisfy some kinds of growth conditions at infinity with
respect to x, such as superquadratic, subquadratic or asymptotically quadratic growth. Besides, the function L is required
to satisfy one of the following conditions:
(1.1) There exists an l ∈C(R,R+) such that l(t)−→+∞ as |t| −→ ∞ and

L(t)x · x ≥ l(t) |x|2 , ∀(t,x) ∈ R×RN.

Here and in the following, ”.” denotes the usual inner product of RN and |.| is the induced norm.
(1.2) There are constants 0 < τ1 < τ2 <+∞ such that

τ1 |x|
2 ≤ L(t)x · x ≤ τ2 |x|

2 , ∀(t,x) ∈R×RN .

(1.3) (i) There exists an l ∈C(R,R) such that

inf
t∈R

l(t)> 0 and L(t)x · x ≥ l(t) |x|2 , ∀(t,x) ∈ R×RN,

(ii) There exists a constant r0 > 0 such that

lim
|s|−→∞

meas
(
{t ∈]s− r0,s+ r0[: L(t)< bIN}

)
= 0, ∀b > 0,

where meas denotes the Lebesgue’s measure on R. The conditions (1.1), (1.2) and (1.3) guarantee the compactness of the
Sobolev embedding.
In the present paper, we will study the existence of infinity many solutions for (FH S ) in the case where W (t,x) is
still only locally defined near the origin with respect to x and L satisfies some weaker conditions than (1.1)− (1.3). More
precisely, we make the following assumptions:
(L) There exists a constant l0 > 0 such that

l(t) = min
|ξ |=1

L(t)ξ ·ξ ≥ l0, ∀t ∈ R.

There exists a constant δ > 0 such that W ∈ C(R×Bδ (0),R) is continuously differentiable in the second variable with

continuous derivative ∇W (t,x) = ∂W
∂x

(t,x), where Bδ (0) is the open ball in RN centered at 0 with radius δ , and satisfies

(W1) W (t,x) is even in x and W (t,0) = 0,∀t ∈R;

(W2) There exist constants ν ∈]1,2[, β1 ∈ [1,2], β2 ∈ [1, 2
2−ν ] and nonnegative functions a ∈ Lβ1(R,R+), b ∈ Lβ2(R,R+)

such that
|∇W (t,x)| ≤ a(t)+ b(t) |x|ν−1 , ∀(t,x) ∈ R×Bδ(0);

(W3) lim
|x|−→0

W (t,x)

|x|2
=+∞, uni f ormly in t ∈ R.

Our main result reads as follows.

Theorem 1.Suppose that (L) and (W1)− (W3) are satisfied. Then the fractional Hamiltonian system (FH S ) possesses

a sequence of solutions (uk) such that

max
t∈R

|uk(t)| −→ 0 as k −→ ∞.
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2 Preliminaries

In this Section, for the reader’s convenience, first we will recall some facts about the fractional calculus on the whole real
axis. On the other hand, we will give some preliminary lemmas for using in the sequel.

2.1 Liouville-Weyl Fractional Calculus

The Liouville-Weyl fractional integrals of order 0 < α < 1 on the whole axis R are defined as (see [23,24,25])

−∞Iα
t u(t) =

1

Γ (α)

∫ t

−∞
(t − x)α−1u(x)dx, (2)

and

t I
α
∞ u(t) =

1

Γ (α)

∫ ∞

t
(x− t)α−1u(x)dx. (3)

The Liouville-Weyl fractional derivatives of order 0 < α < 1 on the whole axis R are defined as the left-inverse operators
of the corresponding Liouville-Weyl fractional integrals (see [23,24,25])

−∞Dα
t u(t) =

d

dt
(−∞I1−α

t u)(t), (4)

and

tD
α
∞u(t) =−

d

dt
(t I

1−α
∞ u)(t). (5)

The definitions of (4) and (5) may be written in an alternative form as follows

−∞Dα
t u(t) =

1

Γ (1−α)

∫ ∞

0

u(t)− u(t− x)

xα+1
dx, (6)

and

tD
α
∞u(t) =

1

Γ (1−α)

∫ ∞

0

u(t)− u(t+ x)

xα+1
dx. (7)

We establish the Fourier transform properties of the fractional integral and fractional differential operators. Recall that the
Fourier transform û of u is defined by

û(s) =
∫ ∞

−∞
e−istu(t)dt.

Let u be defined on R. Then the Fourier transform of the Liouville-Weyl integrals and differential operators satisfies (see
[4,12])

−̂∞Iα
t u(s) = (is)−α û(s), (8)

̂
t Iα

∞ u(s) = (−is)−α û(s), (9)

−̂∞Dα
t u(s) = (is)α û(s), (10)

t̂Dα
∞u(s) = (−is)α û(s). (11)

Next, we present some properties for Liouville-Weyl fractional integrals and derivatives on the real axis, which were
proved in [12].
Denote by Lp(R) (1 ≤ p < ∞), the Banach spaces of functions on R with values in RN under the norms

‖u‖Lp = (
∫

R
|u(t)|p dt)

1
p ,

and L∞(R) the Banach space of essentially bounded functions from R into RN equipped with the norm

‖u‖∞ = esssup{|u(t)|/t ∈ R} .
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Proposition 1.1) Let p,q ∈ [1,∞], α > 0. The operators −∞Iα
t and t I

α
∞ are bounded from Lp(R) to Lq(R) if and only if

0 < α < 1, 1 < p <
1

α
, q =

p

1−α p
,

2) If α > 0, for ”sufficiently good” function u, the relations

(−∞Dα
t (−∞Iα

t u))(t) = u(t), (tD
α
∞(t I

α
∞ u))(t) = u(t) (12)

are true. In particular, these relations hold for u ∈ L1(R),
3) Let α,β > 0 and p ≥ 1 be such that α +β = 1

p
. If u ∈ Lp(R), then

(−∞I
β
t (−∞Iα

t u))(t) =−∞ I
α+β
t u(t), (t I

β
∞(t I

α
∞ u))(t) =t Iα+β

∞ u(t), (13)

4) If α > β > 0, then

(−∞D
β
t (−∞Iα

t u))(t) =−∞ I
α−β
t u(t), (tD

β
∞(t I

α
∞ ))(t) =t Iα−β

∞ u(t). (14)

Proposition 2.If α > 0, then the relations

∫

R
ϕ(t) · (−∞Iα

t ψ)(t)dt =

∫

R
(t I

α
∞ ϕ)(t) ·ψ(t)dt, (15)

∫

R
u(t) · (−∞Dα

t v)(t)dt =

∫

R
(t D

α
∞u)(t) · v(t)dt, (16)

are valid for ”sufficiently good” functions ϕ ,ψ ,u,v. In particular, (15) holds for functions ϕ ∈ Lp(R) and ψ ∈ Lq(R),
while (16) holds for u ∈ t I

α
∞(L

p(R)) and v ∈ −∞Iα
t (Lq(R)) provided that p > 1, q > 1 and 1

p
+ 1

q
= 1+α , where

t I
α
∞ (L

p(R)) = {u/∃ϕ ∈ Lp(R),u = t I
α
∞ ϕ} ,

similarly, −∞Iα
t (Lq(R)) can be defined.

2.2 Fractional Derivative Spaces

In order to establish the variational structure which enables us to reduce the existence of solutions of (FH S ) to find
critical points of the corresponding functional, it is necessary to construct the appropriate functional spaces.
For α > 0, define the semi-norm

|u|Iα
−∞

= ‖−∞Dα
t u‖L2

and the norm
‖u‖Iα

−∞
= (‖u‖L2 + |u|2Iα

−∞
)

1
2 ,

and let

Iα
−∞ =C∞

0 (R)
‖.‖|Iα

−∞

where C∞
0 (R) denotes the space of infinitely differentiable functions from R into RN with vanishing property at infinity.

Now, we can define the fractional Sobolev space Hα(R) in terms of the Fourier transform. Choose 0 < α < 1, define the
semi-norm

|u|α =
∥∥|s|α û

∥∥
L2

and the norm
‖u‖α = (‖u‖L2 + |u|2α)

1
2 ,

and let

Hα(R) =C∞
0 (R)

‖.‖α .

Moreover, we note that a function u ∈ L2(R) belongs to Iα
−∞ if and only if

|s|α û ∈ L2(R).
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Especially, we have

|u|Iα
−∞

=
∥∥|s|α û

∥∥
L2 .

Therefore, Iα
−∞ and Hα(R) are equivalent with equivalent semi-norms and norms. Analogous to Iα

−∞, we introduce Iα
∞ .

Define the semi-norm

|u|Iα
∞
= ‖tD

α
∞u‖L2

and the norm

‖u‖Iα
∞
= (‖u‖L2 + |u|2Iα

∞
)

1
2 ,

and let

Iα
∞ =C∞

0 (R)
‖.‖|Iα

∞

Then Iα
−∞ and Iα

∞ are equivalent with equivalent semi-norms and norms. Let C(R) denotes the space of continuous

functions from R into RN . Then we obtain the following Sobolev lemma.

Lemma 1([7], Theorem 2.1). If α > 1
2
, then Hα(R)⊂C(R), and there exists a constant C =Cα such that

‖u‖L∞ = sup
t∈R

|u(t)| ≤Cα ‖u‖α ,∀u ∈ Hα(R). (17)

Remark 1. From Lemma 1, we know that if u ∈ Hα(R) with 1
2
< α < 1, then u ∈ Lp(R) for all p ∈ [2,∞], because

∫

R
|u(t)|p dt ≤ ‖u‖p−2

∞ ‖u‖2
L2 . (18)

In what follows, we introduce the functional space in which we will construct the variational framework of (FH S ).
Let

Xα =

{
u ∈ Hα(R)/

∫

R
[|−∞Dα

t u(t)|2 +L(t)u(t) ·u(t)]dt < ∞

}

then Xα is a reflexive and separable Hilbert space with the inner product

< u,v >Xα=

∫

R
[−∞Dα

t u(t) ·−∞ Dα
t v(t)+L(t)u(t) · v(t)]dt

and the corresponding norm ‖u‖2
Xα =< u,u >Xα . Evidently, Xα is continuously embedded into Hα(R). Hence Xα is

continuously embedded in Lp(R) for all p ∈ [2,∞] and compactly embedded in L
p
loc(R) for all p ∈ [2,∞], where L

p
loc(R)

denotes the space of measurable functions u from R into RN such that for all compact K ⊂ R,
∫

K |u(t)|p dt < ∞.
Consequently, for all p ∈ [2,∞], there exists a constant ηp > O such that

‖u‖Lp ≤ ηp ‖u‖Xα , ∀u ∈ Xα . (19)

To prove our main result via critical point theory, we shall use the following symmetric mountain pass theorem developed
by Kajikiya [26]. We will first recall the notion of genus.
Let X be a Banach space and let A be a subset of X . A is said to be symmetric if u ∈ A implies −u ∈ A. For a closed
symmetric set A which does not contain the origin, we define the genus γ(A) of A by the smallest integer k for which there
exists an odd continuous mapping from R to Rk \{0}. If such a k does not exist, we define γ(A) = +∞. Moreover, we set
γ(φ) = 0. Let

Γk = {A ⊂ E/A is a closed symmetric subset, 0 /∈ A, γ(A)≥ k} .

The properties of genus used in the proof of our main result are summarized as follows.

Lemma 2([26], Proposition 7.5.). Let A and B be closed symmetric subsets of E that do not contain the origin. Then the

following hold.

(i) If A ⊂ B, then γ(A)≤ γ(B).
(ii) The N−dimensional sphere SN has a genus of N + 1 by the Borsuk-Ulam theorem.
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Lemma 3.[26] Let X be an infinite-dimensional Banach space and Φ ∈ C1(X ,R) an even functional with Φ(0) = 0.

Suppose that Φ satisfies

(1) Φ is bounded from below and satisfies the (PS)−condition;

(2) For each k ∈ N, there exists Ak ⊂ Γk such that

sup
u∈Ak

Φ(u)< 0.

Then (a) or (b) below hold

(a) There exists a critical point sequence (uk) such that Φ(uk)< 0 and limk−→∞ uk = 0;

(b) There exist two critical point sequences (uk) and (vk) such that Φ(uk) = 0, uk 6= 0 and limk−→∞ uk = 0, Φ(vk) < 0,

limk−→∞ Φ(vk) = 0 and (vk) converges to a non-zero limit.

3 Proof of Theorem 1.1.

In order to prove our main result via critical point theory, we need to modify W (t,x) for x outside a neighborhood of

the origin to get W̃ (t,x) as follows. Choose a constant r ∈]0, δ
2
[ and define a cut-off function χ ∈ C1(R+,R+) such that

χ(s) = 1 for 0 ≤ s ≤ r, χ(s) = 0 for s ≥ 2r and − 2
r
≤ χ ′(s)< 0 for r < s < 2r. Let

W̃ (t,x) = χ(|x|)W (t,x), ∀(t,x) ∈R×RN . (20)

Combining (W1), (W2) and the definition of χ , we obtain

∣∣∣W̃ (t,x)
∣∣∣≤ a(t) |x|+ b(t) |x|ν , ∀(t,x) ∈ R×RN, (21)

and ∣∣∣∇W̃ (t,x)
∣∣∣ ≤ 5

(
a(t)+ b(t) |x|ν−1

)
, ∀(t,x) ∈ R×RN. (22)

Now, we introduce the following modified system

(F̃H S )

{
tD

α
∞(−∞Dα

t u)(t)+L(t)u(t) = ∇W̃ (t,u(t)), t ∈ R
u ∈ Hα(R),

and define the variational functional Φ associated with (F̃H S ) by

Φ(u) =
1

2

∫

R
[|−∞Dα

t u(t)|2 +L(t)u(t) ·u(t)]dt−

∫

R
W̃ (t,u(t))dt

=
1

2
‖u‖2 −ϕ(u)

(23)

where ϕ(u) =
∫
RW̃ (t,u(t))dt.

Lemma 4.Assume that (L), (W1) and (W2) are satisfied. Then ϕ ∈ C1(Xα ,R) and ϕ ′ : Xα −→ (Xα)′ is compact, and

hence Φ ∈C1(Xα ,R). Moreover

ϕ ′(u)v =

∫

R
∇W̃ (t,u(t)) · v(t)dt (24)

and

Φ ′(u)v =< u,v >−

∫

R
∇W̃ (t,u(t)) · v(t)dt (25)

for all u,v ∈ Xα , and nontrivial critical points of Φ on Xα are homoclinic solutions of (F̃H S ).
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Proof.In the following, we will note

β 1 =
β1

β1 − 1
, β 2 =

νβ2

β2 − 1
,(β 1 = ∞,β 2 = ∞, i f β1 = 1 or β2 = 1). (26)

It is easy to see that β 1,β 2 ∈ [2,∞]. By (19), (21) and Hölder’s inequality, we have for u ∈ Xα

∫

R

∣∣∣W̃ (t,u(t))
∣∣∣dt ≤

∫

R
a(t) |u(t)|dt +

∫

R
b(t) |u(t)|ν dt

≤ ‖a‖
Lβ1

‖u‖
Lβ 1

+ ‖b‖
Lβ2

‖u‖ν

Lβ 2

≤ ηβ 1
‖a‖

Lβ1
‖u‖+ην

β 2
‖b‖

Lβ2
‖u‖ν < ∞,

(27)

which implies that ϕ and Φ are both well defined. Now, we prove that ϕ ∈C1(Xα ,R) and ϕ ′ : Xα −→ (Xα)′ is compact.
By (22), for any u,v ∈ Xα and s ∈ [0,1], there holds

∣∣∣∇W̃ (t,u+ sv) · v
∣∣∣≤ 5

[
a(t)+ b(t) |u+ sv|ν−1

]
|v|

≤ 5
[
a(t)+ b(t)

(
|u|ν−1 + |v|ν−1

)]
|v|

≤ 5
[
a(t)+ b(t)

(
|u|ν−1 |v|+ |v|ν

)]
|v| .

Hence, by the Mean Value Theorem and Lebesgue’s Dominated Convergence Theorem, we get for all u,v ∈ Xα

lim
s−→0

ϕ(u+ sv)−ϕ(u)

s
= lim

s−→0

∫

R

∫ 1

0
∇W̃ (t,u+ rsv) · vdrdt

=

∫

R
∇W̃ (t,u) · vdt = L (u)v.

Moreover, it follows from (19), (22) and Hölder’s inequality that

|L (u)v| ≤

∫

R

∣∣∣∇W̃ (t,u)
∣∣∣ |v|dt

≤ 5
[∫

R
a(t) |v|dt +

∫

R
a(t) |u|ν−1 |v|dt

≤ 5
[
‖a‖

Lβ1
‖v‖

Lβ 1
+ ‖b‖

Lβ2
‖u‖ν−1

Lβ 2
‖v‖

Lβ 2

]

≤ 5
[
ηβ 1

‖a‖
Lβ1

+ην
β 2
‖b‖

Lβ2
‖u‖ν−1

]
‖v‖ , ∀v ∈ Xα ,

(28)

which means that L (u) is bounded. This means that ϕ is Gâteaux-differentiable on Xα and its Gâteaux-derivative at u is
L (u). Let un ⇀ u in Xα as n −→ ∞, then (un) is bounded in Xα and

un −→ u in L∞
loc(R) as n −→ ∞. (29)

Therefore, there exists a constant c1 > 0 such that

‖un‖
ν−1 + ‖u‖ν−1 ≤ c1, ∀n ∈ N. (30)

By (W2), for any ε > 0, there exists Rε > 0 such that

(∫

|t|≥Rε

(a(t))β1dt
) 1

β1 ≤
ε

40ηβ1

(31)

(∫

|t|≥Rε

(b(t))β2dt
) 1

β2 ≤
ε

20c1ην
β 2

. (32)
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Combining (22) with (30)-(32), the Hölder’s inequality implies

∫

|t|≥Rε

∣∣∣∇W̃ (t,un)−∇W̃(t,u)
∣∣∣ |v|dt

≤ 5

∫

|t|≥Rε

[
2a(t)+ b(t)(|un|

ν−1 + |u|ν−1)
]
|v|dt

≤ 10
(∫

|t|≥Rε

(a(t))β1dt
) 1

β1 ‖v‖
Lβ 1

+ 5
(∫

|t|≥Rε

(b(t))β2dt
) 1

β2

(
‖un‖

ν−1

Lβ 2
+ ‖u‖ν−1

Lβ 2

)
‖v‖

Lβ2

≤ 10ηβ 1

(∫

|t|≥Rε

(a(t))β1dt
) 1

β1

+ 5ην
β2

(∫

|t|≥Rε

(b(t))β2dt
) 1

β2

(
‖un‖

ν−1 + ‖u‖ν−1
)

≤
ε

4
+

ε

4
=

ε

2
, ∀n ∈ N, and ‖v‖= 1.

(33)

For the Rε given above, by (19), (29) and the continuity of ∇W̃ , there exists n0 ∈ N such that for all n ≥ n0 and ‖v‖= 1

∫ Rε

−Rε

∣∣∣∇W̃ (t,un)−∇W̃(t,u)
∣∣∣ |v|dt ≤ η∞

∫ Rε

−Rε

∣∣∣∇W̃ (t,un)−∇W̃(t,u)
∣∣∣dt <

ε

2
. (34)

Combining (33) with (34), we get

‖L (un)−L (u)‖(Xα )′ = sup
‖v‖=1

|(L (un)−L (u))v|

= sup
‖v‖=1

∣∣∣∣
∫

R
(∇W̃ (t,un)−∇W̃(t,u)).vdt

∣∣∣∣

≤ sup
‖v‖=1

∫ Rε

−Rε

∣∣∣∇W̃ (t,un)−∇W̃(t,u)
∣∣∣ |v|dt

+ sup
‖v‖=1

∫

|t|≥Rε

∣∣∣∇W̃ (t,un)−∇W̃(t,u)
∣∣∣ |v|dt

<
ε

2
+

ε

2
= ε f or all n ≥ n0.

This implies that L is continuous. Thus ϕ ∈C1(Xα ,R) and (24) holds with ϕ ′ = L . This together with the reflexivity of
the Hilbert space Xα implies that ϕ ′ is compact. In addition, due to the form of Φ , we see that Φ ∈ C1(Xα ,R) and (25)
also holds. The proof of Lemma 3.1 is completed.

Lemma 5.Assume that (L), (W1) and (W2) hold. Then Φ is bounded from below and satisfies the (PS)−condition.

Proof.Firstly, we prove that Φ is bounded from below. By (27), it follows

Φ(u)≥
1

2
‖u‖2 −

∫

R

∣∣∣∇W̃ (t,u)
∣∣∣dt

≥
1

2
‖u‖2 −ηβ1

‖a‖
Lβ1

‖u‖−ην
β2
‖b‖

Lβ2
‖u‖ν .

(35)

Since ν < 2, it follows that Φ is bounded from below. Next, we show that Φ satisfies the (PS)−condition. Let (un) be a
(PS)−sequence, that is

|Φ(un)| ≤ M, ∀n ∈N, Φ ′(un)−→ 0 as n −→ ∞, (36)

for some constant M > 0. By (35) and (36), it holds

M ≥
1

2
‖un‖

2 −ηβ1
‖a‖

Lβ1
‖un‖−ην

β2
‖b‖

Lβ2
‖un‖

ν
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which implies that (un) is bounded in Xα since ν < 2. Hence, up to a subsequence if necessary, we can assume that

un ⇀ u in Xα as n −→ ∞ (37)

for some u ∈ Xα . By virtue of the Riez Representation Theorem, ϕ : Xα −→ (Xα)′ and Φ ′ : Xα −→ (Xα)′ can be viewed
as ϕ : Xα −→ Xα and Φ ′ : Xα −→ Xα respectively. This together with (24) and (25) yields

un = Φ ′(un)+ϕ ′(un), ∀n ∈ N. (38)

By Lemma 3.1, ϕ ′ is compact. Combining this with (36)-(38), the right side of (38) converges strongly in Xα and hence
un −→ u in Xα as n −→ ∞. Then Φ satisfies the (PS)−condition. The proof of Lemma 3.2 is completed.

Lemma 6.Suppose that (L) and (W3) hold. Then for each k ∈ N, there exists an Ak ⊂ Xα with genus γ(Ak) ≥ k such that

supu∈Ak
Φ(u)< 0.

Proof.Let (en) an orthonormal basis of Xα . Then for each k ∈ N, let

Xk =⊕k
m=1span{em} .

Since Xk is finite dimensional, there exists a constant τk > 0 such that

‖u‖ ≤ τk ‖u‖L2 , ∀u ∈ Xk. (39)

By (W3), there exists a constant Rk > 0 such that

W̃ (t,x)≥ τ2
k |x|

2 , ∀t ∈ R, |x| ≤ Rk. (40)

Let u ∈ Xα such that ‖u‖ ≤ Rk
η∞

. By (19), we know that |u(t)| ≤ Rk for all t ∈R, thus by (40), it holds

W̃ (t,u(t))≥ τ2
k |u(t)|

2 , ∀t ∈ R. (41)

Therefore, by (39) and (41), for all u ∈ Xk \ {0} with 0 < ‖u‖= min{r,Rk}
η∞

= ρk, we have

Φ(u) =
1

2
‖u‖2 −

∫

R
∇W̃ (t,u)dt

≤
1

2
‖u‖2 −

∫

R
τ2

k |u(t)|
2

dt

≤
1

2
‖u‖2 −‖u‖2

=−
1

2
ρ2

k ,

which implies

{u ∈ Xk \ {0}/‖u‖= ρk} ⊂ Ak =

{
u ∈ Xk/Φ(u)≤−

1

2
ρ2

k

}
. (42)

Thus, by Lemma 2.1, (42) implies

γ(Ak)≥ γ
(
{u ∈ Xk \ {0}/‖u‖= ρk}

)
≥ k

hence, by the definition of Γk, we have Ak ⊂ Γk. Moreover, the definition of Ak implies

sup
u∈Ak

Φ(u)≤−
1

2
ρ2

k < 0.

The proof of Lemma 3.3 is completed.

Consequently, Φ possesses a sequence of nontrivial critical points (uk) satisfying uk −→ 0 in Xα as k −→ ∞. By

virtue of Lemma 3.1, (uk) is a sequence of solutions of (F̃H S ). By (19), it follows that maxt∈R |uk(t)| −→ 0 as
k −→ ∞. Therefore, there exists a positive constant k0 ∈ N such that for all k ≥ k0, uk is a solution of (FH S ). This
ends the proof of Theorem 1.1.
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4 Conclusion

In the present work, we established the existence of infinitely many solutions for a class of fractional Hamiltonian systems
when the potential is only locally defined near the origin, via critical point theory and variational methods.
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