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Abstract: To solve fractional order differential equations, a hybrid technique named “the natural Adomian decomposition method

(NADM) with Caputo fractional operator (CFO)” has been applied. The combination approach incorporates both the natural transform

method (NTM) and the Adomian decomposition method (ADM). Two challenges are overcome to validate and demonstrate the efficacy

of the current process. It is also shown that the results acquired using the suggested technique are extremely like those obtained using

other strategies. For a range of science and engineering difficulties, the proposed solution has been shown to be efficient, dependable,

and simple to implement.
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1 Introduction

In recent years, engineering and applied sciences have shown a great deal of fractional calculation. The principles of
fractional calculus is located in [1,2]. One kind of differential equation are fractional differential equations, or FDEs,
which are considered a broad kind of differential equations, involve derivatives of any complex or real order. Fractional
partial differential equations can be used to solve a variety of problems in the real world, and they’ve been discovered to
be a tool that’s useful for interpreting and modeling all areas of science and mathematical applications concerns [5,6,8].

The precise and estimated results for PDEs with fractions has recently received a lot of attention (PDEs). For the
solution of fractional PDEs, numerous motivated strategies have been used in this work such as HAM, expansion
methods, HATM, FDM, operational method, VIM, HPM, direct approach, Lie symmetry analysis, DTM, reproducing
kernel method, EDTM, mesh less methods, SVIM, SDM, LHPM, and LVIM [3,4,7,9,10,11,12,13].

The goal of this paper is to show how NT and ADM can be combined, the method we use is called the NADM, and
use it to resolve the NFPDEs. The rest is separated as, in section 2, some FC definitions are giving. We go over some
keys of natural transform definitions and characteristics in section 3. In section 4, the analysis of the NADM with CFO is
achieved. Examples of NADM are shown in the fifth section . Chapter 6 is where this paper’s conclusion is found.

2 Preliminaries

In this section, we’ll go over some of the most important fractional calculus definitions and formulas [1,2,7].

Definition 1.Consider Ł(p), p > 0, is a real function. Ł(p) is Ci, i ∈ R, if ∃ι > i,s.t.Ł(p) = pιg(p) where g(p) ∈ C[0,∞)

and ι is a real number, and it is Cm
i if Ł(m) ∈Ci,m ∈ N.

Definition 2.Consider Ł ∈Ci. For any α ≥ 0, the Riemann-Liouville fractional operator of α , is given as

JαŁ(p) =











1

Γ (α)

∫ p
0 (p− q)α−1Ł(q)dq, α > 0, p > 0

Jα Ł(p) = f (p), α = 0

(1)
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where Γ (·) is the well-known Gamma function.

Definition 3.The fractional derivative of Ł ∈Cm
−1 is defined as

Dα Ł(p) = Jm−α DmŁ(p) =
1

Γ (m−α)

∫ p

0
(p− q)m−α−1Ł(m)(q)dq, (2)

for m− 1 < α ≤ m,m ∈ N, p > 0. Which is in the Caputo concept.

Definition 4.The series expansion defines a Mittag-Leffler type one-parameter function:

Eα(z) =
∞

∑
k=0

zk

Γ (αk+ 1)
, α > 0,z ∈C (3)

Lemma 1.

Dα Jα Ł(p) = Ł(p) if p > 0

JαDα Ł(p) = Ł(p)−
m−1

∑
k=0

Łk(0+)
pk

k!
if m− 1 < α < m (4)

For m− 1 < α ≤ m,m ∈ N,Ł ∈Cm
i , i ≥−1.

3 Natural Transform definitions and properties

Here, there is some background of the natural transform approach [4,9].

Definition 5.The function Ł(p) for q ∈ R has a natural transform defined by

N[Ł(q)] = R(ω ,µ) =
∫ ∞

−∞
e−ωqŁ(µq)dq, ω ,µ ∈ (−∞,∞) (5)

The NT of Ł(q) is N[Ł(q)], and ω and µ are the NT variables. Define Ł(q)H(q), H(.) is Heaviside function, q ∈ (0,∞),
and

A = {Ł(q) : ∃M,ζ1,ζ2 > 0,with |Ł(q)| ≤ Me
|q|
ζ j , for q ∈ (−1) j × [0,∞), j ∈ Z+}

The natural transform, often known as the NT, is defined as follows:

N[Ł(q)H (q)] = N
+[Ł(q)] = R+(ω ,µ) =

∫ ∞

0
e−ωqŁ(µq)dq, ω ,µ ∈ (−∞,∞) (6)

Note that if µ = 1, (6), it’s possible to reduce it to the Laplace transform, and if ω = 1, (6) can be reduced to the Sumuda

transform.

4 Natural Adomian Decomposition Method (NADM) Analysis

Suppose that the general fractional nonlinear PDEs with Caputo fractional operator

Dα
q Łi(p,q)+RŁi(p,q)+N Łi(p,q) = ℑi(p,q), 0 < α ≤ 1 (7)

depending on

Łi(p,0) = ℑi(p), (8)

where D
(α)
q Łi(p,q) which is the CFD derivative of Łi(p,q).The LDO is represented by R, whereas the NLDO is N , and

the source terms are given by ℑi(p,q).
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By taking NT to (7), we get

Vi(q,ω ,µ) =
µα

ωα ∑
ωα−(k+1)

µα−k
[DkŁi(p,q)]q=0 +

µα

ωα
N[ℑi(p,q)]−

µα

ωα
N[RŁi(p,q)+N Łi(p,q)] (9)

Apply the inverse NT to (9), we obtain

Łi = φi(p,q)−N
−1
[ µα

ωα
N[RŁi(p,q)+N Łi(p,q)]

]

(10)

From the nonhomogeneous term to the essential initial condition, φi(p,q) is an increasing function. Now, consider Łi(p,q)
is an infinite series solution of the type

N Ł(p,q) =
∞

∑
n=0

An(p,q) (11)

Then, by using (11), we may formulate (10) as follows:

∞

∑
n=0

Ln(p,q) = φi(p,q)−N
−1
[ µα

ωα
N
[

R

∞

∑
n=0

Łn(p,q)
]

+
∞

∑
n=0

An

]

(12)

An(p,q) is an AD polynomial and is defined as follows:

An(p,q) =
1

n!

dn

dξ n
N

[ n

∑
i=0

ξ iŁi

]

ξ=0
(13)

We can infer by comparing the two sides of (12)

Ł0 = φi(p,q)

Ł1 =−N
−1
[ µα

ωα
N[RŁ0(p,q)+A0]

]

.

.

.

We continue in this direction until we achieve the broad relation given by

Łn+1(p,q) =−N
−1
[ µα

ωα
N[Rpn(p,q)+An]

]

, n ≥ 1

Finally, we have an approximate solution

Ł(p,q) =
∞

∑
n=0

Łn(p,q)

5 Applications

5.1 Example

Consider

Dα
q Ł(p,q) = Łpp(p,q)+Ł(p,q) 0 < α ≤ 1 (14)

subject to initial conditions

Ł(p,0) = e−p + p (15)

Apply Natural Transform to (14), we get

ωα

µα
N[Ł(p,q)]−

n−1

∑
k=0

ωα−(k+1)

µα−k
[DkŁ]q=0 = N[Łpp(p,q)−Ł(p,q)] (16)
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Thus, from (15) and (16) and by taking the inverse, we have

Ł = (e−p + p)+N
−1

[

µα

ωα
N[Łpp(p,q)−Ł(p,q)]

]

(17)

Consider infinite series solution for the function Ł(p,q) as follows:

∞

∑
n=0

Łn = (e−p + p)+N
−1

[

µα

ωα
N

[ ∞

∑
n=0

(Łn)pp(p,q)−
∞

∑
n=0

(Łn)(p,q)
]

]

, n ≥ 0 (18)

Now, comparing both sides of (18)
Ł0 = e−p + p

Ł1 = N
−1

[

µα

ωα
N

[

(Ł0)pp −Ł0

]

]

=−p
qα

Γ (α + 1)

Ł2(p,q) = pN−1

[

µα

ωα

(

Γ (α + 1)µα

Γ (α + 1)ωα+1

)]

= p
q2α

Γ (2α + 1)

.

.

.

Similarly, we continue to arrive at the following approximation

Ł(p,q) =
∞

∑
n=0

Łn(p,q) = Ł0(p,q)+Ł1(p,q)+Ł2(p,q)+ . . .

= e−p + p− p
qα

Γ (α + 1)
+ p

q2α

Γ (2α + 1)
− . . . (19)

If α approaches 1, the exact solution of (14) is

Ł(p,q) = e−p + p+ p

(

− q+
q2

2!
− . . .

)

As a result, if α = 1, the approximate solution approaches the exact solution rapidly.

5.2 Example

Consider
Dα

q Ł(p,q) = Łpp(p,q)−Łp(p,q)+Ł(p,q)Łpp(p,q)+Ł2(p,q)+Ł(p,q) 0 < α ≤ 1 (20)

subject to initial conditions
Ł(p,0) = ep (21)

Apply Natural Transform to (20), we get

N[Dα
q Ł] = N

[

Łpp −Łp +ŁŁpp +Ł2 +Ł
]

(22)

Thus, from (21) and (22) and by taking the inverse NT to (22), we get

Ł = ep +N
−1

[

µα

ωα
N

[

Łpp −Łp +ŁŁp,q +Ł2 +Ł
]

]

(23)

Assume infinite series solutions for the unknown function Ł,Łpp, and Ł2 as follows:

Ł(p,q)Łpp(p,q) =
∞

∑
n=0

An(p,q)
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Ł2(p,q) =
∞

∑
n=0

Bn(p,q) (24)

where the nonlinear terms are represented by the Adomian polynomials An and Bn. We may rewrite (23) in the form using
(24)

∞

∑
n=0

Łn(p,q) = ep +N
−1

[

µα

ωα
N

[ ∂ 2

∂ p2

∞

∑
n=0

Łn −
∂

∂ p

∞

∑
n=0

Łn +
∞

∑
n=0

An −
∞

∑
n=0

Bn +
∞

∑
n=0

Łn

]

]

, n ≥ 0 (25)

Now, we get the equation through comparison both sides of (25)

Ł0(p,q) = ep

Ł1(p,q) = N
−1

[

µα

ωα
N

[

(Ł0)pp − (Ł0)p +A0 −B0 +Ł0

]

]

= ep qα

Γ (α + 1)

Ł2(p,q) = N
−1

[

µα

ωα
N

[

(Ł1)pp − (Ł1)ℓ+A1 −B1 +Ł1

]

]

= ep q2α

Γ (2α + 1)
.
.
.

Similarly, we continue to arrive at the following approximation

Ł(p,q) =
∞

∑
n=0

Łn(p,q) = Ł0(p,q)+Ł1(p,q)+Ł2(p,q)+ . . .

= ep
(

1+
qα

Γ (α + 1)
+

q2α

Γ (2α + 1)
+ . . .

)

If α approaches 1, the exact solution of (20) is
= ep+q (26)

As a result, if α = 1, the approximate solution approaches the exact solution rapidly.

6 Conclusions

In the idea of the Caputo fractional operator, the Adomian decomposition technique (ADM) and the natural transform
method (NT) were both shown to be extremely successful in solving FPDEs. The solution is provided in a series form by
the suggested algorithm, if there is an exact solution, it converges quickly. It is obvious from the findings that the NADM
produces solutions that are extremely precise with only a few iterates. Because of the efficacy and versatility shown in the
examples given, NADM can be operational to more higher order FPDEs, according to the findings of this study.
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