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Abstract: We propose the definition of quasi-n-normed spaces and prove some new results on fixed points theory related to weak
contractions in this framework. We prove the existence and uniqueness of fixed point for (¢, y)-generalized weak contractions and
(@, w)-generalized weak C-contractions in quasi n-normed spaces. The obtained results extend some known theorems for nonlinear
contractive functions on quasi n-normed spaces. In addition, we demonstrate an application of obtained results to Integral Equation.
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1 Introduction

The study of obtained functions from the generalization
of the norm has been the focus of many mathematicians
over the years. In 1963, the mathematician Géhler [1]
introduced the concept of 2-metric space and presented its
topological structure in his work. Many researchers have
studied 2-metric spaces and fixed points theory [2], [3].
Later, Gihler extended his work to 2-normed spaces [4],
and then to n-normed spaces [5]. These spaces have been
the object of study for many authors [6,?,2,2,2,?

In 2001, Gunawan and Mashadi [12] studied the
n-normed spaces, their completeness, Cauchy sequences
and proved a fixed-point theorem. Inspired by their work,
several mathematicians assured significant fixed-point
results in 2-Banach and n-normed spaces [13,?,2,2,?].

The concept of 2-normed spaces was extended to
quasi 2-normed spaces [18] analogously as b-metric
spaces [19]. The fixed-point theory in quasi-2-normed
space and n-normed space has been a focus of research
for authors [20], where they have proven the existence
and uniqueness of a fixed point for several contractive
functions and shown its applicable side [21].

In this paper, we give and prove some new results on
the existence and uniqueness of a fixed point for
(¢, y)-generalized weak contractive and

(@, v)-generalized weak C-contractive, respectively, on
quasi n-normed spaces. Some analogies are obtained from
the main theorems, which generalize some known results
in quasi—n-normed spaces. Examples illustrate the
highlights of this work. In addition, an application of the
main result to Integral Equations is given to show the
applicable side of this framework.

2 Preliminaries

Definition 1.Let E be a linear space with dimE > 2 and
R™ the set of nonnegative real numbers. The function
|-l : E* — RT is called 2-norm, if it satisfies the
following conditions:

1.||x,y|| = 0 if and only if the vectors {x,y} are dependent

inE;

2For every (x.y) € B2 [[vy]| = ]

3.For every (at,x,y) € Rx E=, |ax,y|| = | ||x,y

4.For all (x,y,z) € B>, [lx+y.z|| < [|x, 2] + |,z

The pair (E,|-,-||) is called quasi 2-normed space.

>

Park defined the quasi 2-norm as follows:

Definition 2./2] Let E be a linear space with dimE > 2
and R™ the set of nonnegative real numbers. If the function
|-,-|l : E> = R* satisfies the following conditions:
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1.||x,y|| =0 if and only if the vectors {x,y} are dependent
inE;

2.For every (x,y) € X2, Hx,y|£=

3.For every (at,x,y) € R x X7,

4.There exists s > 1, such that for all
(x,3,2) € B2, e+ 2]l < s(llx,zll + [ly.zl)-

[y x| :

It is called is a quasi 2-norm. The pair (E. ||-,-||) is called

quasi 2-normed space.

Gunawan extended the concept of 2-normed space to n-
normed space as below:

Definition 3.//2] Let E be a real linear space with
dimE=d>n (d is allowed to be infinite) and
[Iy..os:]| - E" — RY be a function which satisfies the
following conditions:

1.||e1,ea,...,e4]| =0 if and only if ey,ea,...,e, € E are
linearly dependent;

2le1, ez, e = Hejl,ejz,...,ejn ,  for every
permutation (ji, ja,. .., ju) of (1,2,...,n);

3.||oer,en,. .. en]| = ot |ler,ea,l. .. enl;

4.|‘X+y,6‘1,€2,...,6‘n,1”
Hx7el7627"-;en71”+Hy7el7627---;en71”;

forall ¢ € R and x,y,ey, e, - ,e, € E.

The function ||-,...,-|| : E" — R is called n-norm and the
pair (E, ||-,...,-||) is called n-normed space.
Example 1.[12] Let E = R", (ey,ea,...,e,) € E" where
ej = (xlj,ij,...,xn+1j) for j € {1,2,...,n}. The
function [|-,...,|| : E" = R

Xi1 ot Xin

H617827"'aen” -
Xn,1 0 Xnn

is n-norm and (E, ||-,...,||) is n-normed space.
Below, we define the quasi n-normed space as follows.

Definition 4.Let E be a linear space with dimE =d > n
(d is allowed to be infinite). The function

The couple (E,||-,--- ,-||) is called quasi n-normed space.

Example 2.Let E =R""!, (e}, es,...,e,) € E" where ¢; =
(x1j,%2), - xnt1;) for j € {1,2,....n} and s > 1. Define
X1l ot Xln
the matrix X =
Xn41,1 *°° Xnt1n

We take the function ||-,..., || : E" — RT,

n+1
Hel,...,enH =s- det(xi07j)nxn + Z |det(x,-7j)nm },

i#ig

where ’det(xio,j) min{ ’det(xiaj)nxn ’} and

nxn

(Xi.j),1, is the matrix of order n obtained from matrix X

removing the ith row.

Using the properties of the determinants and absolute

value, it is easy to prove that the function
|| E" — R*, is a quasi n—norm and the couple

(E || ,-|l) is quasi n-normed space.

Remark.A quasi n-normed space may not be n-normed
space. Indeed, if we take the quasi n-normed space
(E, || 1D given in  Example 2  and

x = ( 200 0), vy = (1,7,7,...,7), e =
(7,57,....7), es = (1.1,5...,7), ....en =
(7,7,.. ,5,7) we have:

x4 ,e,€3,...,ep|| = 752" 4 n(7n —2)2"1,

2,5, enl] = 52"+ n(Tn—9)2"",
Iyse2,€3,. - enl| =Tn-2"""

and
|‘X+y,€2,63,...,€n||SS(HX,€2,€3,...,€nH

+ ez, e3,... enll)
for every s > 1. As a result the pair (E,||-,...,||) is not

n-normed space.

Example 3.LetE =Cj ;)= {f:[0,1] = R, f is continuous

I, -] : E" — R is called quasi n-norm, if it satisfies and s > 1.
the following conditions: Define ||-,...,||., : E" — R as follows:
L|e1,ez,....en|| = O if and only if the vectors "
{e1,e2,...,e,} are dependent in E; SzeSE:)I)l]ilz]l GIE Jis-o, fo are
2.For every (er,ea,....en) € E", |ler,ea,... e s 1f15 s falle = linearly indipendent
invariant  related to  the  permutations  of )
{e},e2,...,en} 0, otherwise
3.F R E" . e o . .
or every  (&erer.en) ,G Y The space (E, ||, ...,-||.,) is an infinite dimensional quasi
laer,er,... el = lalller,ez,... enll; ]
4.There exists s > 1, such that for all n-Banach space with s = 1.
(x,y,e1,€2,...,€n-1) € EnH the following inequality Definition 5.Let (E, ||-,...,-||) be a quasi n-normed space.
holds: The sequence {xi};c in E is called convergent to xy € E,
lx+y,e1,e2,....en1]| < s(|x,e1,e2,... en 1] if for every € > 0, there exists p € N, such that for every
keN k> p, ||xy —x0,€2,...,en|| <&, foreachey,... e, €
+ |y, er ez, en—tl])- E or limy_, o ||xx — x0,€2,...,en|| = 0.
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Definition 6.A sequence {x;}ren in a quasi n-normed
space (E,||-,...,-||) is said to be a Cauchy sequence if for
every € > 0, there exists p € N, such that for every
kI € Nkl > p, |xx—x,e2,...,enl| < € for each
er,...,ex S E. (It is denoted
1imk’lg)+m ka —X[,€2,... ,enH =0.

Definition 7.The quasi n-normed space (E,|-,...,-||) is
called complete if every Cauchy sequence in E is
convergent in E. It is called quasi n-Banach space.

Below, we recall the concept of (@, y)-weak contraction
and its generalizations.

Dutta and Choudhury in 2008 defined the nonlinear
contraction known as (¢, y)-weak contraction in metric
space as follows:

Definition 8./22] Let (X,d) be metric space and T : X —
X be a map. The map T is called (@, y)-weak contraction
if it satisfies the inequality:

v(d(Tx,Ty)) <y(d(xy) —@(d(xy) 1)

for every (x,y) € X%, where vy, : Rt — Rtare
monotone nondecreasing and continuous functions with

(1) =w(t)=0ifr=0.

Later, Doric in 2009 [23] improved this contraction by
replacing d(x,y) with M (x,y) =
max{d (x,y), d(x,Tx),d(»Ty),5[d (x,Ty)+d (Tx,y)]}
in (1) and taking the function ¢ lower semi-continuous.
Recently, Xue generalized the above-mentioned
contractions as follows:

Definition 9./24] Let (X,d) a metric space and
T:X — X be a map. The map T is called (Q,y)-
generalized weak contraction if for every (x,y) € X2, it
satisfies the inequality

Y (d(Tx,Ty)) Sy (M(xy)) =@M (xy)) ()

where W, @ : RT — Rt are two functions which satisfy the
conditions:

Lo(t)=y()=0ift=0;
2. lfgr}mfy/(r) > ITlLI} supy(t) — ng’;lnfgl)(f).

3 Main results

Motivated from the above results, we consider the (@, y)-
generalized weak contraction in a quasi n-normed space as
follows:

Definition 10.Let (E, |-,...,-||) be a quasi n-Banach
space with constant s > 1 and T : E — E. The function T
is called (@, y)-nonlinear generalized weak contraction
if it satisfies the inequality

W(HTX— Ty,e,... 7erl||) < W(Mo(xvy)) -0 (MO (xvy))
(3)
foreach (x,y) € E’ande,...,e, € E, where y,@ :RT —
R satisfy the following conditions:

Lo(t)=y(1)=0ifft=0;
2.y is a nondecreasing function;
3dime_, infy(7) > lim;_; sup (1) — lim_,; inf (7).

and

My (x,y) = max{|[x—y,ea,...,en],

||X*T)C,€2,...,€n||,”y*Ty,@g,...,enH,

ly—Tx,ea,....eql| + |x—Ty,ea,..., e
2s

fores,...,en €E.

Theorem 1.Let (E, ||-,...,||) be a quasi n-Banach space
with constant s > 1 and let T : E — E be (@, y)- nonlinear
generalized contraction. Then, the function T has a unique
fixed point in E.

Proof. Let xy € E be an arbitrary point in E. Define the
sequence {xi}zcy such that x = Txy = T*xo,
k=1,2,...

If there exists any » € N such that x, = x,_, then Tx,_; =
Xy—1, and x,_1 is a fixed point of map 7.

Suppose that for each k € N, x; 7 x;_1.

Forke€ Nande,,...,e, € E, we have

W ([[xk — Xpp1,€2, .5 enl]) < W (Mo (Xx—1,xx))
—@(Mo (x¢—1,%))
where

1
Mo (x—1,%) = max 3 [|Xk—1 — xp €2, .. enl]

||)Ck,1 — Xy €2y - 56}1”5
||xk_xk+l7627"' aenHa

lxk — xx, €25 - - -y enll
2s

+

kafl — Xk+1,€25 - ;enH
2s

= max{||xk,] —xk,ez,...,enH,

||Xk*Xk+1,€2,... 56}1”7

1Xk—1 — Xk+1,€2, .. enl| }

2s
= max{||xk,] —xk,ez,...,enH,
||Xk*)€k+1,€2,... 56}1”7

1Xk—1 — Xkr1,€2, .., enl|
2s

Let us consider the following cases.
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Case 1: If My (xp_1,x;) = ||xk—1 — Xk, €2,-.., e, then
Y ([[x — 1,02, enl]) S W ([lxe—1 — X, €2, en)
— O (||xk—1 — Xk, €2, - - -, enl])
< W (|1 — X1, €2, - - -y enl]) -
Consequently, the inequality
e — X1, €2, senll < ||xk—1 — Xk, €2, .., enl|

is true.
Case 2: If M), (xk,l,xk) = ka — Xk4+1,€2,- - ,e,,||, then

¥ ([bre = X1, €2, enl]) < W ([l = Xir1, €2, enll)
_(p(||xk_xk+l7627--- ;enH)

<Y (||xk = xp41,€2,- .- en)

which is a contradiction. Consequently, this case does not
hold.

W(||xk_xk+l7627--- ;enH)
IXe—1 — Xk41,€2,- . enl|
<
- ‘I/< 2s

o [oe—1 — Xkr1,€25- el
2s

< lI/(kal — Xf+1,€25 - -+ ;en|)

2s
So, we have
Xie—1 — Xk+1,€2,-..,€
Ik — xee1,€2,- e < I +2’ sl
A)
- S(|xe—1 — xps €2, - en|
- 2s
+|lxk — xip1,€2,. . eqll)
2s

_ e —xea, - enll e — g1, €2, enll)

2

and

||xkka+1,82,...,en|\ < ||xk,1 7xk,€2,...,€nH

Considering the above cases, we have proved that the
sequence

{”xk _xk+17e27"'aenH}kEN = {)*k}keN

is monotone decreasing and bounded below from zero.
Consequently, it converges to its infimum A > 0,
limkg)m lk =1

If we replace in (3), the value of My(x,y) according to Case
1 and Case 3, respectively, we have:

For My (x,y) = ||xk_1—Xk,€2,-..,€n
inequalities

W ([Jxk = Xpr1, €25 senl]) S W (a1 —xs €2, .. enl])

, the following

_(p(H.X'k,] — Xk €20t ;en”)

v (A4) < v (M) — @ ()

and

hold.
Taking the limit of both sides when k — oo, we have

V() <y(d)—o(1)

If My (x,y) = i = 1e2menl] e paye

2s
W ([Jxx — Xy 1,€2,- - enll)
||xk71 — Xk+1,€25 - ;enH
<
_‘I/< 2s

|Xk—1 — Xk1,€2, .., enl|
90( 2s

v (S(”.Xkl — Xk, €2, aenH

<
- 2s

+ |IXk — Xe41,€2, - . enl|
2s

—0 S([[xx—1 — X, €2, en||
2s

+ [|xk = Xpg 1,62, .- en]|
2s
and

v <y (—A’”; xk) -0 (Lf xk)

As a result, taking the limit of both sides we have when
k — oo, we have

v(A)<w(d)-e(1)
Consequently, ¢ (1) =0, =0 and
lim ||xg — X i1,€2,...,en|| =0
k—roo
Now, we claim that the sequence {x; } ;. is Cauchy.
Suppose that the sequence {xy },.y is not Cauchy. So,

there exist € > 0, such that for each p € N, there exist
k(p), I(p) where k (p) is the smallest index for which

k(p) > I(p) > pand Hx,(,,) —xk(p),ez,...,enH >¢

It is clear that Hx,(,,) —xk(,,),l,ez,...,e,,H < €. From the
third condition of quasi n-norm, it yields

€< Hxl(p) *xk(p),Ez,-..,enH

< s (o) = xup)-1,€2, - e

+ {51 —Xa(p)s €25 - enl)

< s (&4 [Fup)-1 = Fu(p €2, senl)

© 2024 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 18, No. 3, 603-614 (2024) / www.naturalspublishing.com/Journals.asp

Taking the limit when p — o< in the above inequality, we
have

£< pgrfmnxl(m —Xi(p) €2, nen| <sE. (4)
Furthermore,
[[¥1(p)-1 = Xa(p)-1:€2 s
< s({[xip) -1 = Xa(pr €2 s

+ || xe(p) = Xe(p)—1:€2:- - en|)

and
pngHxl(p)fl — Xi(p)—1:€2,- - €n|| < sE Q)
Next, wusing (4) and (5), we evaluate the

1, oo Mo (X1(p)— 1, Xk(p)—1) -
We see that

€ < Mo (xy(p)-1,%(p)-1)

I
= max{; ||xl(p)7l _xk(p)flana---aenH )
[X1(p)1 = %), €2, el
|[Xe() -1 = Xa(p) €2, en]
s(Pap)—1 = xup)re2s-- e
2s
+ %) =3 -1,€2, - enl])
2s

and
. E+E
e< lim Mo (xi(p)-1,%(p)-1) < max {8’0’0’ T} —°

Considering the contraction, we have

) < v (Mo(xigp)— 1, %) -1)

V ([[xp) = 3y €2, - - sem

= (Mo(xy(p)—1:%k(p)-1))
and

(R —
+ii§£ ¢ (Mo (X1(p)~1,%(p)1))

<supy (Mo (xy(p)—1:%(p)-1))
zp

Consequently, it yields
. o <
hglgnf y(t)+ llglgnf(p(t) < limsup y/(r)

=€

and

v(e)+o(e) <y(e)
which is true if only if € = 0, which is a contradiction. So,
{xt}reny is a Cauchy sequence and since the quasi

n-Banach space (E, |-,...,-||) is complete, the sequence
{xt }xen converges to a point x* € E,

lim x; = lim T*xy =x*
k—>4-o0 k—rto0

Next, we prove that x* is a fixed point of function 7.
Using the contraction inequality, we have

v ([|Tx" —xp,ea,...,e4]) (6)

<y (Mo (x*,x1)) — @ (Mo (x*,x1))

where

1
Moy (x™, xi) max{; [|x* = xg €2, enll,

HX* - TX*7€2,... aenH ) ||Xk7Xk+1,€2,... 56}1”7

(|Tx* —xg, €2, .. en]| + |3 — Xpi1 €2,y €] }
2s

Taking

ITx" —xi,ea,. .. en|| + X" — xp11,€2, - €]
<s(|Tx" —x%,en,... enl| + [|1X° — xp, €2, .y €]
+ X" = xp, 2,y enll + 1k — Xer 15 €2, 5en])
=s5(||Tx" —x",er,...,en|| + 21X —xk, €2, en]|
+ Xk — Xkt 1, €2, €nl])
then it yields

1
My(x*,x;) = max{; [Ix* = xp,e2,. .. enll,

||X*_T-X*ana"'7eH||aH-xk_xk+lana"'7en||a

||X* — Xk, €2, - aenH

n ||TX*—x*,e2,...,e,,|+|xk—xk+],e2,...,en|}

2
We see that
kETmMO (x*,x¢) = max {0, ||x* — Tx*,ez,...,e4]|,0,
Tx* —x*
|| a x,zez, 7e”||}|X*TX*,62,..,7en||

From inequality (6), we have:

infy (72" —x, ez, enl]) +inf e (Mo (7, x¢))

< Sl/:P‘I/(Mo (X", xx)) -

Taking the limit in the above inequality
lim infy(r)+ lim

t—||Tx*—x*,ea,....en|| k

info(r)

1= ||Tx*—x*ep,....en|| k

sup ¥ (Mo (x", i)

< im
t—||Tx*—x*,e0,...en|| k
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we  have  @(||x* —Tx%ez,...,en]]) = 0 and Y (||ITx—Ty,ez,....en|) + @ (Mo(x,y))
[lx* —Tx*,es,....,e4]] = O for each ep,...,e, € E.

Consequently, x* = Tx*and x* is a fixed point of 7'.
Finally, we show the uniqueness of the fixed point x*
of T. Suppose that there exists another fixed point y* of 7',
y =Ty
Using the inequality
V(ITx" =Ty" e2,....enl))

<y (Mo (") — @ (Mo (x",y"))

where
My (x*,y") = [|x" —=y",e2,...,enll,
we have:
W(HX* _y*ana"'veVl”) < W(HX* _y*ana"'ve””)

_(p(HX* _y*ve%"'ae"”)

From this, it yields ||x*—y* es,...
€,...,e, € E and x* = y*.

,en|| = 0 for every

Example 41et E = R? where n < d < oo. Define
[5---s|| : E™ = [0,4-o0) such that

ey linearly
independent

sITy leil, er,ea, ..,

He]7827"'aenH =

0, ey,e,...,e, linearly

dependent

The couple (E
space.

, |lx1,x2,...,x,]|) is a complete n-normed
| 1) p

Taking s = 3,7 : E — E, T(x) = T(xy,...x5) =
l'—o(sinx],sinxz,... for x; € R,i € {1,2,...d},
v : RYT = Ryl = 17-111(:22“) and
0 Rt - R, o(r) = “/1—, we show that the function T
satisfies the conditions of Theorem 1.

The first three conditions are clear.

,sinxy),

Considering x,y, e3,...,e, € E, and
1, . . . .
|ITx—Ty,es,...,en|| = 10 |Isinx; — sinyy, sinx; — sinys,
.,sinxg —sinyy), ez, ..., ey

|
Sl=
~.
™~

(sinx;j —siny;) ) H|e,|
1

>2> _I"]l|el~|

Mo(x,y)

0\,
< v (gl )+ VHOEY

3 =v.e2,.oenll)*+1)

|

1—10 |x =y, ea,... el -ln(

/\ I

+1M0(x,y)~ln(( 0 (x,))? +1)

4 2

<

2
i%”xfy,ez,...,enﬂ ~ln(g (Jx=y,e2,...,en]]) +1)

20

(Mo (x.)

< o (Mo (x,3)) 1 (M (3,3)) = 55 (Mo (x,)

< W(MO (xvy))

where
3 Hx Y, €2, e"H
Mo () |x—Tx,ea,... e,
0X,y) =ma
[y(t) = Ty(1),e2,.. €n||
[l (1),e2,..enll+x(1) )5€2,-5en]]
Since, v ([ITx(r) = Ty(t), ez, enl|) <
v (Mo (x,y)) — @ (M (x,y)), we prove that the function T

has a unique fixed point x = 0.
In 2013, Saha and Ganguly recalled weakly C-contractive
function in 2-normed space, as follows:

Definition 11./25] Let(E, |-,||) 2-normed space. A
function T : E — E is called weakly C-contractive if for
allx,y € E,

lx=Ty.a| + |y - Tx all

Tx—Ty|| <
ITx—Ty] < -

_(P(Hx_ TyaaH ) ||y - Tx7a||
where @ : RT? — R* is a continuous map and ¢ (0,0) = 0.

Below, we generalize weak C-contraction to
(@, y)-generalized weak C-contractions and prove some
fixed-point results related to these weak contractions in
quasi n-normed space.

Definition 12.A function ¢ : R+ - R* is called of C-type
if it satisfies the following conditions:

L.@(11,12,13,14,85) = 0 iff 1 =ty =13 =14 =15 =0;
2.¢ is lower semi continuous.

Example 5.Let ¢ : R*> — R be a nonnegative map and
® (tl,tz,t3,t4,t5) =1 +1e? +10g(1 +l3) +max{t4,t5}. It
is clear that this map is of C-type.
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Definition 13.Let (E, |-,...,:||) be a quasi n-Banach
space with constant s > 1 and T : E — E. The function T
is called (@,y)- nonlinear generalized weak
C-contraction if it satisfies the inequality

V([ITx—=Tyer,....enll) < y(Mo(x,y))

—@(lx—y,ea,...,enll, |x=Tx,e2,...,enll, @)
ly—Ty,ea,....enll, lly—Tx,ea,...,enll,
lx—Ty,ea,....en)

where y : Rt — R and ¢ : RT> — RT which complete
the following conditions:

Ly(t)=0ift=0;
2.y is a nondecreasing function;
3.y is upper semi continuous function;

4.¢ is C-type;
Slimpy(ty) > lim,y(t,) —lim,@(1,1,,15.1p,1p);

and

%Hx—y,ez,...,enﬂ,

|x—Tx,ea,... e,
My (xvy) = max
Hy*Ty,EQ,...,enH,

y—Txe2,.enl|+]x=Ty.e2,....en]l
2s

forey,...,en €E.

Theorem 2.Let (E, ||-,...,||) be a quasi n-Banach space
with constant s > 1 and let T : E — E be a (Q,y)-
generalized weak C-contraction. Then the function T has
a unique fixed point in E.

Proof. Let xo € E be an arbitrary point in E. Define the
sequence {x;};cy such that x; = Txey = Thxo,
k=1,2,...

If there exists any r € N such that x, = x,_, then x,_j isa
fixed point of map 7.

Suppose that for each k € N, x; # x;_1.

Fork € Nand e,...,e, € E, we have

W ([[xk — X1, €25 - senl]) < W (Mo (x—1,xk))

||)Ck,1 — Xk, €2, - aenH ) kafl — Xk, €2, - aen”a
- ||xk_xk+l7627"'aen”aka_-xkana"weHHa
||xk7] — Xk+1,€25- - - ;enH

=y (Mo (x—1,%))

||)Ck,1 Xk, €2, - aenH 9 kafl Xk, €2, - ,é‘n” )
TP ok — xky1s€25- eSO,
|Xk—1 — Xk1,€2,- .- enl|

where

1
Mo (xx—1,%) = max{; lxXk—1 —xx,e2,....enl,

H.Xk,I _xkana"'7en|| B ||xk_xk+lae25"'7enll7
ok — 2k €2, s el + [|xk—1 —Xer1, €2, el
2s
= max{||xk,1 Xk, €25 - aenH ) ||xk7xk+17927"' aenHv

2s
Using the same method as in Theorem 1, the inequality

||xk71 — Xk+1,€25- - - ;enH }

ka — Xj1,€24. . ,en|| < ||xk,1 — Xk, €2, ... ,enH
can be proved for every e3,...,e, € E.
As a result, the sequence
{llx — xit1,€2,. - enl| teen = {Ax}ken is  monotone

decreasing and bounded below from =zero. So, it
converges to its infimum A > 0, limy_., A = A.
Considering the inequality

limpl[/(lk) > ml[l()yk) —llﬂgl) (lk,lk,lk,lk,lk) , We

have w(A) > y(A) — ¢@(A,A,A,A,4) and
@ (A,A,A,A,1) =0. So, we obtain L = 0.
Consequently, limy_,e ||x¢ — Xk11,€2,...,en|| = 0, for
every e,...,e, € E.

Next step is to prove that {x; },. is a Cauchy sequence.
Suppose that {x;},.y is not a Cauchy sequence.
Consequently, there exists € > 0, such that for each
p € N, there exists k(p), I(p) where k(p) is the smallest
index for which k (p) > [(p) > p and

[[X1() = Xa(p)s €2, venl| > € ®)

and
sz(p) —xk(p)q,ez,---,enH <& 9)
Using the same manner as in Theorem 1, we prove that

Jim_ Mo (xi(p) -1, %(p)1) = &

Furthermore,

[[%1(p)-1 = Xe(p)-1:€2, - |
< s([[xigp)-1 = Xe(p)re2s- - senl|

+ %) = Xa(p)—1:€2: - - - €nl])
Also, we see that
€<

[X1(p) = X(p)r €25

< s ([P = Xi(p)-1 €2, en
)1 = Xp)r €20 en])

< sllxgp) =2y -1.e2,- e

+5*(Pagp)—1 = k(p)-1,€2,-- e

+ )1 = Xap)s€2s - senl])
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Taking the limit above, the inequality (9) holds:

&€ .
S_2 SPI*I)TOOHXI([))fl_xk(p)717627"'aenH (10

Furthermore, using

€ < [Jxigp) = xu(p)re2s- - en|

< s (|xiep) = xi(p)—1:€2,- -]

+{[x1(p) -1 = Xe(p)r€2: - sen])
we obtain
3 .
B Splgﬂwaz(pH — Xk(p)»€2,- €| (1)

Considering the C-contraction, we have

W (|lxip) = xk(p)re2:---venl|)

)

+¢ (Hxl(p)fl — Xk(p)—1:€25--1€n

T
)1 = Xagp)s €2, - ven|
X1y 1 = Xa(p)s €2, - en|
1) = X(p)—1:€2:- el

<y (Mo (xi(p)-1:%%(p)-1))
Taking limits of both sides and using the inequalities (8),
(9), (10) and (11), there is acquired

y/(s)+(p(s%,0, O,%,s)

<tim, v ([~ 52

Him, @ ([[x1(p)-1 = 2k(p)-1,€2,--en]
[[%1(p) -1 = X1y €2, el
()1 = Xe(p)r €2,
[[%1(p) -1 = Xa(p)r €2, senl]

enl))

<Tim, y (Mo (X1(p)—1:%k(p)—1)) < W(€)
Consequently, we have

Hxl(p) — Xk(p)—1,€25- - -

&€ &€
W(E) + ¢ (s_2707 Oa ;78) < W(E)
This inequality holds only if
9(5.0,0.5¢) =0
s s

and € = 0, which is a contradiction.

So, {xt }ren is Cauchy sequence.
Since (E,||,...,-||) is complete, the sequence {xt}ren
converges to a point x* € E,

lim x; = lim T*xp=x*
k—>o00 k—r+oo

Now we prove that Tx* = x*.
Taking the C-contraction inequality

V(ITx" —xesr,e2,- - enl]) < W (Mo(x",xi))

(" —xp,e2,. e
H-X* - T-X*3627"' aenH ) ||Xk-)€k+],€2,... aenH7
1Tx* = xp,e2,.. enll, X" —xps1,e2,.. enl])

and

1
My (x*,x) = max{; [Ix* = xg,e2,. .. enll,

HX* - TX*,EQ,. . aenH ) ||xk — Xf+1,€25 - - - ,é‘nH )
(|1Tx* —xg, €2, .. en]| + |3 — Xpi1, €2,y €]
2s
We see that
kgTwMo(x*,xk) =max{0,||x" —Tx",ez,...,e4],0,
(|T7x* —x* ep,...,enll

> }||x*Tx*,e2,...,en|

and

v (||x" —=Tx" er,....en||) S w(||x" = Tx" ea,...,enl)

—@(|x" =Tx" ea,...,en|, ||IX" —Tx",e2,...,e],
Oa HX* 7TX*7627"' aenH ) ||X* 7TX*,€2,...,€,,||)
From which ||x* — Tx* ez, ...,e,||=0foralle,,...,e, €E

and x* = Tx™.

Next, we show the uniqueness of the fixed point x* of
function T'.

Suppose that there exists another fixed point y* of function
T,y =Ty*. We have

v ([ITx" —Ty" ea,...,enll) < W (Mo (x",y%))
7(P(Hx* 7y*7827"' 5enH HX* - Tx*7827"' aenHv
V= Ty* ea,....enll, | Tx* —y* e2,...,enll,
HX* - Ty*7627"' aenH)
and
lll(”x* 7y*,€2,...,€nH) S ‘I/(”x* 7y*,€2,...,€n|‘)
_(p(llx* _y*7627--- aenH 70707 ||X* _y*7627--- aenH7

Ix* —y* ea,... enll)

From this, it yields ||x*—y* es,...,e,|| = 0 for every
€,...,e, € E and x* = y*.
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Remark.If we take y (t) =t in Theorem 2 there exists a
unique fixed point for a function 7 : E — E that satisfies
the contraction

||TX*Ty,€2,...,€n|| SMo()C,y)7(P(||X*y,€2,...,€n”,

||X*T)C,€2,...,€n”,”y*Ty,@g,...,enH,
||y*TX,@Z,...,@n”,HX*Ty,EQ,...,enH) (12)
in a quasi n-normed space(E, ||-,...,-||) with s > 1.

Example 6.Considering Py, the set of real polynomials of
degree less or equal to k with coefficients from [0, 1].
Taking the usual addition and multiplication with scalar,
the triple (P, +,-) is an infinite dimensional vector space.

Let {x1, ..., X, } be a set of points in [0, 1].
The function [|-,...,-|| : P — [0, 4e0],
fioeostn
SYN 1 fi(x) ... fu(xi)|, linearly in—
i f Al dependent
LJ2s s fall =
Sisestn
0, linearly
dependent
for s > 1 is a quasi n-norm and the pair (E = F;, ||-...,||)

is a quasi n-normed space.
s = % Taking T :E —E, Tx = }Lx, where x is from E,
v RY 5 RY y(r) =4te, and @ (11,102,183, 14,15) = 2t +

Hh+1t3+ %, we show that the function 7' satisfies the
conditions of Theorem 2.

The first three conditions are clear.
Now we see |[|[Tx—Ty,es,... e, = Hﬁ - %762,...,6‘;1” =
%Hx—y,ez,...,e,,H.

In addition,

2
Mp(x,y) = max 3 [lx—y,ea,... enll,

||X*T)C,€2,...,€n”,”y*Ty,@g,...,enH,

||y—Tx,e2,...,e,,||—|—||x—Ty,ez,...,e,,|}
5

Since the inequality ¢t < ¢’ for every ¢ > 0, we have that
Y (Mo (x,)) = 4Mo (x.y) "0
> [l —y,en,... e etz
2
—|—§ lx—y,ea,...,enll + |Ix—Tx,ea,..., e

+lly—=Ty,ea,...,enl

+||y*TX,@Z,...,@n”‘i’”X*Ty,@g,...,enH
5

=y (|Tx—"Ty,ey,...,en|)
+o (|[x—y,e2,... enll, [|[x—Tx,e2,...,en|,
Hyny,ez,...,enH,HyfTx,ez,...,enH,

fo Ty,EQ,... 56}1”)

Consequently,
V(ITx=Ty,ez,....enll) < v (Mo(x,y))
7(p(||x7y5627--- ,enH ) Hxi TX,@z,...,en” )

Hy_Tyana"-7en||aHy_Txana"'7en||7
lx—Ty,ea,... el

and we are in condition of Theorem 2. As a result, the
function 7 has a unique fixed pointin E, x = 0.

4 Corollaries

Corollary 1.Let (E,||-,...,-||) be quasi n-Banach space
with constant s > 1 and let T : E — E @-weak
contraction in E. Then T has a unique fixed point in E.

Proof. Let us consider the ¢-weak contraction
HT)C— Ty,es,... aenH < Mo(x,y) -0 (MO (x,y))

If we take y(t) =1, the conditions of Theorem 1 are
satisfied and T has a unique fixed point in E.

Remark.Corollary 1 is an extension of result of [26] [26]
in quasi n-normed space.

Corollary 2.Let (E, ||, ...,-||) be a quasi n-Banach space
with constant s > 1 and let T : E — E be a map. If there
exists a nonnegative real number Q, where o < 1, such
that for all x,y € X,

HTX* TyaEZa s 7en|| < OC-M()(X,y)

then T has a unique fixed point in E.
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Proof. Let us consider 7 : E — E be a map such that there
exists a nonnegative real number

o < 1,||Tx—="Ty,ez,...,en|| < a-Mp(x,y)

Taking @(z) = (1 — &)t in the contraction of Corollary 1,
we have that 7" has a unique fixed point in E.

Remark.The above result is an extension of result of [27]
in quasi n-Banach space.

Example 7.Considering  (E,||-,...,-||..) the quasi
n-Banach space given in Example 6 with s = %
Taking T : E — E, Tx=%, a = 1 , the function T satisfies

the condition of Corollary 2.
Consequently, ||Tx — Ty, ea, ..., e,|| < a-My(x,y), and the
function T has a unique fixed pointin E, x = 0.

Corollary 3.Let (E, ||-,...,-||) be a quasi n-Banach space
with constant s > 1 and T : X — X. If there exists a
nonnegative real number Q, where oo < 1, such that for
all x,y € X,

1
HT)C*Ty,EQ,E:;,"' ,@n” S a'max{; ||X*y,€2,...,€nH,

|x—Tx,ea,...,enll,|ly—Ty,e2,...,enl|}

then T has a unique fixed point in X.

Proof. We note that the following inequality holds.

1
|ITx—Ty,ez,e3,- ,en| < Oc-max{;|x—y,e2,...,e,,|,

HX7TX,€2,...,€n||, Hyny,eQ,...,enH}
S (X'M()(x,y)-

Consequently, the function 7 has a unique fixed point.
Remark. Corollary 3 generalizes the Sehgal’s result
[28] in a quasi n-Banach space.

Corollary 4.Let (E, ||-,...,-||) be a quasi n-Banach space
with constant s > 1 and let T : E — E that satisfies the
weak C-contraction

HT)C* Tyve%"' aenH

< Hy*T)C,EQ,...,enH+|‘X*Ty,€2,...,€n||
- 2s

HX*y,EQ,...,@n”,HX*TX,Ez,...,@n”,

_(p Hy_Tyana"'7el’l||aHy_Txana"'7el’l||7
Hx—Ty,ez,...,enH

where @ : Rt — RV is C-type. Then the function T has a
unique fixed point in E.

Proof. Using the contraction inequality and the fact

Hy*TX,EZ,...,EnH‘i’||X*Ty,€2,...,€nH

7 < Mo(x,y)
we take:
|ITx—Ty,es,... el
< Hy*TX,EZ,...,EnH‘i’ ||X*Ty,€2,...,€n”
- 2s
lx—y,ea2,...,enll, |x—Tx,e2,...,eull,

_(p ||y_Tyana"'7el’l||aHy_Txana"'aenH7
||X*Ty,€2,...,€n||

SMO()C?y)7(P(||x7y7827"'5en”7||X7Tx7827"'aen”7
HynyaEZa"'ven”aHyfoaEZa"'ven”v

|lx—=Ty,ea,...,enl)

Consequently, the function T has a unique fixed point.
Remark 4.9 Corollary 4 generalizes Theorem 6 of [25] in
quasi n-normed space.

S An application to Integral Equations

The applications of Fixed-Point Theory to Integral
equations have been on focus of many researchers [3],
[29]. In this section, we apply the result of Theorem 2 to
prove the existence and uniqueness of solution under
some conditions for integral equation
1
X(1) = h(1) + / F(t,o)r(e,x(2))de  inCpy
0

Let (E,||-,...,"||..) be the complete quasi n-normed space
where

E=Cjo={f:[0,1] = R, f is real continuous function}

and
n
s- sup H |ﬁ(t)| ) f17'-' afn are
r€f0,1]i=1
11 fulleo = linearly indipendent
0, otherwise

Theorem 3.The integral equation

1
() = (1) + /0 K(t,7)r(z,x(1))d7

where x € Cy,) and h: [0,1] — R is a continuous
function, K : [0,1] xR — [0,+e0) and r: [0,1] xR — R
are continuous functions which satisfy the following
conditions:

1
/ K(t,t)dt <1
0
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and

IF(5.2(8) ~ r(5,3(2)| < 5 (@) ¥(D)], Ve o1

has a unique solution in Cyg j).

Proof. Define the mapping T : Cjo,;) — Cjo,1) given by
Tx(t) = h(r)+ Jy K(t,7)r(z,x(1))dz.

Below, we show that the mapping 7 satisfies the
conditions of Theorem 2.

Firstly, we see that:

T

730~ 150 = | [ K 0)r(2.n(8) ~ r(5.5(8)ae
T

< [ K@l (wa(e) ~r(zy()]ds

< [ K00 5 ()~ (@)l ar

Consequently, for

Q

,'(l) S C[O,]], i=2,3,....n

sup [Tx(t) — Ty(1)| -fyeiw

€[0T
1 n
< 3, sup |x(t)*y(l‘)|'H|ei(t)|
1€[0,T] i=2

As a result, the following inequalities hold.

[Tx—Ty,ez,e3,..nco

|ITx—Ty,eze3,...,e4].. el
+ H-x_ Ty,€2,€3, s 7e”l||oo+ ||Tx_yae27e37' . )enHoo
2s
1 lef €9 ,€ enl|
§_||x7y,€2,€3,...,6‘n”w ez P23 nles
2s
+ fo Ty5625635 s 7en||oo+ ||T)C*y,€2,€3,. . 56}1”00
2s
1 1
< EMO(XJ)EM“(X’” + EMO(xvy) < My (x,y)eMot)

This shows that the mapping 7 satisfies the conditions
of  Theorem 2  for y(t) = te and
O (t1,02,13,14,15) = Zt 55 and it has a unique fixed point
in Cp,y), which guaranties the existence and the
uniqueness of solution for

x(t)=h(t)+ Jy F(t,7)r(t,x())dT in Cpp ).

6 Conclusions

In this paper there are defined quasi n-normed space as a
generalization of n- normed space. There are given some
examples on finite vector spaces and infinite vector

spaces. Some topological facts for quasi n-normed spaces
are given. Furthermore, there are proved fixed point
results for generalized weak contractions in a quasi
n-normed space. The highlights of the paper are Theorem
1 and Theorem 2 which show the existence and
uniqueness of a fixed point for (¢, y)-generalized weak
contraction and (¢, y)-generalized weak C-contraction,
respectively. As a result, from these theorems there are
obtained some corollaries which extend and generalize
the result of [25,2,2,?] in a quasi n-normed space.
Furthermore, all theorems and corollaries are true in
n-normed space, quasi 2-normed space and 2-normed
space. Some examples are given to show applicative side
of obtained results. As an application of Theorem 2, there
is given Theorem 3, which assure existence and
uniqueness of a solution for a type of integral equation.
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