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Abstract: We propose the definition of quasi-n-normed spaces and prove some new results on fixed points theory related to weak

contractions in this framework. We prove the existence and uniqueness of fixed point for (ϕ,ψ)-generalized weak contractions and

(ϕ,ψ)-generalized weak C-contractions in quasi n-normed spaces. The obtained results extend some known theorems for nonlinear

contractive functions on quasi n-normed spaces. In addition, we demonstrate an application of obtained results to Integral Equation.
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1 Introduction

The study of obtained functions from the generalization
of the norm has been the focus of many mathematicians
over the years. In 1963, the mathematician Gähler [1]
introduced the concept of 2-metric space and presented its
topological structure in his work. Many researchers have
studied 2-metric spaces and fixed points theory [2], [3].
Later, Gähler extended his work to 2-normed spaces [4],
and then to n-normed spaces [5]. These spaces have been
the object of study for many authors [6,?,?,?,?,?]

In 2001, Gunawan and Mashadi [12] studied the
n-normed spaces, their completeness, Cauchy sequences
and proved a fixed-point theorem. Inspired by their work,
several mathematicians assured significant fixed-point
results in 2-Banach and n-normed spaces [13,?,?,?,?].

The concept of 2-normed spaces was extended to
quasi 2-normed spaces [18] analogously as b-metric
spaces [19]. The fixed-point theory in quasi-2-normed
space and n-normed space has been a focus of research
for authors [20], where they have proven the existence
and uniqueness of a fixed point for several contractive
functions and shown its applicable side [21].

In this paper, we give and prove some new results on
the existence and uniqueness of a fixed point for
(ϕ ,ψ)-generalized weak contractive and

(ϕ ,ψ)-generalized weak C-contractive, respectively, on
quasi n-normed spaces. Some analogies are obtained from
the main theorems, which generalize some known results
in quasi−n-normed spaces. Examples illustrate the
highlights of this work. In addition, an application of the
main result to Integral Equations is given to show the
applicable side of this framework.

2 Preliminaries

Definition 1.Let E be a linear space with dimE ≥ 2 and

R
+ the set of nonnegative real numbers. The function

‖·, ·‖ : E2 → R
+ is called 2-norm, if it satisf ies the

following conditions:

1.‖x,y‖= 0 if and only if the vectors {x,y} are dependent

in E;

2.For every (x,y) ∈ E2, ‖x,y‖= ‖y,x‖ ;
3.For every (α,x,y) ∈R×E2, ‖αx,y‖= |α| ‖x,y‖;

4.For all (x,y,z) ∈ E3, ‖x+ y,z‖ ≤ ‖x,z‖+ ‖y,z‖.

The pair (E,‖·, ·‖) is called quasi 2-normed space.

Park defined the quasi 2-norm as follows:

Definition 2.[2] Let E be a linear space with dimE ≥ 2
andR+ the set of nonnegative real numbers. If the function

‖·, ·‖ : E2 → R
+ satisf ies the following conditions:
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1.‖x,y‖= 0 if and only if the vectors {x,y} are dependent

in E;

2.For every (x,y) ∈ X2, ‖x,y‖= ‖y,x‖ ;
3.For every (α,x,y) ∈ R×X2, ‖αx,y‖= |α| · ‖x,y‖;

4.There exists s ≥ 1, such that for all

(x,y,z) ∈ E3, ‖x+ y,z‖ ≤ s(‖x,z‖+ ‖y,z‖).
It is called is a quasi 2-norm. The pair (E,‖·, ·‖) is called

quasi 2-normed space.

Gunawan extended the concept of 2-normed space to n-
normed space as below:

Definition 3.[12] Let E be a real linear space with

dimE = d ≥ n (d is allowed to be inf inite) and

‖·, . . . , ·‖ : En → R
+ be a function which satisf ies the

following conditions:

1.‖e1,e2, . . . ,en‖ = 0 if and only if e1,e2, . . . ,en ∈ E are

linearly dependent;

2.‖e1,e2, . . . ,en‖ =
∥

∥e j1 ,e j2 , . . . ,e jn

∥

∥, for every

permutation ( j1, j2, . . . , jn) of (1,2, . . . ,n);
3.‖αe1,e2, . . . ,en‖= |α|‖e1,e2, l . . . ,en‖;

4.‖x+ y,e1,e2, . . . ,en−1‖ ≤
‖x,e1,e2, . . . ,en−1‖+ ‖y,e1,e2, . . . ,en−1‖;

for all α ∈R and x,y,e1,e2, · · · ,en ∈ E.

The function ‖·, . . . , ·‖ : En →R
+ is called n-norm and the

pair (E, ‖·, . . . , ·‖) is called n-normed space.

Example 1.[12] Let E = R
n, (e1,e2, . . . ,en) ∈ En where

e j =
(

x1 j,x2 j, . . . ,xn+1 j

)

for j ∈ {1,2, . . . ,n}. The
function ‖·, . . . , ·‖ : En →R

‖e1,e2, . . . ,en‖=

∣

∣

∣

∣

∣

∣

∣

∣









x11 · · · x1n

...
. . .

...

xn,1 · · · xn,n









∣

∣

∣

∣

∣

∣

∣

∣

is n-norm and (E,‖·, . . . , ·‖) is n-normed space.

Below, we define the quasi n-normed space as follows.

Definition 4.Let E be a linear space with dimE = d ≥ n

(d is allowed to be inf inite). The function

‖·, . . . , ·‖ : En → R
+ is called quasi n-norm, if it satisf ies

the following conditions:

1.‖e1,e2, . . . ,en‖ = 0 if and only if the vectors

{e1,e2, . . . ,en} are dependent in E;

2.For every (e1,e2, . . . ,en) ∈ En, ‖e1,e2, . . . ,en‖ is

invariant related to the permutations of

{e1,e2, . . . ,en}
3.For every (α,e1,e2, . . . ,en) ∈ R × En,

‖αe1,e2, . . . ,en‖= |α|‖e1,e2, . . . ,en‖;

4.There exists s ≥ 1, such that for all

(x,y,e1,e2, . . . ,en−1) ∈ En+1, the following inequality

holds:

‖x+ y,e1,e2, . . . ,en−1‖ ≤ s(‖x,e1,e2, . . . ,en−1‖

+‖y,e1,e2, . . . ,en−1‖).

The couple (E,‖·, · · · , ·‖) is called quasi n-normed space.

Example 2.Let E = R
n+1, (e1,e2, . . . ,en) ∈ En where e j =

(

x1 j,x2 j, . . . ,xn+1 j

)

for j ∈ {1,2, . . . ,n} and s ≥ 1. Define

the matrix X =









x11 · · · x1n

...
. . .

...

xn+1,1 · · · xn+1,n









.

We take the function ‖·, . . . , ·‖ : En → R
+,

‖e1, . . . ,en‖= s ·
∣

∣

∣det
(

xi0, j

)

n×n

∣

∣

∣+
n+1

∑
i6=i0

∣

∣det(xi, j)n×n

∣

∣,

where

∣

∣

∣det
(

xi0, j

)

n×n

∣

∣

∣ = min{
∣

∣det(xi, j)n×n

∣

∣} and

(xi, j)n×n
is the matrix of order n obtained from matrix X

removing the ith row.
Using the properties of the determinants and absolute
value, it is easy to prove that the function
‖·, . . . , ·‖ : En → R

+, is a quasi n−norm and the couple
(E,‖·, . . . , ·‖) is quasi n-normed space.

Remark.A quasi n-normed space may not be n-normed
space. Indeed, if we take the quasi n-normed space
(E,‖·, . . . , ·‖) given in Example 2 and
x = (−2,0,0 . . .0) , y = (7,7,7, . . . ,7) , e2 =
(7,5,7, . . . ,7) , e3 = (7,7,5, . . . ,7) , . . . ,en =
(7,7, . . . ,5,7) , we have:

‖x+ y,e2,e3, . . . ,en‖= 7s2n−1 + n(7n− 2)2n−1
,

‖x,e2,e3, . . . ,en‖= s2n + n(7n− 9)2n−1
,

‖y,e2,e3, . . . ,en‖= 7n ·2n−1

and

‖x+ y,e2,e3, . . . ,en‖ ≤ s(‖x,e2,e3, . . . ,en‖

+‖y,e2,e3, . . . ,en‖)
for every s > 1. As a result the pair (E,‖·, . . . , ·‖) is not
n-normed space.

Example 3.Let E =C[0,1] = { f : [0,1]→R, f is continuous
and s ≥ 1.
Define ‖·, . . . , ·‖∞ : En →R

+ as follows:

‖ f1, . . . , fn‖∞ =



















s sup
t∈[0,1]

n

∏
i=1

| f1(t)| , f1, . . . , fn are

linearly indipendent

0, otherwise

The space (E,‖·, . . . , ·‖∞) is an infinite dimensional quasi
n-Banach space with s ≥ 1.

Definition 5.Let (E,‖·, . . . , ·‖) be a quasi n-normed space.

The sequence {xk}k∈N in E is called convergent to x0 ∈ E,

if for every ε > 0, there exists p ∈ N, such that for every

k ∈N,k > p, ‖xk − x0,e2, . . . ,en‖< ε , for each e2, . . . ,en ∈
E or limk→+∞ ‖xk − x0,e2, . . . ,en‖= 0.
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Definition 6.A sequence {xk}k∈N in a quasi n-normed

space (E,‖·, . . . , ·‖) is said to be a Cauchy sequence if for

every ε > 0, there exists p ∈ N, such that for every

k, l ∈ N,k.l > p, ‖xk − xl ,e2, . . . ,en‖ < ε , for each

e2, . . . ,ek ∈ E. (It is denoted

limk,l→+∞ ‖xk − xl,e2, . . . ,en‖ = 0.

Definition 7.The quasi n-normed space (E,‖·, . . . , ·‖) is

called complete if every Cauchy sequence in E is

convergent in E. It is called quasi n-Banach space.

Below, we recall the concept of (ϕ ,ψ)-weak contraction
and its generalizations.
Dutta and Choudhury in 2008 defined the nonlinear
contraction known as (ϕ ,ψ)-weak contraction in metric
space as follows:

Definition 8.[22] Let (X ,d) be metric space and T : X →
X be a map. The map T is called (ϕ ,ψ)-weak contraction

if it satisf ies the inequality:

ψ (d (T x,Ty))≤ ψ (d (x,y))−ϕ (d (x,y)) (1)

for every (x,y) ∈ X2, where ψ ,ϕ : R
+ → R

+are

monotone nondecreasing and continuous functions with

ϕ (t) = ψ (t) = 0 iff t = 0.

Later, Doric in 2009 [23] improved this contraction by
replacing d(x,y) with M (x,y) =
max{d (x,y) , d (x,T x) ,d (y,Ty) , 1

2
[d (x,Ty)+ d (T x,y)]}

in (1) and taking the function ϕ lower semi-continuous.
Recently, Xue generalized the above-mentioned
contractions as follows:

Definition 9.[24] Let (X ,d) a metric space and

T : X → X be a map. The map T is called (ϕ ,ψ)-
generalized weak contraction if for every (x,y) ∈ X2, it

satisf ies the inequality

ψ (d (T x,Ty))≤ ψ (M (x,y))−ϕ (M (x,y)) (2)

where ψ ,ϕ : R+ → R
+are two functions which satisfy the

conditions:

1. ϕ (t) = ψ (t) = 0 iff t = 0;

2. lim
τ→t

infψ(τ)> lim
τ→t

supψ(τ ) − lim
τ→t

infϕ(τ).

3 Main results

Motivated from the above results, we consider the (ϕ ,ψ)-
generalized weak contraction in a quasi n-normed space as
follows:

Definition 10.Let (E, ‖·, . . . , ·‖) be a quasi n-Banach

space with constant s ≥ 1 and T : E → E. The function T

is called (ϕ ,ψ)-nonlinear generalized weak contraction

if it satisf ies the inequality

ψ (‖T x−Ty,e2, . . . ,en‖)≤ ψ(M0(x,y))−ϕ (M0 (x,y))
(3)

for each (x,y) ∈ E2 and e2, . . . ,en ∈ E, where ψ ,ϕ : R+ →
R
+ satisfy the following conditions:

1.ϕ (t) = ψ (t) = 0 iff t = 0;

2.ψ is a nondecreasing function;

3.limτ→t infψ(τ)> limτ→t supψ(τ)− limτ→t infϕ(τ).

and

M0 (x,y) = max{‖x− y,e2, . . . ,en‖ ,

‖x−Tx,e2, . . . ,en‖ ,‖y−Ty,e2, . . . ,en‖ ,

‖y−Tx,e2, . . . ,en‖+ ‖x−Ty,e2, . . . ,en‖
2s

}

for e2, . . . ,en ∈ E.

Theorem 1.Let (E, ‖·, . . . , ·‖) be a quasi n-Banach space

with constant s≥ 1 and let T : E → E be (ϕ ,ψ)- nonlinear

generalized contraction. Then, the function T has a unique

f ixed point in E.

Proof. Let x0 ∈ E be an arbitrary point in E . Define the
sequence {xk}k∈N such that xk = T xk−1 = T kx0,
k = 1,2, . . .
If there exists any r ∈ N such that xr = xr−1, then T xr−1 =
xr−1, and xr−1 is a fixed point of map T.

Suppose that for each k ∈ N, xk 6= xk−1.
For k ∈ N and e2, . . . ,en ∈ E , we have

ψ (‖xk − xk+1,e2, . . . ,en‖)≤ ψ (M0 (xk−1,xk))

−ϕ(M0 (xk−1,xk))

where

M0 (xk−1,xk) = max

{

1

s
‖xk−1 − xk,e2, . . . ,en‖ ,

‖xk−1 − xk,e2, . . . ,en‖ ,

‖xk − xk+1,e2, . . . ,en‖ ,

‖xk − xk,e2, . . . ,en‖
2s

+
‖xk−1 − xk+1,e2, . . . ,en‖

2s

}

= max{‖xk−1 − xk,e2, . . . ,en‖ ,

‖xk − xk+1,e2, . . . ,en‖ ,

‖xk−1 − xk+1,e2, . . . ,en‖
2s

}

= max{‖xk−1 − xk,e2, . . . ,en‖ ,

‖xk − xk+1,e2, . . . ,en‖ ,

‖xk−1 − xk+1,e2, . . . ,en‖
2s

}

Let us consider the following cases.
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Case 1: If M0 (xk−1,xk) = ‖xk−1 − xk,e2, . . . ,en‖ then

ψ (‖xk − xk+1,e2, . . . ,en‖)≤ ψ (‖xk−1 − xk,e2, . . . ,en‖)

−ϕ (‖xk−1 − xk,e2, . . . ,en‖)

< ψ (‖xk−1 − xk,e2, . . . ,en‖) .
Consequently, the inequality

‖xk − xk+1,e2, . . . ,en‖< ‖xk−1 − xk,e2, . . . ,en‖

is true.

Case 2: If M0 (xk−1,xk) = ‖xk − xk+1,e2, . . . ,en‖, then

ψ (‖xk − xk+1,e2, . . . ,en‖)≤ ψ (‖xk − xk+1,e2, . . . ,en‖)

−ϕ (‖xk − xk+1,e2, . . . ,en‖)

< ψ (‖xk − xk+1,e2, . . . ,en‖)
which is a contradiction. Consequently, this case does not
hold.

Case 3: If M0 (xk−1,xk) =
‖xk−1−xk+1,e2,...,en‖

2s
, then

ψ (‖xk − xk+1,e2, . . . ,en‖)

≤ ψ

(‖xk−1 − xk+1,e2, . . . ,en‖
2s

)

−ϕ

(‖xk−1 − xk+1,e2, . . . ,en‖
2s

)

< ψ

(‖xk−1 − xk+1,e2, . . . ,en‖
2s

)

So, we have

‖xk − xk+1,e2, . . . ,en‖<
‖xk−1 − xk+1,e2, . . . ,en‖

2s

≤ s(‖xk−1 − xk,e2, . . . ,en‖
2s

+‖xk − xk+1,e2, . . . ,en‖)
2s

=
‖xk−1 − xk,e2, . . . ,en‖+ ‖xk − xk+1,e2, . . . ,en‖)

2

and

‖xk − xk+1,e2, . . . ,en‖< ‖xk−1 − xk,e2, . . . ,en‖

Considering the above cases, we have proved that the
sequence

{‖xk − xk+1,e2, . . . ,en‖}k∈N = {λk}k∈N

is monotone decreasing and bounded below from zero.
Consequently, it converges to its infimum λ ≥ 0,
limk→∞ λk = λ .

If we replace in (3), the value of M0(x,y) according to Case
1 and Case 3, respectively, we have:

For M0 (x,y) = ‖xk−1 − xk,e2, . . . ,en‖, the following
inequalities

ψ (‖xk − xk+1,e2, . . . ,en‖)≤ ψ (‖xk−1 − xk,e2, . . . ,en‖)

−ϕ (‖xk−1 − xk,e2, . . . ,en‖)
and

ψ (λk)≤ ψ (λk)−ϕ (λk)

hold.
Taking the limit of both sides when k → ∞, we have

ψ(λ )≤ ψ(λ )−ϕ(λ )

If M0 (x,y) =
‖xk−1−xk+1,e2,...,en‖

2s
, we have

ψ (‖xk − xk+1,e2, . . . ,en‖)

≤ ψ

(‖xk−1 − xk+1,e2, . . . ,en‖
2s

)

−ϕ

(‖xk−1 − xk+1,e2, . . . ,en‖
2s

)

≤ ψ

(

s(‖xk−1 − xk,e2, . . . ,en‖
2s

+‖xk − xk+1,e2, . . . ,en‖
2s

)

−ϕ

(

s(‖xk−1 − xk,e2, . . . ,en‖
2s

+‖xk − xk+1,e2, . . . ,en‖
2s

)

and

ψ (λk)≤ ψ

(

λk−1 +λk

2

)

−ϕ

(

λk−1 +λk

2

)

As a result, taking the limit of both sides we have when
k → ∞, we have

ψ (λ )≤ ψ (λ )−ϕ (λ )

Consequently, ϕ (λ ) = 0,λ = 0 and

lim
k→∞

‖xk − xk+1,e2, . . . ,en‖= 0

Now, we claim that the sequence {xk}k∈N is Cauchy.
Suppose that the sequence {xk}k∈N is not Cauchy. So,

there exist ε > 0, such that for each p ∈ N, there exist
k (p) , l(p) where k (p) is the smallest index for which

k (p)> l (p)> pand
∥

∥xl(p)− xk(p),e2, . . . ,en

∥

∥≥ ε

It is clear that
∥

∥xl(p)− xk(p)−1,e2, . . . ,en

∥

∥ < ε . From the
third condition of quasi n-norm, it yields

ε ≤
∥

∥xl(p)− xk(p),e2, . . . ,en

∥

∥

≤ s
(∥

∥xl(p)− xk(p)−1,e2, . . . ,en

∥

∥

+
∥

∥xk(p)−1 − xk(p),e2, . . . ,en

∥

∥

)

< s
(

ε +
∥

∥xk(p)−1 − xk(p),e2, . . . ,en

∥

∥

)
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Taking the limit when p →+∞ in the above inequality, we
have

ε ≤ lim
p→+∞

∥

∥xl(p)− xk(p),e2, . . . ,en

∥

∥≤ sε. (4)

Furthermore,
∥

∥xl(p)−1 − xk(p)−1,e2, . . . ,en

∥

∥

≤ s(
∥

∥xl(p)−1 − xk(p),e2, . . . ,en

∥

∥

+
∥

∥xk(p)− xk(p)−1,e2, . . . ,en

∥

∥)

and
lim

p→+∞

∥

∥xl(p)−1 − xk(p)−1,e2, . . . ,en

∥

∥≤ sε (5)

Next, using (4) and (5), we evaluate the
limp→+∞ M0

(

xl(p)−1,xk(p)−1

)

.
We see that

ε ≤ M0

(

xl(p)−1,xk(p)−1

)

= max

{

1

s

∥

∥xl(p)−1 − xk(p)−1,e2, . . . ,en

∥

∥ ,

∥

∥xl(p)−1 − xl(p),e2, . . . ,en

∥

∥ ,

∥

∥xk(p)−1 − xk(p),e2, . . . ,en

∥

∥ ,

s(
∥

∥xl(p)−1 − xk(p),e2, . . . ,en

∥

∥

2s

+
∥

∥xl(p)− xk(p)−1,e2, . . . ,en

∥

∥)

2s

}

and

ε ≤ lim
p→+∞

M0

(

xl(p)−1,xk(p)−1

)

≤max

{

ε,0,0,
ε + ε

2

}

= ε

Considering the contraction, we have

ψ
(∥

∥xl(p)− xk(p),e2, . . . ,en

∥

∥

)

≤ ψ
(

M0(xl(p)−1,xk(p)−1

)

−ϕ
(

M0(xl(p)−1,xk(p)−1)
)

and

inf
i≥p

ψ
(∥

∥xl(p)− xk(p),e2, . . . ,en

∥

∥

)

+ inf
i≥p

ϕ
(

M0

(

xl(p)−1,xk(p)−1

))

≤ sup
i≥p

ψ
(

M0

(

xl(p)−1,xk(p)−1

))

Consequently, it yields

liminf
t→ε

ψ(t)+ liminf
t→ε

ϕ(t)≤ limsup
t→ε

ψ(t)

and
ψ (ε)+ϕ (ε)≤ ψ (ε)

which is true if only if ε = 0, which is a contradiction. So,
{xk}k∈N is a Cauchy sequence and since the quasi

n-Banach space (E, ‖·, . . . , ·‖) is complete, the sequence
{xk}k∈N converges to a point x∗ ∈ E ,

lim
k→+∞

xk = lim
k→+∞

T kx0 = x∗

Next, we prove that x∗ is a fixed point of function T .
Using the contraction inequality, we have

ψ (‖T x∗− xk,e2, . . . ,en‖) (6)

≤ ψ (M0 (x
∗
,xk))−ϕ (M0 (x

∗
,xk))

where

M0 (x
∗
,xk) = max

{

1

s
‖x∗− xk,e2, . . . ,en‖ ,

‖x∗−Tx∗,e2, . . . ,en‖ ,‖xk − xk+1,e2, . . . ,en‖ ,

‖T x∗− xk,e2, . . . ,en‖+ ‖x∗− xk+1,e2, . . . ,en‖
2s

}

Taking

‖T x∗− xk,e2, . . . ,en‖+ ‖x∗− xk+1,e2, . . . ,en‖

≤ s(‖Tx∗− x∗,e2, . . . ,en‖+ ‖x∗− xk,e2, . . . ,en‖

+‖x∗− xk,e2, . . . ,en‖+ ‖xk − xk+1,e2, . . . ,en‖)

= s(‖Tx∗− x∗,e2, . . . ,en‖+ 2‖x∗− xk,e2, . . . ,en‖

+‖xk − xk+1,e2, . . . ,en‖)
then it yields

M0(x
∗
,xk) = max

{

1

s
‖x∗− xk,e2, . . . ,en‖ ,

‖x∗−Tx∗,e2, . . . ,en‖ ,‖xk − xk+1,e2, . . . ,en‖ ,

‖x∗− xk,e2, . . . ,en‖

+
‖Tx∗− x∗,e2, . . . ,en‖+ ‖xk − xk+1,e2, . . . ,en‖

2

}

We see that

lim
k→+∞

M0 (x
∗
,xk) = max{0,‖x∗−Tx∗,e2, . . . ,en‖ ,0,

‖T x∗− x∗,e2, . . . ,en‖
2

}

= ‖x∗−Tx∗,e2, . . . ,en‖

From inequality (6), we have:

inf
k

ψ (‖T x∗− xk,e2, . . . ,en‖)+ inf
k

ϕ (M0 (x
∗
,xk))

≤ sup
k

ψ (M0 (x
∗
,xk)) .

Taking the limit in the above inequality

lim
t→‖T x∗−x∗,e2,...,en‖

inf
k

ψ(t)+ lim
t→‖T x∗−x∗,e2,...,en‖

inf
k

ϕ(t)

≤ lim
t→‖T x∗−x∗,e2,...,en‖

sup
k

ψ (M0(x
∗
,xk))
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we have ϕ(‖x∗−Tx∗,e2, . . . ,en‖) = 0 and
‖x∗−Tx∗,e2, . . . ,en‖ = 0 for each e2, . . . ,en ∈ E .
Consequently, x∗ = T x∗and x∗ is a fixed point of T .

Finally, we show the uniqueness of the fixed point x∗

of T . Suppose that there exists another fixed point y∗ of T ,
y∗ = Ty∗.

Using the inequality

ψ (‖Tx∗−Ty∗,e2, . . . ,en‖)

≤ ψ (M0 (x
∗
,y∗))−ϕ (M0 (x

∗
,y∗))

where

M0 (x
∗
,y∗) = ‖x∗− y∗,e2, . . . ,en‖ ,

we have:

ψ (‖x∗− y∗,e2, . . . ,en‖)≤ ψ (‖x∗− y∗,e2, . . . ,en‖)

−ϕ (‖x∗− y∗,e2, . . . ,en‖)

From this, it yields ‖x∗− y∗,e2, . . . ,en‖ = 0 for every
e2, . . . ,en ∈ E and x∗ = y∗.

Example 4.Let E = R
d , where n < d < ∞. Define

‖·, . . . , ·‖ : En → [0,+∞) such that

‖e1,e2, . . . ,en‖=















s∏n
i=1 |ei|, e1,e2, . . . ,en linearly

independent

0, e1,e2, . . . ,en linearly
dependent

The couple (E, ‖x1,x2, . . . ,xn‖) is a complete n-normed
space.

Taking s = 3
2
,T : E → E, T (x) = T (x1, . . .xd) =

1
10
(sin x1,sin x2, . . . ,sin xd), for xi ∈ R, i ∈ {1,2, . . .d},

ψ : R
+ → R

+,ψ(t) = t·ln(t2+1)
2

and

ϕ : R+ → R
+, ϕ(t) =

√
t

4
, we show that the function T

satisfies the conditions of Theorem 1.

The first three conditions are clear.

Considering x,y, e2, . . . ,en ∈ E, and

‖T x−Ty,e2, . . . ,en‖=
1

10
‖sinx1 − siny1,sin x2 − siny2,

. . . ,sin xd − sinyd),e2, . . . ,en‖

=
s

10

(

d

∑
j=1

(sinx j − siny j)
2

) 1
2 n

∏
i=1

|ei|

≤ s

10

(

d

∑
j=1

(x j − y j)
2

) 1
2 n

∏
i=1

|ei|

=
1

10
‖x− y,e2, . . . ,en‖ ,

ψ (‖T x−Ty,e2, . . . ,en‖)+ϕ (M0(x,y))

≤ ψ

(

1

10
‖x− y,e2, . . . ,en‖

)

+

√

M0(x,y)

4
=

1
10
‖x− y,e2, . . . ,en‖ · ln

(

1
100

(‖x− y,e2, . . . ,en‖)2 + 1
)

2

+
1

4

M0 (x,y) · ln
(

(M0 (x,y))
2 + 1

)

2
<

3

20

2
3
‖x− y,e2, . . . ,en‖ · ln( 4

9
(‖x− y,e2, . . . ,en‖)2

+ 1 )

2

+
1

4
ψ (M0 (x,y))

≤ 3

20
ψ (M0 (x,y))+

1

4
ψ (M0 (x,y)) =

13

20
ψ (M0 (x,y))

< ψ (M0 (x,y))

where

M0 (x,y) = max



























2
3
‖x− y,e2, . . . ,en‖ ,

‖x−Tx,e2, . . . ,en‖ ,
‖y(t)−Ty(t),e2, . . . ,en‖ ,
‖y(t)−T x(t),e2 ,...,en‖+‖x(t)−Ty(t),e2 ,...,en‖

3



























Since, ψ (‖T x(t)−Ty(t),e2, . . . ,en‖) ≤
ψ (M0 (x,y))−ϕ (M0 (x,y)) , we prove that the function T

has a unique fixed point x = 0.
In 2013, Saha and Ganguly recalled weakly C-contractive
function in 2-normed space, as follows:

Definition 11.[25] Let(E, ‖·, ·‖) 2-normed space. A

function T : E → E is called weakly C-contractive if for

all x,y ∈ E,

‖T x−Ty‖ ≤ ‖x−Ty,a‖+ ‖y−Tx,a‖
2

−ϕ(‖x−Ty,a‖ ,‖y−Tx,a‖
where ϕ :R+2 →R

+ is a continuous map and ϕ (0,0) = 0.

Below, we generalize weak C-contraction to
(ϕ ,ψ)-generalized weak C-contractions and prove some
fixed-point results related to these weak contractions in
quasi n-normed space.

Definition 12.A function ϕ : R+5 →R
+ is called of C-type

if it satisf ies the following conditions:

1.ϕ(t1, t2, t3, t4, t5) = 0 iff t1 = t2 = t3 = t4 = t5 = 0;

2.ϕ is lower semi continuous.

Example 5.Let ϕ : R+5 → R
+ be a nonnegative map and

ϕ (t1, t2, t3, t4, t5) = t1+ t2et2 + log(1+ t3) +max{t4, t5}. It
is clear that this map is of C-type.
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Definition 13.Let (E, ‖·, . . . , ·‖) be a quasi n-Banach

space with constant s ≥ 1 and T : E → E. The function T

is called (ϕ ,ψ)- nonlinear generalized weak

C-contraction if it satisf ies the inequality

ψ (‖Tx−Ty,e2, . . . ,en‖)≤ ψ(M0(x,y))

−ϕ (‖x− y,e2, . . . ,en‖ , ‖x−Tx,e2, . . . ,en‖ , (7)

‖y−Ty,e2, . . . ,en‖ , ‖y−Tx,e2, . . . ,en‖ ,

‖x−Ty,e2, . . . ,en‖)

where ψ : R+ → R
+ and ϕ : R+5 → R

+ which complete

the following conditions:

1.ψ (t) = 0 iff t = 0;

2.ψ is a nondecreasing function;

3.ψ is upper semi continuous function;

4.ϕ is C-type;

5.limpψ(tp)> limpψ(tp)− limpϕ(tp, tp, tp, tp, tp);

and

M0 (x,y) = max



























1
s
‖x− y,e2, . . . ,en‖ ,

‖x−Tx,e2, . . . ,en‖ ,
‖y−Ty,e2, . . . ,en‖ ,
‖y−T x,e2,...,en‖+‖x−Ty,e2,...,en‖

2s



























for e2, . . . ,en ∈ E.

Theorem 2.Let (E, ‖·, . . . , ·‖) be a quasi n-Banach space

with constant s ≥ 1 and let T : E → E be a (ϕ ,ψ)-
generalized weak C-contraction. Then the function T has

a unique f ixed point in E.

Proof. Let x0 ∈ E be an arbitrary point in E . Define the
sequence {xk}k∈N such that xk = T xk−1 = T kx0,
k = 1,2, . . .

If there exists any r ∈N such that xr = xr−1, then xr−1 is a
fixed point of map T.

Suppose that for each k ∈ N, xk 6= xk−1.

For k ∈N and e2, . . . ,en ∈ E , we have

ψ (‖xk − xk+1,e2, . . . ,en‖)≤ ψ (M0 (xk−1,xk))

−ϕ







‖xk−1 − xk,e2, . . . ,en‖ ,‖xk−1 − xk,e2, . . . ,en‖ ,
‖xk − xk+1,e2, . . . ,en‖ ,‖xk − xk,e2, . . . ,en‖ ,
‖xk−1 − xk+1,e2, . . . ,en‖







= ψ (M0 (xk−1,xk))

−ϕ





‖xk−1 − xk,e2, . . . ,en‖ ,‖xk−1 − xk,e2, . . . ,en‖ ,
‖xk − xk+1,e2, . . . ,en‖ ,0,
‖xk−1 − xk+1,e2, . . . ,en‖





where

M0(xk−1,xk) = max

{

1

s
‖xk−1 − xk,e2, . . . ,en‖ ,

‖xk−1 − xk,e2, . . . ,en‖ ,‖xk − xk+1,e2, . . . ,en‖ ,

‖xk − xk,e2, . . . ,en‖+ ‖xk−1 − xk+1,e2, . . . ,en‖
2s

}

= max{‖xk−1 − xk,e2, . . . ,en‖ ,‖xk − xk+1,e2, . . . ,en‖ ,

‖xk−1 − xk+1,e2, . . . ,en‖
2s

}

.

Using the same method as in Theorem 1, the inequality

‖xk − xk+1,e2, . . . ,en‖< ‖xk−1 − xk,e2, . . . ,en‖
can be proved for every e2, . . . ,en ∈ E .

As a result, the sequence
{‖xk − xk+1,e2, . . . ,en‖}k∈N = {λk}k∈N is monotone
decreasing and bounded below from zero. So, it
converges to its infimum λ ≥ 0, limk→∞ λk = λ .
Considering the inequality
limpψ (λk) > limpψ (λk)− limkϕ (λk,λk,λk,λk,λk) , we

have ψ (λ ) ≥ ψ (λ ) − ϕ (λ ,λ ,λ ,λ ,λ ) and
ϕ (λ ,λ ,λ ,λ ,λ ) = 0. So, we obtain λ = 0.
Consequently, limk→∞ ‖xk − xk+1,e2, . . . ,en‖ = 0, for
every e2, . . . ,en ∈ E .
Next step is to prove that {xk}k∈N is a Cauchy sequence.
Suppose that {xk}k∈N is not a Cauchy sequence.
Consequently, there exists ε > 0, such that for each
p ∈ N, there exists k (p) , l(p) where k(p) is the smallest
index for which k (p)> l (p)> p and

∥

∥xl(p)− xk(p),e2, . . . ,en

∥

∥≥ ε (8)

and
∥

∥xl(p)− xk(p)−1,e2, . . . ,en

∥

∥< ε (9)

Using the same manner as in Theorem 1, we prove that
lim

p→+∞
M0

(

xl(p)−1,xk(p)−1

)

= ε .

Furthermore,
∥

∥xl(p)−1 − xk(p)−1,e2, . . . ,en

∥

∥

≤ s(
∥

∥xl(p)−1 − xk(p),e2, . . . ,en

∥

∥

+
∥

∥xk(p)− xk(p)−1,e2, . . . ,en

∥

∥)

Also, we see that

ε ≤
∥

∥xl(p)− xk(p),e2, . . . ,en

∥

∥

≤ s
(∥

∥xl(p)− xl(p)−1,e2, . . . ,en

∥

∥

+
∥

∥xl(p)−1 − xk(p),e2, . . . ,en

∥

∥

)

< s
∥

∥xl(p)− xl(p)−1,e2, . . . ,en

∥

∥

+s2(
∥

∥xl(p)−1 − xk(p)−1,e2, . . . ,en

∥

∥

+
∥

∥xk(p)−1 − xk(p),e2, . . . ,en

∥

∥)
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Taking the limit above, the inequality (9) holds:

ε

s2
≤ lim

p→+∞

∥

∥xl(p)−1 − xk(p)−1,e2, . . . ,en

∥

∥ (10)

Furthermore, using

ε ≤
∥

∥xl(p)− xk(p),e2, . . . ,en

∥

∥

≤ s
(∥

∥xl(p)− xl(p)−1,e2, . . . ,en

∥

∥

+
∥

∥xl(p)−1 − xk(p),e2, . . . ,en

∥

∥

)

we obtain

ε

s
≤ lim

p→+∞

∥

∥xl(p)−1 − xk(p),e2, . . . ,en

∥

∥ (11)

Considering the C-contraction, we have

ψ
(∥

∥xl(p)− xk(p),e2, . . . ,en

∥

∥

)

+ϕ
(∥

∥xl(p)−1 − xk(p)−1,e2, . . . ,en

∥

∥ ,

∥

∥xl(p)−1 − xl(p),e2, . . . ,en

∥

∥ ,

∥

∥xk(p)−1 − xk(p),e2, . . . ,en

∥

∥ ,

∥

∥xl(p)−1 − xk(p),e2, . . . ,en

∥

∥ ,

∥

∥xl(p)− xk(p)−1,e2, . . . ,en

∥

∥

)

≤ ψ
(

M0

(

xl(p)−1,xk(p)−1

))

Taking limits of both sides and using the inequalities (8),
(9), (10) and (11), there is acquired

ψ (ε)+ϕ
( ε

s2
,0, 0,

ε

s
,ε
)

≤ limpψ
(∥

∥xl(p)− xk(p),e2, . . . ,en

∥

∥

)

+limpϕ
(∥

∥xl(p)−1 − xk(p)−1,e2, . . . ,en

∥

∥ ,

∥

∥xl(p)−1 − xl(p),e2, . . . ,en

∥

∥ ,

∥

∥xk(p)−1 − xk(p),e2, . . . ,en

∥

∥ ,

∥

∥xl(p)−1 − xk(p),e2, . . . ,en

∥

∥ ,

∥

∥xl(p)− xk(p)−1,e2, . . . ,en

∥

∥

)

≤ limpψ
(

M0

(

xl(p)−1,xk(p)−1

))

≤ ψ(ε)

Consequently, we have

ψ(ε)+ϕ
( ε

s2
,0, 0,

ε

s
,ε
)

≤ ψ (ε)

This inequality holds only if

ϕ
( ε

s2
,0, 0,

ε

s
,ε
)

= 0

and ε = 0, which is a contradiction.

So, {xk}k∈N is Cauchy sequence.
Since (E,‖·, . . . , ·‖) is complete, the sequence {xk}k∈N
converges to a point x∗ ∈ E ,

lim
k→+∞

xk = lim
k→+∞

T kx0 = x∗

Now we prove that T x∗ = x∗.
Taking the C-contraction inequality

ψ (‖T x∗− xk+1,e2, . . . ,en‖)≤ ψ (M0(x
∗
,xk))

−ϕ (‖x∗− xk,e2, . . . ,en‖

‖x∗−Tx∗,e2, . . . ,en‖ ,‖xk − xk+1,e2, . . . ,en‖ ,

‖T x∗− xk,e2, . . . ,en‖ , ‖x∗− xk+1,e2, . . . ,en‖)
and

M0 (x
∗
,xk) = max

{

1

s
‖x∗− xk,e2, . . . ,en‖ ,

‖x∗−Tx∗,e2, . . . ,en‖ ,‖xk − xk+1,e2, . . . ,en‖ ,

‖T x∗− xk,e2, . . . ,en‖+ ‖x∗− xk+1,e2, . . . ,en‖
2s

}

We see that

lim
k→+∞

M0(x
∗
,xk) = max{0,‖x∗−Tx∗,e2, . . . ,en‖ ,0,

‖T x∗− x∗,e2, . . . ,en‖
2

}

= ‖x∗−Tx∗,e2, . . . ,en‖

and

ψ (‖x∗−Tx∗,e2, . . . ,en‖)≤ ψ (‖x∗−Tx∗,e2, . . . ,en‖)

−ϕ (‖x∗−Tx∗,e2, . . . ,en‖ ,‖x∗−Tx∗,e2, . . . ,en‖ ,

0,‖x∗−Tx∗,e2, . . . ,en‖ ,‖x∗−Tx∗,e2, . . . ,en‖)
From which ‖x∗−Tx∗,e2, . . . ,en‖= 0 for all e2, . . . ,en ∈E

and x∗ = Tx∗.
Next, we show the uniqueness of the fixed point x∗ of
function T .
Suppose that there exists another fixed point y∗ of function
T , y∗ = Ty∗. We have

ψ (‖T x∗−Ty∗,e2, . . . ,en‖)≤ ψ (M0 (x
∗
,y∗))

−ϕ (‖x∗− y∗,e2, . . . ,en‖ ‖x∗−Tx∗,e2, . . . ,en‖ ,

‖y∗−Ty∗,e2, . . . ,en‖ ,‖T x∗− y∗,e2, . . . ,en‖ ,

‖x∗−Ty∗,e2, . . . ,en‖)
and

ψ (‖x∗− y∗,e2, . . . ,en‖)≤ ψ (‖x∗− y∗,e2, . . . ,en‖)

−ϕ(‖x∗− y∗,e2, . . . ,en‖ ,0,0,‖x∗− y∗,e2, . . . ,en‖ ,

‖x∗− y∗,e2, . . . ,en‖)
From this, it yields ‖x∗− y∗,e2, . . . ,en‖ = 0 for every
e2, . . . ,en ∈ E and x∗ = y∗.
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Remark.If we take ψ (t) = t in Theorem 2 there exists a
unique fixed point for a function T : E → E that satisfies
the contraction

‖T x−Ty,e2, . . . ,en‖ ≤ M0(x,y)−ϕ (‖x− y,e2, . . . ,en‖ ,

‖x−Tx,e2, . . . ,en‖ ,‖y−Ty,e2, . . . ,en‖ ,

‖y−Tx,e2, . . . ,en‖ ,‖x−Ty,e2, . . . ,en‖) (12)

in a quasi n-normed space(E,‖·, . . . , ·‖) with s ≥ 1.

Example 6.Considering Pk the set of real polynomials of
degree less or equal to k with coefficients from [0,1].
Taking the usual addition and multiplication with scalar,
the triple (Pk,+, ·) is an infinite dimensional vector space.
Let {x1, . . . , xkn} be a set of points in [0,1].

The function ‖·, . . . , ·‖ : Pn
k → [0,+∞[,

‖ f1, f2, . . . , fn‖=































f 1, . . . , fn

s∑kn
i=1 | f1(xi) . . . fn(xi)| , linearly in−

dependent

f1, . . . , fn

0, linearly
dependent

for s ≥ 1 is a quasi n-norm and the pair (E = Pk, ‖· . . . , ·‖)
is a quasi n-normed space.

s = 5
2
. Taking T : E → E, T x = 1

4
x, where x is from E ,

ψ : R+ → R
+,ψ (t) = 4tet

, and ϕ (t1, t2, t3, t4, t5) =
2
5
t1 +

t2 + t3 +
t2+t3

5
, we show that the function T satisfies the

conditions of Theorem 2.

The first three conditions are clear.

Now we see ‖T x−Ty,e2, . . . ,en‖ =
∥

∥

x
4
− y

4
,e2, . . . ,en

∥

∥ =
1
4
‖x− y,e2, . . . ,en‖ .

In addition,

M0(x,y) = max

{

2

5
‖x− y,e2, . . . ,en‖ ,

‖x−Tx,e2, . . . ,en‖ ,‖y−Ty,e2, . . . ,en‖ ,

‖y−Tx,e2, . . . ,en‖+ ‖x−Ty,e2, . . . ,en‖
5

}

Since the inequality t < et for every t ≥ 0, we have that

ψ (M0 (x,y)) = 4M0 (x,y)e
M0(x,y)

≥ ‖x− y,e2, . . . ,en‖e
1
4 ‖x−y,e2,...,en‖

+
2

5
‖x− y,e2, . . . ,en‖+ ‖x−Tx,e2, . . . ,en‖

+‖y−Ty,e2, . . . ,en‖

+
‖y−Tx,e2, . . . ,en‖+ ‖x−Ty,e2, . . . ,en‖

5

= ψ (‖T x−Ty,e2, . . . ,en‖)

+ϕ (‖x− y,e2, . . . ,en‖ ,‖x−Tx,e2, . . . ,en‖ ,

‖y−Ty,e2, . . . ,en‖ ,‖y−Tx,e2, . . . ,en‖ ,

‖x−Ty,e2, . . . ,en‖)

Consequently,

ψ (‖T x−Ty,e2, . . . ,en‖)≤ ψ (M0(x,y))

−ϕ(‖x− y,e2, . . . ,en‖ ,‖x−Tx,e2, . . . ,en‖ ,

‖y−Ty,e2, . . . ,en‖ ,‖y−Tx,e2, . . . ,en‖ ,

‖x−Ty,e2, . . . ,en‖

and we are in condition of Theorem 2. As a result, the
function T has a unique fixed point in E , x = 0.

4 Corollaries

Corollary 1.Let (E,‖·, . . . , ·‖) be quasi n-Banach space

with constant s ≥ 1 and let T : E → E ϕ-weak

contraction in E. Then T has a unique f ixed point in E.

Proof. Let us consider the ϕ-weak contraction

‖T x−Ty,e2, . . . ,en‖ ≤ M0(x,y)−ϕ (M0 (x,y))

If we take ψ(t) = t, the conditions of Theorem 1 are
satisfied and T has a unique fixed point in E .

Remark.Corollary 1 is an extension of result of [26] [26]
in quasi n-normed space.

Corollary 2.Let (E,‖·, . . . , ·‖) be a quasi n-Banach space

with constant s ≥ 1 and let T : E → E be a map. If there

exists a nonnegative real number α , where α < 1, such

that for all x,y ∈ X,

‖T x−Ty,e2, . . . ,en‖ ≤ α ·M0(x,y)

then T has a unique f ixed point in E.
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Proof. Let us consider T : E → E be a map such that there
exists a nonnegative real number

α < 1,‖T x−Ty,e2, . . . ,en‖ ≤ α ·M0(x,y)

Taking ϕ(t) = (1−α)t in the contraction of Corollary 1,
we have that T has a unique fixed point in E .

Remark.The above result is an extension of result of [27]
in quasi n-Banach space.

Example 7.Considering (E,‖·, . . . , ·‖∞) the quasi

n-Banach space given in Example 6 with s = 3
2
.

Taking T : E →E, T x= x
5
, α = 1

2
, the function T satisfies

the condition of Corollary 2.

Consequently, ‖T x−Ty,e2, . . . ,en‖≤α ·M0 (x,y) , and the
function T has a unique fixed point in E , x = 0.

Corollary 3.Let (E,‖·, . . . , ·‖) be a quasi n-Banach space

with constant s ≥ 1 and T : X → X. If there exists a

nonnegative real number α , where α < 1, such that for

all x,y ∈ X,

‖T x−Ty,e2,e3, · · · ,en‖ ≤ α ·max{1

s
‖x− y,e2, . . . ,en‖ ,

‖x−Tx,e2, . . . ,en‖ ,‖y−Ty,e2, . . . ,en‖}

then T has a unique f ixed point in X.

Proof. We note that the following inequality holds.

‖Tx−Ty,e2,e3, · · · ,en‖ ≤ α ·max

{

1

s
‖x− y,e2, . . . ,en‖ ,

‖x−Tx,e2, . . . ,en‖ , ‖y−Ty,e2, . . . ,en‖}

≤ α ·M0 (x,y) .

Consequently, the function T has a unique fixed point.

Remark. Corollary 3 generalizes the Sehgal’s result
[28] in a quasi n-Banach space.

Corollary 4.Let (E,‖·, . . . , ·‖) be a quasi n-Banach space

with constant s ≥ 1 and let T : E → E that satisf ies the

weak C-contraction

‖T x−Ty,e2, . . . ,en‖

≤ ‖y−Tx,e2, . . . ,en‖+ ‖x−Ty,e2, . . . ,en‖
2s

−ϕ





‖x− y,e2, . . . ,en‖ ,‖x−Tx,e2, . . . ,en‖ ,
‖y−Ty,e2, . . . ,en‖ ,‖y−Tx,e2, . . . ,en‖ ,
‖x−Ty,e2, . . . ,en‖





where ϕ : R+5 → R+is C-type. Then the function T has a

unique f ixed point in E.

Proof. Using the contraction inequality and the fact

‖y−Tx,e2, . . . ,en‖+ ‖x−Ty,e2, . . . ,en‖
2s

≤ M0(x,y)

we take:

‖T x−Ty,e2, . . . ,en‖

≤ ‖y−Tx,e2, . . . ,en‖+ ‖x−Ty,e2, . . . ,en‖
2s

−ϕ





‖x− y,e2, . . . ,en‖ , ‖x−Tx,e2, . . . ,en‖ ,
‖y−Ty,e2, . . . ,en‖ ,‖y−Tx,e2, . . . ,en‖ ,
‖x−Ty,e2, . . . ,en‖





≤ M0(x,y)−ϕ (‖x− y,e2, . . . ,en‖ ,‖x−Tx,e2, . . . ,en‖ ,

‖y−Ty,e2, . . . ,en‖ ,‖y−Tx,e2, . . . ,en‖ ,

‖x−Ty,e2, . . . ,en‖)
Consequently, the function T has a unique fixed point.
Remark 4.9 Corollary 4 generalizes Theorem 6 of [25] in
quasi n-normed space.

5 An application to Integral Equations

The applications of Fixed-Point Theory to Integral
equations have been on focus of many researchers [3],
[29]. In this section, we apply the result of Theorem 2 to
prove the existence and uniqueness of solution under
some conditions for integral equation

x(t) = h(t)+

∫ 1

0
F(t,τ)r(τ,x(τ))dτ in C[0,1]

Let (E,‖·, . . . , ·‖∞) be the complete quasi n-normed space
where

E =C[0,1] = { f : [0,1]→R, f is real continuous function}

and

‖ f1, . . . , fn‖∞ =



















s · sup
t∈[0,1]

n

∏
i=1

| fi(t)| , f1, . . . , fn are

linearly indipendent

0, otherwise

Theorem 3.The integral equation

x(t) = h(t)+

∫ 1

0
K(t,τ)r(τ,x(τ))dτ

where x ∈ C[0,1] and h : [0,1] → R is a continuous

function, K : [0,1]×R → [0,+∞) and r : [0,1]×R → R

are continuous functions which satisfy the following

conditions:
∫ 1

0
K(t,τ)dτ ≤ 1
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and

|r (τ,x(τ))− r(τ,y(τ))| ≤ 1

2s
|x(τ)− y(τ)| , ∀τ ∈ [0,1]

has a unique solution in C[0,1].

Proof. Define the mapping T : C[0,1] → C[0,1] given by

T x(t) = h(t)+
∫ T

0 K(t,τ)r(τ,x(τ))dτ .
Below, we show that the mapping T satisfies the
conditions of Theorem 2.
Firstly, we see that:

|T x(t)−Ty(t)| =
∣

∣

∣

∣

∫ T

0
K(t,τ)(r(τ,x(τ))− r (τ,y(τ)))dτ

∣

∣

∣

∣

≤
∫ T

0
K(t,τ) |r (τ,x(τ))− r (τ,y(τ))|dτ

≤
∫ T

0
K (t,τ)

1

2s
|x(τ)− y(τ)|dτ

≤ 1

2s
|x(t)− y(t)|

Consequently, for ei(t) ∈C[0,1], i = 2,3, . . . ,n

sup
t∈[0,T ]

|T x(t)−Ty(t)| ·
n

∏
i=2

|ei(t)|

≤ 1

2s
sup

t∈[0,T ]
|x(t)− y(t)| ·

n

∏
i=2

|ei(t)|

As a result, the following inequalities hold.

‖T x−Ty,e2,e3, . . . ,en‖∞ e‖T x−Ty,e2,e3,...,en‖∞

+
‖x−Ty,e2,e3, . . . ,en‖∞ + ‖Tx− y,e2,e3, . . . ,en‖∞

2s

≤ 1

2s
‖x− y,e2,e3, . . . ,en‖∞ e

1
2s ‖x−y,e2,e3,...,en‖∞

+
‖x−Ty,e2,e3, . . . ,en‖∞ + ‖Tx− y,e2,e3, . . . ,en‖∞

2s

≤ 1

2
M0(x,y)e

M0(x,y)+
1

2
M0(x,y)≤ M0(x,y)e

M0(x,y)

This shows that the mapping T satisfies the conditions
of Theorem 2 for ψ (t) = tet and

ϕ (t1, t2, t3, t4, t5) =
t4 + t5

2s
, and it has a unique fixed point

in C[0,1], which guaranties the existence and the
uniqueness of solution for

x(t) = h(t)+
∫ 1

0 F(t,τ)r(τ,x(τ))dτ in C[0,1].

6 Conclusions

In this paper there are defined quasi n-normed space as a
generalization of n- normed space. There are given some
examples on finite vector spaces and infinite vector

spaces. Some topological facts for quasi n-normed spaces
are given. Furthermore, there are proved fixed point
results for generalized weak contractions in a quasi
n-normed space. The highlights of the paper are Theorem
1 and Theorem 2 which show the existence and
uniqueness of a fixed point for (ϕ ,ψ)-generalized weak
contraction and (ϕ ,ψ)-generalized weak C-contraction,
respectively. As a result, from these theorems there are
obtained some corollaries which extend and generalize
the result of [25,?,?,?] in a quasi n-normed space.
Furthermore, all theorems and corollaries are true in
n-normed space, quasi 2-normed space and 2-normed
space. Some examples are given to show applicative side
of obtained results. As an application of Theorem 2, there
is given Theorem 3, which assure existence and
uniqueness of a solution for a type of integral equation.
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[27] Lj. B. Ćirić, Generalized contractions and fixed-point

theorems. Publications de l’Institut Mathematique, 26, 19–

26 (1971).

[28] V. M. Sehgal, A fixed point theorem for mappings with a

contractive iterate. Proceedings of American Mathematics

Society, 23, 631–634 (1969).

[29] H. Aydi and E. Karapinar, Fixed point results for

generalized alpha-psi-contractions in metric-like spaces

with applications. Electronic Journal of Differential

Equations, 133, 1–15 (2015).

Silvana Liftaj completed
her doctorate in functional
analysis at Tirana University,
Albania 2015. Her current
research interests include
the study of 2-normed spaces
and n-normed spaces. She
is also involved in the study
of fixed-point results in these
spaces. She has participated

in several international conferences and published in
international journals. Actually, she works as a lecturer at
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