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Abstract: This paper discusses the systematic literature review (SLR) for the integration of the Generalized Space-Time Autoregressive

Integrated Moving Average (GSTARIMA) model with heteroscedastic error and the Kriging method for climate forecasting.

The GSTARIMA model is one of the Spatio-Temporal Models with powerful forecasting capabilities. GSTARIMA model with

Autoregressive Conditional Heteroscedasticity (ARCH) model to overcome the non-constant error variance and Kriging method for

forecasting at unobserved locations. The modelling framework and procedures follow the data analytics life cycle methodology to

handle climate big data. This paper aims to show the gap analysis in the research of the GSTARIMA model for climate modelling. The

SLR method includes three stages: collecting papers from the database, filtering and selection process using the PRISMA method, and

conducting a gap analysis for future work. This research inspires researchers to contribute to improving and refining the model, making

it a more potent and valuable tool in climate forecasting.
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1 Introduction

The climate is a statistical description of the average
variability of the relevant quantities over months to years,
referred to as average weather [1]. In addition, it includes
several interrelated elements, such as temperature,
rainfall, humidity, atmospheric conditions, and wind
patterns [2]. Climate change is a pressing global issue of
paramount importance that demands comprehensive
research. The Intergovernmental Panel on Climate
Change (IPCC) was founded by scientists worldwide to
research the concept. The sixth assessment report of the
IPCC explains that climate change affects ecosystem
conditions, human activities, the global water cycle,
infrastructure, health, and others [3].

The handling of climate change is in the world’s
spotlight, included in the pillars of Sustainable
Development Goals (SDGs) [4,5]. Meanwhile, climate
management is the 13th goal of the SDGs, with the

mission statement, ”Take urgent action to combat climate
change and its impacts by regulating emissions and
promoting developments in renewable energy? [6].
Climate change is a worldwide concern that impacts
every country on the planet. On the other hand, climate
change’s impact differs depending on area and country.
Some countries are more vulnerable than others to the
consequences of climate change. For example, low-lying
island nations such as the Maldives and Tuvalu risk being
submerged by rising sea levels [7]. Droughts and
desertification are being caused by climate change in
Africa, leading to food shortages and displacement [8].
Climate change creates more frequent and extreme
wildfires, hurricanes, and floods in the United States [9,
10,11]. Climate change generates heatwaves, droughts,
and flooding throughout Europe [12]. Indonesia is
vulnerable to the effects of climate change, including
catastrophic occurrences such as floods, droughts, and
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storms, as well as long-term changes caused by sea-level
rise. Rising sea levels and extreme weather events such as
floods, droughts, and hurricanes are already wreaking
havoc on Indonesia’s coastal communities, infrastructure,
and ecosystems [13]. For the three future eras of the
2020s, 2050s, and 2080s, the average annual temperature
in Afghanistan is predicted to rise by 1.8 C, 3.5 C, and 4.8
C, respectively [14]. As a result, major weather events
have occurred, including four years of flooding that have
submerged half of the country. Turkey has seen frequent
and intense heatwaves, droughts, and wildfires [15].
Water scarcity is also harming the country’s agricultural
industry and economy. Climate change is very
detrimental regarding materials, infrastructure, and
people’s lives. Therefore, it is essential to forecast future
climate conditions to take preventive, mitigation, and
adaptation actions [16,17].

Spatio-Temporal modelling for climate forecasting
has made significant progress in recent years, as
evidenced by the diverse and innovative approaches
presented in the summarized articles. These approaches
mainly focus on harnessing the power of
mathematics-statistical modelling, deep learning, and data
assimilation techniques to understand and predict
climate-related phenomena [18,19,20]. The
Spatial-temporal representation combines location and
time to define a phenomenon and understand the
relationship between spatial and temporal changes. The
Space-Time Autoregressive (STAR) Model with
homogenous characteristics between locations, with the
same parameters for each location, is the most often used
Spatio-Temporal model based on the Box Jenkins method
[21]. The Generalized Space-Time Autoregressive
(GSTAR) model is created with diverse inter-location
characteristics. The parameters of the GSTAR model
differ depending on location [22]. The GSTARIMA
model is a development model for analyzing
nonstationary data and model errors following the
Moving Average Model [23].

The GSTAR-ARCH model is a statistical model used
to assess climate data with heteroscedastic error variance,
indicating that the error variance is not constant. This
model extends the Spatio-Temporal Model by accounting
for heteroscedasticity caused by auto-regressive prior
knowledge in stationary data. Furthermore, the
GSTARI-ARCH model has been designed to handle
non-stationary data. A GSTAR model that considers the
heteroscedasticity of errors is also developed by involving
exogenous variables called the GSTARI-X-ARCH model.
This model forecasts climate through rainfall with
exogenous variables in relative humidity. Another
Spatio-Temporal model that considers heteroscedastic
errors is the STARMA-GARCH Model, which forecasts
temperature [24].

Previous research used the Kriging Method to predict
phenomena at unobserved locations. Kriging method is
used for interpolation and forecasting Temperature in
Mosul and Baghdad City [25]. Kriging method, land-use

regression (LUR), and LightGBM (light gradient
boosting machine) methods were combined to predict
PM2.5 concentrations [26]. In Spatio-Temporal
modelling, the GSTAR Model is integrated with the
Kriging method to forecast rainfall at unobserved
locations in West Java [27].

Spatio-Temporal modeling in climate forecasting
requires using big data analytics [28]. A big data
approach is needed, such as knowledge discovery in
databases (KDD) data mining, and data analytics
lifecycle. These approaches make it possible to find
patterns and forecast the future by extracting meaningful
information from enormous datasets. The volume,
velocity, and variety of data and the necessity for efficient
data processing and analysis tools are some hurdles in
using big data analytics for climate forecasting [29].
Analyzing climate forecasts requires collecting, cleaning,
and managing data from various sources, including
historical weather data, sensor data, satellite data, and
more.

This study summarises previous research on
Spatio-Temporal forecasting models with heteroskedastic
errors and the Kriging method applied to climate data.
This research attempts to cover several areas, such as
Spatio-Temporal models for stationary and non-stationary
data, methods for parameter estimation in the models,
forecasting at unsampled locations, and the potential to
integrate Spatio-Temporal models with Heteroskedastic
errors and Kriging for climate forecasting. Ultimately,
this review contributes to a broader understanding of
integrated Spatio-Temporal Models with Heteroskedastic
errors and the Kriging Method for climate and highlights
avenues for further research and innovation in this critical
area. To facilitate the analysis process, we formulate the
following research questions (RQs):

RQ1How to integrate the GSTARIMA model with
heteroskedastic errors using the Kriging method?

RQ2How to forecast climate phenomena using integrating
GSTARIMA and Kriging models through a data
analysis life cycle approach?

RQs were examined and explored by reviewing
previous results and searching literature on databases.
The results were filtered and selected using the Preferred
Reporting Items for Systematic Review and
Meta-Analyses (PRISMA) method. Furthermore, relevant
articles are presented in a state-of-the-art manner to
identify research gaps. A bibliometric method was also
used to show the linkage of keywords for each article.
The review stage was performed to analyze search results
and discuss new research. Potential new research was
provided to be studied and developed on the GSTARIMA
Model and its application.
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2 Materials and Methods

2.1 Theoretical Background

2.1.1 The GSTARIMA Model

In 1980, Pfeifer and Deutch introduced the STAR Model,
assuming each location has the same characteristics [30,
31]. The STAR model was developed into a GSTAR
model because the assumptions in the STAR model do
not match the reality in the field, where there is a diversity
of characteristics in each location. The GSTAR model
introduced by Ruchjana assumes that the characteristics
of each location are heterogeneous. The GSTAR(p,λk)
model has a time order of p and a spatial order of λk

expressed in matrix form through equation (1) [22]:

z(t) =
p

∑
k=1

λk

∑
l=0

[

ΦΦΦklW
(l)z(t − k)

]

+ e(t), (1)

where
Z (t) : the value of the observation at time t,
Z (t − 1) : the value of the observation at time t −1,
φ : a parameter that indicates the influence

of the value of Z(t − 1) on the value of
Z(t),

e(t) : the value of error.

The GSTARMA model expands the GSTAR model by
adding MA error elements. The GSTARMA model is
applied to stationary data [32]. The GSTARMA model
developed on nonstationary data is called the
GSTARIMA model. Min et al. [23] first introduced the
GSTARIMA model with application to urban traffic
network modeling and short-term traffic flow forecasting.
The GSTARIMA model (pλk

,d,qvk
)with d being the

differencing order is expressed in Equation (2):

y(t) =
p

∑
k=1

λk

∑
l=0

[

ΦΦΦklW
(l)y(t − k)

]

−
q

∑
k=1

vk

∑
l=0

[

ΘΘΘ klW
(l)e(t − k)

]

+ e(t),

(2)

where

y(t) = z(t)− z(t − 1) ,y(t − 1)

= z(t − 1)− z(t − 2) , . . . ,y(t − k)

= z(t − k)− z(t − k− 1),

(3)

z(t) : a vector of variables of size (N × 1) at
time t,

z(t − k) : vector of variables of size (N×1) at time
(t − k),

λk : spatial order in the k-th autoregressive,
vk : spatial order of the k-th moving average,
ΦΦΦkl : autoregressive and space-time

parameters at time order k and
spatial order l of size (N × N)
in the form of diagonal matrix
(

Φ
(1)
kl ,Φ

(2)
kl ,Φ

(3)
kl , . . . ,Φ

(N)
kl

)

,

ΘΘΘ kl : MA parameters at time order k and
spatial order l of size (N × N)
in the form of diagonal matrix
(

Θ
(1)
kl ,Θ

(2)
kl ,Θ

(3)
kl , . . . ,Θ

(N)
kl

)

,

W(l) : weight matrix of size (N ×N) at spatial
order l, l = 0,1,2, . . . ,λk containing
wii = 0 and ∑i6= j wi j = 1,

e(t) : error vector of size (N × 1) at time t,

assuming e(t)iid
N
(

0,σ2I
)

.

2.1.2 Autoregressive Conditional Heteroscedasticity
(ARCH) and Generalized-ARCH (GARCH) Model

Although the GSTARIMA model assumes constant error
variance, applying climate data often shows non-constant
error variance. To overcome this, the GSTARIMA model
is integrated with the Autoregressive Conditional
Heteroscedasticity (ARCH) Model. This time series
model detects variance heteroscedasticity using historical
data [33]. Describing the ARCH(p) model, researchers
use the following expression [33]:

ht = σ2
t = α0 +

p

∑
i=1

αie
2
t−i ; i = 1,2,3, . . . , p. (4)

In Equation (4), the variables represented include:
ht : the conditional variance at time t,
α0 : the intercept or constant error,
α1,α2, . . . ,αp : ARCH model parameters,

α0 > 0 and αi ≥ 0.
Bollerslev (1986) developed the GARCH model,

which is a development of the ARCH model. Equation (5)
presents the GARCH (p,q) Model equation.

ht = σ2
t = α0 +

q

∑
i=1

αie
2
t−i +

p

∑
i=1

βiht−i, (5)

where p ≥ 0, q > 0, α0 > 0, αi ≥ 0, i = 1, . . . , q, βi ≥ 0,
i = 1, . . . , p.

2.1.3 Kriging Method

The Kriging method is a geostatistical interpolation
technique used to predict variable values at unobserved
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locations based on variable values observed at other
locations. This method assumes that variable values have
a spatial structure related to the distance and direction
between observation locations. A semivariogram is
required to calculate the Kriging Method. An
experimental semivariogram is calculated based on
measurement data collected from the field or observations
at a particular location. The formula for calculating the
experimental semivariogram is as follows [34]:

γ̂(h) =
1

2N(h)

N(k)

∑
i=1

[Z(xi + h)−Z(xi)]
2
, (6)

where
γ̂(h) : semivariogram value at distance h,
Z(xi) : observation value at location xi,
Z(xi + h) : observation value at location xi + h,
N(h) : many pairs of data that have distance h,
h : distance between 2 locations.

Theoretical semivariograms can be divided into
Spherical, Gaussian, and Exponential Models. The
Spherical Model is a model that assumes that spatial
dependence has a certain maximum distance or radius.
This Model is used if the spatial dependence decreases
with distance and reaches a threshold value at a specific
radius, after which the semivariogram value becomes
constant. The semivariogram function of the Spherical
Model can be expressed as [34]:

γ (h) =

{

c
[

(

3h
2a

)

−
(

h
2a

)3
]

, h ≤ a

c, h > a
. (7)

The Exponential Model is a model that assumes that
spatial dependence decreases exponentially with distance
between locations. The semivariogram function of the
Exponential Model can be expressed as [34]:

γ (h) =

{

c
[

1− exp
(

−h
a

)]

, h ≤ a

c, h > a
. (8)

The Gaussian Model is a model that assumes that spatial
dependence has a symmetric pattern and decreases
exponentially with distance between locations. The
semivariogram function of the Gaussian Model can be
expressed as [34]:

γ (h) =

{

c
[

1− exp
(

−h
a

)2
]

, h ≤ a

c, h > a
, (9)

where
h : distance between sample locations,
c : sill value,
a : range.

The semivariogram also provides the weights used in
interpolation. The Kriging method aims to determine the
value of the Kriging weight θi, which minimizes the
estimator’s variance so that a BLUE (Best Linear

Unbiased Estimator) estimator is obtained. The Kriging
estimator Ẑ (x0) can be written as follows [34]:

Ẑ (x0)− ξ (x0) =
n

∑
i=1

θi [Z (xi)− ξ (xi)], (10)

where
Ẑ (x0) : Kriging estimator at unobserved location x,
xi : the ith data location adjacent to the

unsampled location x,
ξ (x0) : expectation value of Z(x0),
ξ (xi) : expectation value of Z (xi),
n : many sample data used for estimation,
θi : weight value at location i.

2.1.4 Data Analytics Life Cycle

Climate data has the Big Data criteria of volume, variety,
and velocity. Big Data could be more efficient when
analyzed using traditional methods. The Data Analytics
Life Cycle methodology is designed to handle Big Data
problems and data science projects. The Data Analytics
Life Cycle consists of six phases, including [35]:

•Discovery → At this stage, researchers must study,
search, and investigate facts, identify problems, and
develop context and understanding of the data sources
needed to support research.
•Data Preparation → Next, data is cleaned to identify
missing values or noisy data. The results of data
cleaning are transformed by aggregating daily data
into monthly or according to the needs of the analysis.
In this case, pre-processing data is obtained and ready
for processing and analysis.
•Model Planning → At this stage, the model planning
that will be used for analysis is carried out.
•Model Building → Researchers divide the results of
data preparation into in-sample data (training) and out-
sample data (testing) to do forecasting.
•Communicate Results → Researchers present
forecasting results using visualizations in the form of
time series plots, choropleth maps, diagrams, and
others.
•Operationalize → The final stage is operationalized,
and researchers provide final reports,
recommendations, scripts, and technical documents.
In addition, researchers can apply the model to the
appropriate environment.

2.2 Collected Article

The PRISMA method is a widely used guide and
methodological framework for conducting and presenting
systematic reviews and meta-analyses [25]. The method
provides the results of a systematic review, including
completeness and clarity in reporting. The PRISMA
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method is supported by flowcharts in selecting articles
[26,27].

The first stage in the PRISMA method is a literature
search. Meanwhile, a literature search using keywords
was carried out in this research in four databases, namely
Google Scholar, Dimensions, Science Direct, and Scopus.
The keywords entered in the database consist of four
codes connected with ”OR” and ”AND”. The criteria
selected in the collection of articles include:

1.The publication type selected is article research and
conference paper.

2.Written in English
3.The range of article publications is 2000-2023.
4.The title, abstract, or keywords contain the words

presented in Table 1.

Table 1: Keywords used for literature search.

Codes Keywords

A (”Spatio Temporal” OR ”GSTAR” OR

”GSTARIMA” OR ”Generalized Space-Time

Autoregressive”)

B (”Heteroscedasticity” OR ”ARCH” OR ”GARCH”

OR ”Seemingly Unrelated Regression” OR ”SUR”

OR ”Kriging Method”)

C (”Data Analytics Life Cycle” OR ”Data Mining”

OR ”Big Data Approach” OR ”Climate Change”

OR ”Extreme Rainfall” OR ”Weather” OR

”Temperature”)

D A AND B AND C

The keywords provided in Table 1 are input into the
database, followed by the enter key to initiate a search.
After displaying the search results, criteria 1-3 pertain to
the publication type, language selection, and publication
year range are configured to filter articles under the
specified parameters. Subsequently, eligible articles are
downloaded in .bib, .csv, and .ris formats. The number of
article findings in each database is recorded for utilization
as reference material in the subsequent stage.

The second stage involves the selection of articles,
which is carried out through a manual process to ensure
relevance. Specifically, the criteria for selecting relevant
articles explore the GSTAR model and its application.
The articles included at this stage comprise the ones
obtained from the initial database search and those found
manually through citation searching. The stages in article
selection are explained as follows [39,40,41]:

(a)Duplicate selection aims to remove duplicate articles
found. Duplication can be found in databases or
literature sources with almost the same or similar
structure. The duplication selection stage can be
conducted with special software such as Jabref and
Mendeley reference managers to compare titles,
abstracts, and content.

(b)The relevance of the title and abstract is selected by
assessing and ensuring that it matches the topic
criteria. Titles and abstracts of selected articles are
read in their entirety, and irrelevant ones are excluded
at this stage.

(c)The full selection aims to determine whether the
discussion and content in the article are relevant to the
topic. All articles are accessed and read manually to
ensure their appropriateness. Articles that fail to meet
the established criteria or do not pertain to the subject
matter under investigation are hereby excluded from
the subsequent phases of the process

The final stage in the PRISMA method is the articles
review, explaining, and answering the RQs presented in
Section 1.

3 Results and Discussion

3.1 Results of Literature Search and Dataset

Analysis

The results of the literature search are presented in Table 2,
where code A produces 213,557 articles, code B produces
1,121,262, code C produces 7,525,693, code D is searched
by combining code A, B, and C the ”AND” connector to
produce 286 articles.

Table 2: Keyword search results in the database.

Codes Scopus Dimensions EBSCO-Host Total

A 101,483 69,050 34,024 213,557

B 339,122 515,898 266,242 1,121,262

C 1,381,753 4,046,170 2,097,770 7,525,693

D 77 71 138 286

The manual selection stage of the article is carried out
as follows:

(a)At the initial stage, duplicate selection is conducted to
identify 161 articles as duplicates and removed from
the study.

(b)The selection stage is based on the relevance of the title
and abstract, where 35 articles are selected as relevant
and considered for further research.

(c)In the full paper accessibility selection stage, 60
articles can be accessed and downloaded for further
selection.

(d)In the full paper relevance selection stage, the entire
contents of the 18 articles are read and analyzed to
determine their relevance. Relevant papers were also
added using another method, citation search, resulting
in 32 relevant articles. So, a total of 48 review articles
were obtained that were relevant to the topic
discussed.
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Fig. 1: PRISMA Diagram for Relevant Article Selection on Spatio Temporal Model.

These stages are presented visually in the PRISMA
diagram in Figure 1 with three stages: identification,
screening, and inclusion. Identification includes the
duplication selection stage in stage (a). Screening consists
of stages (b) and (c) for selecting title-abstract and full
paper. Finally, inclusion explains the number of research
articles relevant to the topic.

3.2 Bibliometric Analysis

The next stage describes the selected articles in
bibliometric mapping used as a visualization method to
analyze the pattern of relationships between scientific
articles [42,43,44]. This paper uses bibliometric maps to
visualize scientific networks involving keywords in 48
articles. The visualization results are in circles and
clusters distinguished by different colors. The circles on
the bibliometric map represent the number of related
publications by keyword. A circle with a large size
indicates several keywords with similar relationships
between scientific articles. Clusters in a bibliometric map

show connected circles and represent scientific articles
with similarities in context, such as topics [45].
Furthermore, bibliometric mapping keyword analysis is
obtained using VOSviewer to understand the structure,
patterns, and relationships between scientific articles [46].
VOSviewer analyzes keywords that frequently appear in
articles and identifies the relevant ones. The results of the
bibliometric mapping for keyword analysis with
VOSviewer are presented in Figure 2.

Figure 2 was created using the VosViewer software,
and 48 relevant articles are saved in .ris format. Article
files are inputted into VOSviewer, a mapping selected for
co-occurrence words. The bibliometric mapping in Figure
2 shows that the co-occurrence of keywords consists of
five clusters. These clusters indicate the link between
”Spatio-Temporal Models” and ”Climate.” Forecasting
climate is done chiefly with Spatio-Temporal Models and
Time Series Models. In Figure 2, it can be seen that there
are clusters that show climate variables that are often used
by researchers, such as rainfall, Pacific Decadal
Oscillation (PDO), atmospheric pressure, etc.
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Fig. 2: Bibliometric mapping of keywords contained in 48 relevant articles on Spatio Temporal Model.

As revealed by an analysis of 48 relevant articles, the
state-of-the-art in this field highlights significant progress
in several key topics shown in Table 3. First,
”GSTARIMA models” are emerging as a prominent
approach to analyzing Spatio-Temporal data. This
cutting-edge model combines the capabilities of time
series analysis and spatial relationships, enabling a
comprehensive understanding of complex interactions.
Secondly, the exploration of ”Heteroscedastic Error” in
this study is in terms of overcoming the non-constant
variance of errors in the GSTARIMA Model. By
addressing these heteroscedastic errors, researchers aim
to improve the accuracy and reliability of their forecasts,
ultimately leading to more robust modeling results. In
addition, ”Kriging,” a geostatistical interpolation
technique, plays an essential role in spatial analysis. This
method incorporates the estimation of unknown values
based on observed values in the vicinity, incorporating
spatial correlation. Collectively, these advances show the
evolving research landscape in spatial-temporal analysis,
featuring the integration of cutting-edge methodologies
such as the GSTARIMA Model, the consideration of
heteroscedastic errors, and the application of techniques
such as Kriging to unravel complex spatial patterns and
relationships.

Table 3 provides a comprehensive overview of the
research developments related to the
GSTARIMA/Spatio-Temporal model. Several studies
have been conducted on Spatial-temporal modeling while
considering heteroscedastic errors. Kumar et al. [24] used
a STARMA-GARCH model to forecast monthly
temperatures, resulting in minimal Mean Absolute
Percentage Error (MAPE) values in their predictions.
Similarly, Monika et al. [28] used the GSTARI-X-ARCH
model to forecast rainfall influenced by humidity,
showing favorable forecast accuracy. In a different
context, Akbar et al. [75] introduced the GSTARMAX
model to forecast air pollutants in Surabaya, achieving
low Root Mean Square Error (RMSE) values.
Furthermore, several articles have integrated the
spatial-temporal and kriging models. Dhaher et al. [25]
applied the Spatio-Temporal-Kriging model for
temperature interpolation and prediction in Baghdad and
Mosul cities. Dai et al. [26] used four methods, including
LUR, LightGBM, ML, and Kriging, to forecast PM2.5
concentrations, which resulted in satisfactory R2

accuracy. Pramoedyo et al. [90] adopted the
GSTARX-SUR-Kriging model to forecast cocoa plant
diseases affected by rainfall with reasonably accurate
forecast results. However, Abdullah et al. [27] used the
GSTAR-Kriging model to forecast rainfall in unobserved
locations and produced fairly reliable predictions.
Shu-qin et al. [89] explored two different approaches,
namely GWR and Kriging methods.

3.3 GAP Analysis

Conducting a GAP analysis based on relevant articles
illustrates the evolving research landscape in
Spatio-Temporal modeling, heteroscedastic errors, and
Kriging methodologies for forecasting climate and
environmental data. These articles collectively represent
vital insights and areas that need further exploration. The
research that has been evaluated demonstrates a high
propensity to use GSTARIMA models’ capacity to
forecast climate-related variables like temperature,
precipitation, and air pollutants [27,53,65,73,74,75,86].
A common thread is the evaluation of model performance
metrics, especially MAPE, RMSE, R2, and MSE.
However, the gap lies in comprehensively exploring
complex parameter configurations in the GSTARIMA
framework, especially in dynamic Spatio-Temporal
systems. In addition, progress still needs to be made in
validating these models using more sophisticated
techniques, especially in handling larger,
higher-dimensional data sets.

It is clear that heteroskedastic errors are critical to
climate prediction, and special attention has been paid to
using ARCH and GARCH models to address this issue
[24,28,77]. Researchers concentrate on achieving higher
prediction accuracy, indicated by lower RMSE and MSE
values. However, there are differences in research in
dealing with complex and non-linear forms of
heteroscedasticity, which can arise from complex climate
datasets. Identifying more flexible methods to handle this
complexity could be an interesting subject of
investigation. By incorporating Kriging into a
Spatio-Temporal model, discernible trends can be
identified, especially in interpolation and forecasting
climate variables [25,26,27,66,81]. This study relies
heavily on RMSE and MAE as tools to assess prediction
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Table 3: State-of-the-art from 48 relevant articles.

No Reference Models Dataset Application
Model Assumptions Model Performance Analysis

MA

Component

Exogenous

Variable

Hetero.

Error

Kriging

Method

MAPE RMSE MSE Accuracy

1 Dhaher et

al. [25]

Kriging,

Spatio-

Temporal

Temperature

Data in Mosul

and Baghdad

city

Interpolate and

Forecasting

Temperatures

- - - X - A) Mosul = 0.16;

B) Baghdad= 1.05;

C) A+B=0.61

- -

2 Puica et

al. [47]

ST, Kriging Historical

forecasts

and actual

wind speed

observations

Predicting

wind speeds

in Southern

California

- - - X Temporal

Model = 5.7%-

18.8%

- - -

3 Garcıa et

al. [48]

ST model with

a Generalized

Extreme Value

(GEV)

The

temperature

data used

come from a

simulation of

the climate

using the

community

WRF model

Bayesian

hierarchical

spatio-temporal

model with a

Generalized

Extreme

Value (GEV)

parametrization

of the extreme

data to analyze

the dataset.

- - - - - - - -

4 Huguenin

et al. [49]

ST The mean

total monthly

precipitation,

the El-Ni˜no

Southern

Oscillation

(ENSO),

the Atlantic

Multidecadal

Oscillation(AMO),

and the

Caribbean

Low-Level Jet

(CLLJ)

Examining the

meteorological

factors that

affect extreme

precipitation

events in a

Costa Rican

basin

- - - - - - - -

5 Zhang et

al. [66]

ST, deep

learning

The global

SST, Sea

Surface

Temperature

record is from

1998, ENSO

events

ENSO

Forecasting

- - - - - - MSE value from

0.019 to 0.026;

ED-PredRNN

(FP32/Mixed)=

0.0273/0.0330

-

6 Raman et

al. [51]

ST, Kriging

The collected

subsurface

water samples,

in situ field

analysis was

performed for

water

temperature

(◦C), dissolved

oxygen (mg/l),

pH, total

alkalinity

(mg/l), and sp.

conductivity

(µS/cm).

River water

quality-Ganga

- - - X - OK (Gaussian)

Alkalinity= 5.62;

Sp. Cond= 15.28

- -

7 Fung et

al. [52]

ST, Kriging,

GWR, IDW

The daily

rainfall data

for Peninsular

Malaysia from

1988 to 2017

Spatio

Temporal

analysis of

rainfall in

Malaysia

- - - X - IDW=91.2;OK(exp)=

100.9; OK(lin)=

107.7;

GWR=112.8;

MGWR=95.9

- RIDW 2=0.540;

ROKE2=0.362;

ROKL2=0.189;

RGW R2=0.480;

RMGW R2=0.574

8 Dai et al.

[26]

LUR,

LightGBM,

ML, Kriging

PM2.5 site

monitoring data

(http://106.37.

208.233:

20035/)

Spatio-

Temporal

Characteristics

of PM2.5

Concentrations

- - - X - - - R2= 0.976

(average for

2016–2021)

9 Kumar et

al. [24]

STARMA,

GARCH

Temperature

Data

(https://power.

larc.nasa.gov/

data-

accessviewer/)

Forecasting

Monthly

Temperature

X - X - MAPE

for Max.

Temperature

2-4% and

MAPE for

Temperature

Range 10-12%

- - -

10 Monika et

al. [28]

GSTARI-X-

ARCH

Climate Data

(https://power.

larc.nasa.gov/

data-

accessviewer/)

Forecasting

Climate in

West Java

- X X - MAPE In-

Sample=

20%, MAPE

Outsample=

19%

- - -

11 Mukhaiyar

et al. [53]

GSTAR The average

daily wind

speed from

NOAA

Predict the

occurrence

of Hurricane

Katrina

- - X - MAPE= 6.86 - MSE=0.86 MAD=0.70

12 Sofi et al.

[54]

ST The maximum

temperature

from NASA

POWER

database

Temperature

forecasting

- - - - - ConvLSTM= 3.298 ConvLSTM

=986.86

-

13 Xiang et

al. [55]

ST Transformer

U-Net (ST-

UNet)

Dataset

of hourly

temperature

forecasts from

2013 to 2017

Temperature

forecasting

- - - - - ST-UNet= 0.8763 - -
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Table 3: State-of-the-art from 48 relevant articles (continued).

No Reference Models Dataset Application
Model Assumptions Model Performance Analysis

MA

Component

Exogenous

Variable

Hetero.

Error

Kriging

Method

MAPE RMSE MSE Accuracy

14 Zhao et

al. [56]

Coupled

forecast system

model version

2 (CFSv2) with

the multilinear

regression

model

SST, the daily

precipitation

data

The study

analyzes

the spatial-

temporal

distribution of

precipitation

in the Huai

river basin and

explores the

relationship

between

precipitation

and global SST.

- - - X - Information

fusion with

CFSv2 statistical

downscaling

model=72.31

- -

15 Anshuka

et al. [57]

LSTM deep

learning model

The NOAA

Climate

Prediction

Centre Global

Unified Gauge-

Based Analysis

of Daily

Precipitation

data and the

global analyses

of monthly

Kaplan Sea

Surface

temperature

anomalies data

Spatio-

temporal

hydrological

extreme

forecasting

in the South

Pacific region

using a long

short-term

memory deep

learning model.

- - - - - RMSE Value from

0.295 to 0.357

The lowest MSE

( 0.2)

Average = 0.75

16 Hou et al.

[58]

Multi-In and

Multi-Out

(MIMO) model

Optimum

Interpolation

SST (OI-SST)

data from

the National

Oceanic and

Atmospheric

Administration

(NOAA) and

select the

region of Ni˜no

3.4 as the target

region for

prediction.

Predict sea

surface

temperature

(SST) at

different

temporal scales

- - - - For Monthly:

MIMO-122=

3.55%; MIMO-

911= 2.63%;

MIMO=

2.24%; MIMO-

433= 2.37%;

MIMO-244=

3.59%

For Monthly:

MIMO-122= 1.17;

MIMO-911= 0.90;

MIMO= 0.76;

MIMO-433= 0.82;

MIMO-244= 1.19

For Monthly:

MIMO-122= 1.37;

MIMO-911= 0.81;

MIMO= 0.58;

MIMO-433= 0.66;

MIMO-244= 1.41

-

17 Yu et al.

[59]

ST graph

attention

network

(STGAT)

Dataset of

hourly air

temperature

observations

from 2013

to 2017 in

Beijing, China

Air temperature

forecasting

- - - - - Zhe= 1.2968;

Min= 1.3149; Yue=

1.3988

- -

18 Chen et

al. [60]

ST, Kriging The annual

average rainfall

Rainfall

forecasting

- - - X - Low RMSE value - -

19 Thorson

et al. [61]

ST, Bayesian

hierarchical

framework

Dataset of fish

community

data from 1977

to 2018 in the

Gulf of Alaska

Spatio-

temporal

ecosystem

model for

forecasting

community

reassembly

under changing

climate

conditions

- - - - - - - -

20 Kong et

al. [62]

Deep spatio-

temporal

forecasting

model (Deep-

STF)

Dataset

of hourly

temperature

observations

from 2013 to

2017 in China

Multi-site

weather

prediction

post-processing

- - - - - Deep-STF= 2.41 - -

21 Kuo et al.

[63]

Kriging The sensors

and the weather

stations

(http://e-

service.cwb.gov.tw)

Comparing

Kriging

Estimators

- - - X - RMSE¡3 - MAE¡3

22 Ghorbani

et al. [64]

ST, Kriging The rainfall

data and mean

air temperature

data for the

period 2009-

2019

Rainfall and

mean air

temperature

forecasting

- X - X - Rainfall RMSE

value from 5 to 21,

Temp. RMSE value

from 1 to 3

- -

23 Iriany et

al. [65]

GSTAR, SUR,

NN

Precipitation

data

Comparison

GSTAR-

SUR-NN for

precipitation

forecasting

- - X - - RMSE=5.8684 - MAD=3.8917
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Table 3: State-of-the-art from 48 relevant articles (continued).

No Reference Models Dataset Application
Model Assumptions Model Performance Analysis

MA

Component

Exogenous

Variable

Hetero.

Error

Kriging

Method

MAPE RMSE MSE Accuracy

24 Zhang et

al. [66]

ST, Kriging Data for three

fixed locations

from APDRC

(Asia-Pacific

Data Research

Center)

- - - - X - - MSE=0.744 MAE=0.751

25 Cui et al.

[67]

ST, Kriging The daily

rainfall data

from 1971 to

2010

Rainfall

forecasting

- - - X - - - R2 = 0.77

26 Takafuji

et al. [68]

ST Dataset of

weather

patterns from

2008 to 2017 in

Patagonia

Spatiotemporal

forecasting

model for

weather

patterns in

Patagonia

X - - X - RMSE range 1-15 - -

27 Li et al.

[69]

ST, Kriging The wind

speed, air

temperature,

and Rainfall

data.

Temperature

prediction

- X - X - Space-time

prediction=0.640;

Pure time

forecasting=1.713

- -

28 Amato et

al. [70]

ST -Empirical

Orthogonal

Functions

(EOFs)

Case study of

air temperature

prediction in

a complex

Alpine region

of Europe.

Forecasting air

temperature

- - - X - - - -

29 Su et al.

[71]

ML, Kriging NFI datasets Estimating

aboveground

biomass

- - - X - RF=52.08%;

RFOK=52.05%;

RFCK=51.60%

- RF=24.56;

RFOK=23.47;

RFCK=22.14

30 Nowak et

al. [72]

ST, Kriging Monthly

rainfall data

recorded across

a network

of weather

stations in the

MDB

Rainfall

forecasting

- - - X - The minimum

RMSE of 0.9515

- -

31 Iriany et

al. [73]

GSTAR, SUR,

NN

Precipitation

Data in Malang

Precipitation

Forecasting

- - X - - General= 5.3131 - R2=0.6177

32 Sulistyono

et al. [74]

GSTAR, SUR Rainfall Data Rainfall

forecasting

in agricultural

areas

- - X - - Training=5.779;

Testing=10.433

- -

33 Akbar et

al. [75]

GSTARMAX Air Pollutant

Data

Forecasting Air

Pollutant in

Surabaya

X X X - - A smaller RMSE

Value

- -

34 Sjahid et

al. [76]

GSTARMA The

concentration

of PM10

pollutants

Prediction of

PM10 pollutant

in Surabaya

X - - - - - - -

35 Hølleland

et al. [77]

ST-GARCH Dataset of

sea surface

temperature

anomalies

- X - X - - - - -

36 Xiao et al.

[78]

ST-Deep

Learning

The daily

Optimum

Interpolation

Sea Surface

Temperature

produced by

the National

Oceanic and

Atmospheric

Administration

(NOAA).

Sea surface

temperature

(SST) field

prediction

using time-

series satellite

data

- - - - Linear SVR =

3.292%; LSTM

(1-feature) =

3.193%; LSTM

(n-features) =

3.523%; ST-DL

= 2.879%

Linear SVR =

0.8660C; LSTM

(1-feature) =

0.8500C; LSTM

(n-features) =

0.8800C; ST-DL =

0.7590C

- -

37 Mukhopadhyay

et al. [79]

ST, Bayesian

Hierarchical

Model

Monthly

rainfall data

Rainfall

forecasting

- - - - - RMSE values from

41.10 to 54.78

- -

38 Mashford

et al. [80]

ST, Bayesian

Hierarchical

Autoregressive

Model

The rainfall

data from

the Ovens

catchment

Rainfall

forecasting

- - - X - RMSE values from

1 to 11

- -

39 Venetsanou

et al. [81]

ST-Kriging Precipitation

and

temperature

dataset

Prediction

precipitation

and

temperature

- - - X - - Prec. MPI=25.7

and 0.;

Prec.HadGEM2=30.3

and 304.8; Temp.

MPI=8.9 and

2.5; Temp.

HadGEM2=6.6

and 14.7

-

40 Abdullah

et al. [27]

GSTAR-

Kriging

Rainfall Data Predicting

Rainfall Data

at Unobserved

Locations in

West Java

- - - X Model

1=8.97%;

Model

II=12.51%;

Model

III=7.72%

- - -
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Table 4: State-of-the-art from 48 relevant articles (continued).

No Reference Models Dataset Application
Model Assumptions Model Performance Analysis

MA

Component

Exogenous

Variable

Hetero.

Error

Kriging

Method

MAPE RMSE MSE Accuracy

41 Wang et

al. [82]

ST, Kriging Annual mean

temperature

(temperatures

averaged over

a whole year)

for 62 years

(1950–2011)

Estimation of

areal values

of near-

land-surface

temperatures

- - - X - - - -

42 You et al.

[83]

ST, Bayesian

Kriging

Data are

collected at the

six locations

for the two

scenarios:

cooling and

non-cooling

on punch in

the injection

process.

Prediction in

squeeze casting

- - - X - - - Higher

accuracy

43 Martınez

et al. [84]

ST, Kriging Monthly

Precipitation

of a

Hydrogeological

Zone in Meta

(Colombia)

Precipitation

forecasting

X - - X - - - Cross-

validation

analysis

44 Borrelli et

al. [85]

ST, Kriging The average

density of the

meteorological

stations used

to interpolate

the grid-based

map of rainfall

erosivity

Rainfall

forecasting

- - - X - - - Rcv2 = 0.777

for the cross-

validation, R2=

0.779 for the

fitting

45 Nisak

[86]

GSTARIMA-

SUR

Rain Fall Data

in Malang

Southern

Region

Districts

Forecasting

rainfall

X - X - - Tangkilsari=5.263 - R2=0.6481

46 Chang et

al. [87]

ST Dataset of

precipitation

observations

from 1979 to

2012

A

spatiotemporal

model to

analyze the

changes in

precipitation

patterns over

time and space

- - - - - - - -

47 Carvalho

et al. [88]

ST Dataset of

daily rainfall

observations

from 1961 to

2010 in Brazil

Estimate daily

rainfall data

- - - X - - MSEmod= 19.77;

MSEkrig=26.15;

MSEcokrig=24.04

-

48 Shu-qin et

al. [89]

GWR, Kriging Climate

and Socio-

economic

variable

Variability

of Soil

Organic Matter

influenced

by climate

and socio-

economic

- - - X - - - -

accuracy. However, areas still need to be addressed when
creating an adaptive Kriging method that can capture the
temporal and spatial changes present in complex climate
data. Due to these limitations, there is a possibility for
more complex techniques that are adapted to changing
trends and non-stationary data.

3.4 The Framework for model integration for

climate forecast

3.4.1 The Integration of GSTARIMA Model with
Heteroskedastic Error and Kriging Method for
Forecasting

After reviewing previous researchers and performing gap
analysis, a conceptual integration model of GSTARIMA
with heteroskedastic error and the Kriging method is
made to answer RQ1. The GSTARIMA model is

processed following the Box-Jenkins method, which
includes identification, parameter estimation, and
diagnostic checking. The initial identification of the
GSTARIMA model is to determine the stationarity of the
data. If the stationary test results show that the data is not
stationary, then a differencing process is carried out until
stationary data is obtained. Next, check the order of the
model univariately with the ARIMA Model. The model
order is received from the results of the Autocorrelation
Function (ACF) and Partial Autocorrelation Function
(PACF) plots. Models with the same order are selected for
further multivariate and Spatio-Temporal modeling.
Regarding Spatial-temporal modeling, a weight matrix
shows the diversity of locations. The order of the
Spatio-Temporal Model is obtained based on the
calculation of the Space-Time Autocorrelation Function
(STACF) and Partial Space-Time Autocorrelation
Function (STPACF).
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Furthermore, parameter estimation for the GSTARI
Model is carried out using the Ordinary Least Square
(OLS) method. The error generated by the GSTARI
Model is re-modeled to obtain the GSTIMA Model using
the Maximum Likelihood (MLE) method. The GSTARI
Model and GSTIMA Model are combined to produce the
GSTARIMA Model. On the other hand, if exogenous
variables influence the response variable, it becomes the
GSTARIMA-X Model. Furthermore, predictions are
made on the testing data for the GSTARIMA Model. The
last stage of the model diagnostic check to determine the
model error is white noise and homoscedasticity.

The GSTARIMA Model errors with
heteroscedasticity errors are re-estimated following the
ARCH/GARCH Model to overcome the non-constant
variance of the errors. GSTARIMA Model errors are
divided into mean equations and variance equations. The
mean equation of the GSTARIMA Model error is
estimated using the MLE method, and the variance
equation is estimated using the GLS method. Integrating
the GSTARIMA Model with the ARCH/GARCH Model
can minimize the model error. This model is only able to
forecast at locations that have observed values.

Regarding climate data, some areas do not have
observation stations. The GSTARIMA and
ARCH/GARCH models are then integrated with the
Kriging method. The Kriging method is proven to
forecast phenomena at unobserved locations. Estimated
parameters in the GSTARIMA-ARCH Model are input to
obtain parameters at unobserved locations. Furthermore,
experimental and theoretical semivariogram calculations
are carried out to obtain Kriging weights from
unobserved locations. The estimated parameters for the
unobserved locations are simulated to get the data at the
unsampled locations. Finally, the data at unsampled
locations are forecasted with the GSTARI-MA-ARCH
Model. The integration of the GSTARIMA Model,
ARCH/GARCH Model, and Kriging Method can forecast
the phenomenon at unobserved locations in the future.

3.4.2 Data Analytics Life Cycle for Climate Forecasting

The conceptual integrated model of GSTARIMA,
ARCH/GARCH, and the Kriging Method is then used to
forecast climate that meets the criteria of Big Data.
Regarding answering RQ2, the modeling flow follows the
data analytics life cycle methodology in Figure 3. The
initial stage begins with discovery, problem identification,
determination of data sources to be processed, and
hypotheses that are proven using theorems and
mathematical formulas. The next step involves data
preparation inputting climate data into the process. Raw
climate data is taken at a daily interval and cleaned to
eliminate missing value data. Daily data is transformed by
aggregating daily data into monthly data. In model
planning, mathematical model integration is carried out.
At this stage, the theorem that answers the research

hypothesis is created. The GSTARIMA model is
developed following the Box-Jenkins method. Integrating
the GSTARIMA model, ARCH/GARCH and Kriging
method requires complex mathematical reasoning,
especially in estimating model parameters. The integrated
model is used in the model building stage, with the data
preparation results inputted. Climate data is divided into
training data and testing data. The forecasting results are
interpreted by the model obtained. Furthermore,
visualization is carried out at the communication results
stage, and recommendations are obtained. The last step is
to operationalize the results of discoveries in Model
development with theorems on mathematical modeling
and dissemination.

4 Conclusions

In conclusion, a systematic literature review was
conducted to develop the Integration GSTARIMA model
with heteroscedastic error and the Kriging method for
climate forecasting. A comprehensive search and analysis
of the literature was performed to provide a clear
understanding of the latest research. This research uses
PRISMA and bibliometric methods to analyze the
development of this topic. In this paper, the study’s results
in integrating the GSTARIMA Model with the
ARCH/GARCH Model can overcome the problem of
non-constant error variance. The GSTARIMA and ARCH
models provide an overview of multivariate modeling
affected by time, location, and non-stationary data. On the
other hand, the GSTARIMA/Spatio-Temporal Model can
only forecast at the observed location. Through the
integration of the GSTARIMA Model with the Kriging
Method, it has been discovered that the prediction of
Spatio-Temporal phenomena becomes feasible for
unobserved locations in the future. The development of
the GSTARIMA Model, ARCH/GARCH, and Kriging
Method allows the discovery of theorems in mathematical
modeling. The application of this model to climate data
uses the data analytics life cycle methodology for more
detailed processing and more accurate information.
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Fig. 3: Data Analytics Life Cycle for Integrated GSTARIMA, ARCH, and Kriging.
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