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Abstract: An important research trend in metal forming is to predict high temperature flow stress of materials during deformation.
In the conventional models, there exist difficulties in the regression analysis based on the experimental results to obtain the model
constants. Support vector machine (SVM) is a new technology for solving classification and regression. In this study, a novel accurate
and rapid prediction of high temperature flow stress of AZ80 magnesium alloy with particle swarm optimization-based support vector
regression (PSOe-SVR) was developed. Datasets were established based on compression tests in the temperature range of 350-450◦C
and strain rate range of 0.01− 50s−1. Meanwhile, the datasets were corrected for deformation heating and unbalance. The maximum
relative errors between the experimental and predicted flow stress with PSOe-SVR, Back propagation neural network (BPNN) and
constitutive equation was compared and analyzed. The results show the lower the strain rate, the greater the predicting accuracy of
testing samples using PSOe-SVR. Meanwhile, the PSOe-SVR model has the most accurate prediction ability to those of BPNN and
constitutive equation. The sample dependence of PSOe-SVR is also lower.
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1. Introduction

Magnesium alloys have a great potential for wide
application due to their high strength-to-gravity ratios.
Recently, Kleiner [1] have shown the high potential of
magnesium alloys for lightweight structural components
in automotive applications owing to the excellent
properties in terms of low density and high specific
strength. Unfortunately, magnesium alloys exhibit poor
attitude to deformation. Bruni [2] indicated that the low
workability of magnesium alloys is as a result of
hexagonal crystal structure, and the formability strongly
depends on texture and deformation twinning. Therefore,
deeper knowledge of the deformation behavior of
magnesium alloys, especially the flow stress curves and
their dependencies on temperature, strain and strain rate
should to be carefully obtained prior to all forming
experiments. Among all the wrought magnesium alloys,
AZ80 alloy has attractive combination properties such as
high strength, high toughness and good plasticity. But

AZ80 magnesium alloy is subjected to complex dynamic
recrystallization (DRX) in forming processes. Therefore,
accurately predict the high temperature flow stress of
AZ80 magnesium alloys is always very difficult. Zhou [3]
employed the processing map to study the hot
deformation behavior of AZ80 alloy so as to optimize its
hot workability, and developed a hyperbolic sine
constitutive model of the alloy for hot deformation. Quan
[4] developed a constitutive model for AZ80 magnesium
alloy with considering DRX during hot deformation. Hu
[5] developed a novel constitutive equation to investigate
influence of dynamic recrystallization on tensile
properties of AZ31 magnesium alloy sheet. But in the
conventional methods, the regression analysis was carried
out based on the experimental results to obtain the
constants of the constitutive models. The response of the
deformation behaviors of the materials under elevated
temperatures is highly nonlinear. Thus, Lin [6] indicated
the accuracy of the flow stress predicted by the regression
methods is low and the applicable range is limited.
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Nowadays, intelligent theory and method have been
used for prediction, estimation and optimization in
material engineering. Previous studies showed that
artificial neural network (ANN) could obtain satisfied
results. Anaraki [7] established a model of high
temperature rheological behavior of AZ61 Mg-alloy
using ANN, and compared the prediction of flow stress
using ANN and using inverse method. Han [8] employed
adaptive fuzzy-neural network for prediction of
mechanical properties of titanium alloy. Their results
show that the maximum relative error is less than 9%. Sun
[9] used artificial neural networks successfully to predict
the tensile property of hydrogenated Ti600 titanium alloy.
However, the serious disadvantage of artificial neural
networks is that network training is time-consuming and
easy leading to over-fitting. Recently, support vector
machines (SVM) has been introduced to solve machine
learning tasks such as pattern recognition, regression and
estimation. Due to its excellent properties of globally
optimal solution and good learning ability for small
samples, SVM attracted wide attention. Yoon [10] applied
SVM to predict ground water level and stated the overall
model performance criteria of SVM are better than those
of the ANN in model prediction stage. Chen [11]
indicated SVM can be used as a better alternative
modeling tool for quantitative structure-property/activity
relationship of gas chromatography retention indexes. Shi
[12] applied fuzzy SVM on product’s KANSEI
extraction. However, the biggest problem encountered in
constructing the SVM model is how to select the training
parameter values. Inappropriate parameter settings lead to
poor recreation results. Considering the great influence of
the parameters on generalization performance of SVM,
particle swarm optimization (PSO) was applied to search
the parameters of SVM in global space. The technique
was derived from social behavior such as bird flocking
and fish schooling, which can efficiently find optimal or
near-optimal solutions in search spaces.

In the present study, a novel prediction of high
temperature flow stress of AZ80 magnesium with particle
swarm optimization-based support vector regression
(PSOe-SVR) was developed. The predicted values of flow
stress with PSOe-SVR were compared with those
obtained with Back propagation neural network (BPNN)
and the constitutive equation. The datasets of the flow
stress of the AZ80 magnesium to strain, strain rate and
the temperature were selected through compression tests.

2. Methods

Support vector regression. Support vector machines
(SVM) is a novel statistical learning theory based on
machine learning algorithm presented by Vapnik [13]. It
is based on the Structural Risk Minimization principle
from computational learning theory. It is simple enough
to be analyzed mathematically, because it can be shown to

correspond to a linear method in a high-dimensional
feature space nonlinearly related to input space.

Now e-SVR (support vector regression) has been
developed for solving regression. For a given regression
problem, the optimization can be expressed as [14]:

min
1
2
∥ω∥2 +C

l

∑
i=1

ξi +C
l

∑
i=1

ξ ∗
i (1)

s.t.(ω · xi +b)− yi ≤ e+ξi (2)
yi − (ω · xi +b)≤ e+ξ ∗

i (3)
ξi,ξ ∗

i ≥ 0, i = 1,2, · · · , l. (4)

where ω is a column vector with d dimensions, b is the
bias term. xi ∈ Rn is an input and yi ∈ Rn is an target
output. C > 0 is the penalty factor which controls the
equilibrium between the complexity of model and
training error, e an insensitive loss parameter that for
controlling tube size, namely, errors below e would not be
penalized. ξi and ξ ∗

i are the introducing slack variables
guarantee the satisfaction of constraint condition.

For nonlinear regression, the basic idea of e-SVR is to
map the input vectors X onto a very high-dimensional
space using kernel function K(x, y), and then a nonlinear
feature mapping will allow the treatment of non-linear
problems in the way similar to that of linear problems.
The decision function of this optimal hyperplane is [15]:

f (x,y) =
l

∑
i=1

(αi −α∗
i )K(x,y)+b,0 ≤ αi,α∗

i ≤C (5)

Where, αi and α∗
i are Lagrangian multipliers from the

quadratic programming (QP) problem. The kernel
function K(x,y) can effectively solve the contradiction
between high dimension and computing complexity, and
is thus a great progress in the development of SVR. There
are four possible choices of kernel functions, such as
linear, polynomial, sigmoid, and radial basis function. For
the regression problems, the radial basis function (RBF)
kernel is commonly used, which can be expressed as
follows:

K(x,y) = exp(−r×|x− y|2) (6)

where r is the reciprocal of the property of input data.
Particle swarm optimization. Particle swarm
optimization (PSO) is an intuitive and easy-to-implement
algorithm, which updates particles based on their
individual experience their group experiences and
previous movements of the particles, and each particle
represents a potential solution within the search space.

Each particle has a position vector (Xi), a velocity
vector (Vi), the position at which the best fitness (pbest)
encountered by the particle so far, and the best position of
all particles (gbest) in current generation. The updating
equations of PSO can be expressed as [16]:

Vi(t +1) = ωVi(t +1)+ c1r1(xpbest(t) · · · (7)
−xi(t))+ c2r2(xpbest(t)− xi(t))

xi(t +1) = xi(t)+Vi(t +1) (8)
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The parameters c1 and c2 are learning factors, which are
set to constant value, r1 and r2 are two random values,
uniformly distributed in [0, 1], ω is inertia weight which
controls the influence of previous velocity on the new
velocity, global search performance is good with large
inertial weight while a small inertia weight facilitates a
local search.

3. Case studies

Date acquisition. The date sets of the flow stress at
different strain, strain rate and temperature were acquired
through compression tests. The material used in this study
was AZ80 magnesium alloy, with a nominal composition
of 7.8 Al, 6.5 Zn and a minimum Mn content of 0.3
(wt.%). Cylindrical specimens of 10mm in diameter and
12mm in height were machined from hot extruded bars of
47.2mm in diameter, with the axis along the extrusion
direction. Compression tests were performed on
Cleeble-3500 machine with strain rates of 0.01s−1,
0.1s−1, 1s−1, 10s−1 and 50s−1 and temperatures of
350◦C, 400◦C and 450◦C respectively. The specimen was
resistance-heated through a thermocouple sending
feedback signals to control the AC-current. In the present
study, a very fine, fast-response thermocouple with a
diameter of 0.08 mm was used to capture the temperature
changes occurring during the tests. Before deformation
was initiated, graphite foils were put on the specimen’s
flat ends as lubricant. Specimens were preheated to the
required temperature with a heating rate of 10◦C/s and
homogenized for 60 seconds, then compressed to 4.4 mm
in height, achieving a true strain of 1.0. All the tests were
performed in a nitrogen atmosphere.

Date correction for deformation heating during
high strain rate deformation. Li [17] indicated that
deformation heating is pronounced during deformation
at,high strain rates. A correction of flow stress for
deformation heating at a high strain rate is a necessity.
The temperature increase due to deformation heating may
be calculated using the following equation:

△T = (η(0.9 ∼ 0.95)
∫

σdε)/(ρCp) (9)

A[sinh(ασ)] = ε · exp[−Q/R(T +△T )] (10)
Z = ε · exp[−Q/R(T +△T )] (11)

where △T is the change in temperature, η is the adiabatic
factor,

∫
σdε is the mechanical work, ρCp is the heat

capacity and the factor 0.9 ∼ 95 is the fraction of
mechanical work transformed to heat. n,α,Q and R are
constants, Q is the activation energy of deformation and R
is the universal gas constant. Z is Zener-Hollomon
parameter.

With both measured and calculated specimen
temperatures, flow stress could be corrected for
deformation heating according to the procedure described
in reference [18]. Fig.1 illustrates the corrected

stress-strain curves at various temperatures and strain
rates. It can be seen that at high strain rates, the flow
stress attains a peak, followed by continuous flow
softening till the end of the tests. At low strain rates, the
flow curves exhibit gradual softening followed by
steady-state flow behavior. The peak stress decreases with
increasing temperature or decreasing strain rate. Flow
softening is a common characteristic of true strain-true
stress curves for many alloys deformed at elevated
temperature. It could be caused by deformation heating
and by microstructural instabilities inside the material,
such as texture formation, dynamic precipitation and
dissolution. All the flow stress curves show a single peak
implying the occurrence of the DRX during hot
deformation.

Date correction for unbalance. Form Fig.1, It can be
found that the numbers of data points in different classes
are unbalanced. For instance, the numbers of data in
stress and strain classes are theoretically infinite, while
the correspond numbers of data in strain rate and
temperature classes are limited. This will lead to reduced
accuracy of SVR. Therefore, linear interpolation is used
to increase the number of small data classes, to balance
the various types of data.

Assume that y is a function of x, y = f (x), if we have
measured the correspond values of xp and xq , so yp =
f (xp),yq = f (xq), take a number from xp to xq as x, the
corresponding value of y is varying linearly along x, then:

y = yp +
x− xp

xq − xp
(x− xq) (12)

Where xp, xq, yp, yq is known, x is the interpolated value.
Taking different values of x, we can obtain any
corresponding value of y .

In this study, according to Fig.1, the temperature
range is [350,450], can be divided into three grades, and
strain rate range is [0.01,50]s−1, can be divided into five
grades. According to linear interpolation, the temperature
is extended to seven grades, strain rate extended to nine
grades (shown in Table 1). And then according to (12)
and the data in Fig.1, we can obtain values of flow
stresses of corresponding unknown data points.

Table 1 Parameters used in interpolation method

Parameters Numbers of values used Values of parameters in interpolation method
T(◦C) 7 350, 370, 380, 400,420,430, 450

ε ·(s−1) 9 0.01, 0.05, 0.1, 0.5,1, 5, 10, 30, 50

4. Prediction of high temperature flow stress
of AZ80

In this section, a model of high temperature flow stress of
AZ80 is developed based on the integration of PSO,
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Figure 1 True stress-true strain curve obtained at different strain rates and various temperatures, (a)at 350◦C, (b)at 400◦C,(c)at 450◦C

Figure 2 Flow chat presenting model of high temperature flow stress of AZ80
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e-SVR, experiments and data correction as shown in
Fig.2. The control procedure can be divided into two
main sections: the optimal parameters selection of e-SVR
based on PSO, and the predicted flow stresses with
e-SVR. Meanwhile, mean square error (MSE) was used
to qualify the training accuracy.

MSE =
1
N

N

∑
i=1

(αi −α i)
2 (13)

Where, αi is actual value, α i is predicted value, N is
sample number. deformation.

The parameters selection of e-SVR based on PSO.
On the basis of the e-SVR model, there are three
parameters, e, r and C, to be determined. PSO method
was used to optimize the model parameters, to improve
the SVR accuracy and generalization. Firstly, with
random generate initial particles comprised of, e, r and C.
Secondly, set the PSO parameters including number of
particles,particle dimension, number of maximal
iterations, learn factors and inertia weight for particle
velocity. Thirdly compute the fitness function value of
each particle, and adopt the mutation operator by (7) and
(8) to manipulate particle velocity and position. And then
compare the current optimal particle with last
generational optimal particle and update global and
personal best. Finally, if the maximum iterations and
accuracy predefined are met, stop condition checking and
output the optimal parameters e, r and C.

Predicting flow stress of AZ80. Three inputs (ε ,
ε ·and T ) and one output (σ) was used in this study for
predicting the high temperature flow stress of AZ80
magnesium alloy with PSOe-SVR. According to (2) and
(7), the range of e, r and C were set as (0,1], (0,500] and
(0,1000], respectively. The optimal parameters, e, r and
C, were obtained when iteration number exceeded 500, or
met the predefined accuracy 0.001. So the detailed
description steps of predicting flow stresses with
PSOe-SVR were as follows:

1.SVR inputs were comprised ε ε · of and T , while the
flow stress σ was taken as the output obtained from a
compression test.

2.Initialize the original data by normalization, and form
training and testing data set, respectively.

3.Select the RBF kernel function and obtain the optimal
parameters e, r and C based on PSO.

4.Compute the predicting flow stresses by formula (5).
5.Here, MATLAB platform was used to practice the

predicting. During the calculating period, the
population size of PSO was set as 20, evolutional
generation was set as 500, and the learning factors
c1 = 1.5,c2 = 1.7. The iterative process was shown in
Fig.3. So we can select 0.01, 180 and 726.8036 as the
optimal e, r and C value, respectively.

Figure 3 The iterative process

5. Results and discussion

Comparison of predicted and measured stress. Based
on the PSOe-SVR approach mentioned in the previous
section, 75 sets of flow stress curves were used as the
training samples and 3 sets of flow stress curves as the
testing samples. Basic parameter values of PSOe-SVR
model are shown in Table 2.

Table 2 Parameters used in interpolation method

Parameters Value
Insensitive loss parameter, e 0.01
Gamma in kernel function, r 180

Penalty factor, C 726.8036
Goal error 0.001

The maximum training number 1000
PSO learning factors c1 1.5
PSO learning factors c2 1.7

PSO population size 20
Training generation 500

The measured and predicted flow stresses between
training and testing sets are graphically depicted in Fig.4.
It can be found that a very good agreement exits between
training predicted results and the measured data. A
comparison of the testing samples and measured flow
stresses at different temperature and different rates, is
presented in Fig.4 too. High correlation also exits
between them. The testing predictions are within the
acceptable range.

From Fig.5, it can be found that the maximum
relative error of training set is very small. They are 0.24,
0.31 and 0.33 at 350◦C, 400◦C and 450 ◦C , respectively.
In addition, the higher the strain rate, the lower the
relative error in flow stress. The reason could be attributed
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Figure 4 Comparison of measured and predicted flow stresses between training and testing sets at (a)350◦C,(b)400◦C and (c)450◦C
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Figure 5 Comparison of stress relative error of training samples obtained at (a)350◦C,(b)400◦C and (c)450◦C
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to the sensitivity of flow stress related parameters to
experimental factors. At low strain rate, such as at
0.01s−1 or 0.1s−1, the strain rate was too small so that
could be influences more easily by experimental factors.
Chen [19] also pointed out the reason in the estimation of
exposed temperature for fire-damaged concrete using
support vector machine.

Figure 6 Comparison of stress relative error of testing samples

On the contrary, form Fig.6, it can be found that the
lower the strain rate, the lower the relative error of testing
samples. Possibly, with the increasing of the model
accuracy, the complexity of the model increases, and the
accuracy of testing samples decreases. Therefore, the
lower the training error, but the higher the testing error
[20].

Comparison of the sample dependence between
PSOe-SVR and BP-neural network. The performance
data of PSOe-SVR model would be changed with the
ratio between the number of training sample and testing
sample. The changing tendency is shown in Table 3,
where T R is the number of training data and T E is the
number of testing data.

Table 3 Performance changing tendency of PSOe-SVR model
and BPNN model for changed the ratio between the number of
training sample and testing sample

TR TE PSOe-SVR PBNN
MSE MSE

75 3 0.0098134 0.021567
70 8 0.0098789 0.057862
60 18 0.0099345 0.092343
52 26 0.0099789 0.137645

Given the parameters, e, r and C, it can be found that
MSE records very slight variations with the ratio of the
numbers of sample number. By contrast, the sample
dependence of BP-neural network (BPNN) is relative

high. For BPNN, the predicted results depend on all the
training samples. However, the predicted results of
PSOe-SVR only depend on the key points of the training
data, the support vectors. Therefore, its dependence on
training samples is relative low. But for both e-SVR and
BPNN model, the prediction performance can be
improved by increasing the number of training sample.

Figure 7 Comparison of stress relative error of training samples
obtained at 400◦C, ε · = 1s−1 between (a) PSOe-SVR and (b)
BPNN

Comparison of study and generation ability
between PSOe-SVR and BPNN. Fig.7 shows that the
predicted results for training dataset obtained from Back
propagation neural network (BPNN) is worse than those
from PSOe-SVR (see Fig.7). The maximum relative error
of BPNN at 400◦C is 3.1%, which is much higher than
that from PSOe-SVR (1.0%). The reason is that excess
impact factors lead to over-fitting easily during BPNN
modeling [21].

Fig.8 illustrates the scatter plot for the testing dataset
with PSOe-SVR and BPNN at 400◦C and ε · = 1s−1. It
can be found that the predicted results with PSOe-SVR
show smaller scatter than those with BPNN. These results
indicate that the training feature of PSOe-SVR from
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experimental data made this procedure adaptive and
exhibiting good learning precision and good
generalization. A similar result was also proved by Fei
[22], who employed particle swarm optimization-based
support vector machine to diagnosis of arrhythmia cords
and achieved higher diagnostic accuracy than BP artificial
neural network. BPNN builds on the empirical risk
minimization principle, and using the gradient descent
learning algorithm, BPNN intends to converge local
minima. As a result, it suffers from the over-fitting
problem. On the other hand, SVM tends to find a global
solution during the training as the model is converted into
a convex quadratic programming problem. Meanwhile,
with the introduction of special loss function, SVR has
low model complexity. Consequently, the training results
from SVR have better generalization capability than those
from BPNN.

Figure 8 Scatter plot for the testing samples of flow stress at
400◦C, ε · = 1s−1

If more data were applied for BPNN training, the
study ability and generation ability will be improved. But
this improvement will consume more energy and time, in
that sense, PSOe-SVR also has certain advantages in a
small set of training data.

Comparison of prediction ability among
PSOe-SVR, BPNN and constitutive equation. Among
many constitutive equations suggested for describing the
flow stress in hot metal forming processes, one of the best
relationships which exhibit DRX (Dynamic
Recrystallization and DRV (Dynamic Recovery)
processes is [23]:

σDRV = [σ2
0 e−rz +(σ2

s (1− e−rz)]0.5 · · ·
(ε < εc) (14)
σDRX = σDRV − (σs −σss){1− exp · · ·
[−kd(

ε−εc
εp−εc

)nd
]}(ε < εc)

where σ0 is the initial stress; r is recovery softening
parameters; σs and σss are the saturated stress and the

stable stress, respectively; εp and εc are the strain
corresponding to the peak stress and the critical stress,
respectively; kd and nd are material constants.

With the aim of nonlinear regression, for a given
stress and strain, the σ0, σs, σss and r can be calculated
from the (5). Then we will get the stress dependence of
the strain hardening rate (θ = dσ/dε) . Finally we can
obtain the material constants kd and nd with nonlinear
regression. In order to make a direct comparison among
three methods, the constitutive equation, BPNN and
PSOe-SVR, the same dataset during the BPNN training
and the PSOe-SVR training were employed. Fig.9 shows
the stress relative error at 450ε · = 1s−1 and ε · = 1s−1

using the constitutive equation, BPNN and PSOe-SVR. It
can be seen that the PSOe-SVR analysis actually yields
the most accurate predictions, and the relative error is the
smallest which is lower than 0.6%. The prediction
accuracy by using the constitutive equations is the worst.
The results also show the PSOe-SVR can learn a
parsimonious prediction model from the given data to
avoid the data over-fitting problem.

Figure 9 Comparison of stress relative error obtained at 450◦C
and ε · = 1s−1 using BPNN, PSOe-SVR and the constitutive
equations

6. Conclusion

1.The prediction of high temperature flow stress of
AZ80 magnesium alloy was developed using a
particle swarm optimization-based support vector
regression. In this study, e-SVR was used to develop
predicting model and PSO was used to optimize
model parameters of e-SVR, to avoid the occurrence
of over-fitting or under-fitting of the e-SVR model
caused by the improper determination of these
parameters. Meanwhile, datasets were corrected for
deformation heating and unbalance.

2.The PSOe-SVR method could achieve higher
predicting accuracy of flow stress as compared with
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experiments. The lower the strain rate, the greater the
predicting accuracy of testing samples.

3.Compared with BPNN model, the samples
dependence of PSOe-SVR model is lower. The study
ability and the generation ability of PSOe-SVR model
are also better than those of BPNN model. This
indicates that the PSOe-SVR can be used as an
effective predicting tool for high temperature flow
stress studies.

4.Compared with BPNN model and constitutive
equation, the prediction accuracy by using PSOe-SVR
is the best, and by using the constitutive equations is
the worst.
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