J. Stat. Appl. Pro. 14, No. 1, 59-75 (2025) %N S\ 59

Journal of Statistics Applications & Probability

An International Journal

http://dx.doi.org/10.18576/jsap/140105

An end-to-end Combined Forecasting Architecture:
Forecasting Stock Price Data

Katleho Makatjane'*, Claris Shoko' and Caston Sigauke >

'Department of Statistics, University of Botswana, Goborone, Botswana
ZDepartment of Mathematical and Computational Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa

Received: 3 Mar. 2024, Revised: 20 Oct. 2024, Accepted: 4 Nov. 2024
Published online: 1 Jan. 2025

Abstract: In this paper we evaluated five models within a Bayesian framework in quantifying aleatoric uncertainty of financial time
series data and, in particular, stock prices. Statistical-based predictions with deep learning algorithms improve the performance of stock
price forecasting models not by choosing the model structure expected to predict the best but by developing a model whose results are
a combination of models with different shapes. Using the minimum combined score to conglomerate the TBATS and the a-RNN, we
found that the combined model mimics the forecasting error compared to individual deep learning algorithms, with coverages of 98.7%
and 88.76%, for five and ten-day steps ahead, respectively. By leveraging TBATS for capturing complex seasonality and ¢o-RNN for
modeling memory decay and long-term dependencies, the estimated model demonstrates robust performance in short and medium-term
predictions. our findings further highlight the ability of the model to address volatility clustering, trend detection, and seasonality more
effectively than traditional methods such as ARIMA, GARCH, and standalone RNN-based models methods. The model significantly
lowers error metrics, improves forecast accuracy and better handles financial uncertainties.

Keywords: Bayesian methodology, Exponential Smoothed Recurrent Neural Network, Anglo-American Stock prices.

1 Introduction

The fundamental units of contemporary sequential learning are recurrent neural networks (RNNs). With minimal
parameters, RNNs employ recurrent layers to capture nonlinear temporal dependencies [16]. Using feedforward and
recurrent neural network layers enables the translation of input sequences into hidden state sequences and their
corresponding outputs. This architecture is particularly adept at capturing temporal dynamics in sequential data.
Researchers have extensively explored the application of recurrent neural networks in financial time series, such as
historical limit order books and price histories. Notable empirical studies, including those by [7], [6], and [34], have
investigated the effectiveness of these networks in modelling and understanding the temporal dependencies present in
financial data. In the realm of financial time series analysis, different approaches have been explored by various
researchers; for example, [4] combined wavelet transformations and stacked autoencoders with long-short-term memory
(LSTM) networks, focusing on open-high-low-close (OHLC) bars and technical indicators. In contrast, [34] observed
that the performance of intraday stock data, when integrated with technical indicators, improves with the stacking of
networks. [7] further presented evidence suggesting that dilated convolutional networks surpass LSTM in performance in
various metrics; while [12] contributed by demonstrating that recurrent neural networks exhibit superior performance
when applied to limit order book data compared to feedforward networks with lag characteristics. Interestingly, there
seems to be a divergence between the statistical modelling literature, represented by works like [8] and [17], and the
machine learning literature, exemplified by the contributions of [20] and [5]. This disparity suggests varying perspectives
or methodologies in addressing the complexities of financial time series data within different research paradigms.

The landscape of data analysis has seen a surge in the application of artificial intelligence (AI), with a particular
emphasis on machine learning and deep learning techniques. This shift involves leveraging learning models constructed
based on data rather than predefined models and optimising these models to suit specific application domains.
Convolutional neural networks (CNNs) have proven highly effective in tasks like image recognition, while RNNs

* Corresponding author e-mail: makatjanek @ub.ac.bw

© 2025 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/jsap/140105

60 NS e K. Makatjane et al.: An end-to-end Combined Forecasting Architecture

demonstrate prowess in modelling time series data. Various iterations of RNN-based models exist, with a key
distinguishing factor being their capacity to retain incoming data, as highlighted by [3]. This evolution in Al-based data
analysis signifies a move towards more adaptable and data-driven approaches to handling diverse analytical tasks.
Generally, vanilla RNNs face challenges in retaining information from past data due to their feedforward learning
process in deep learning. Long short-term memory networks address this limitation by facilitating associations between
longer input and output data. Unlike traditional RNNs, feedback-based models, such as LSTMs, incorporate multiple
gates in their network architecture. These gates enable the model to effectively learn from previous data, allowing the
development of a comprehensive model that considers both historical and current information. Consequently, just one
pass through the input data is needed; hence, literature, as indicated by [33], suggests that deep learning models,
particularly those employing RNNs or LSTM architectures, outperform statistical models such as Autoregressive
Integrated Moving Average (ARIMA) models in forecasting time series. This superiority is especially noticeable in
addressing long-term prediction challenges, emphasising the effectiveness of deep learning approaches in handling
complex temporal dependencies in data.

Even though LSTM has been demonstrated to perform better than ARIMA, it is intriguing to study whether adding
more layers of training data to LSTM can enhance its performance even more. To investigate whether incorporating
additional layers of training into the architecture of an RNN improves its prediction, this study explores the performance
of exponentially smoothed recurrent neural networks (-RNN). Then, it benchmarks with three RNN architectures:
simple RNN, LSTM-RNN, and gated recurrent unit-RNN (GRU-RNN). A simple RNN is chosen because it is the most
straightforward RNN architecture, making it relatively easy to understand and implement. The architecture has a simple
structure, leading to faster training times than complex RNN architectures. The LSTM networks are designed to address
the vanishing gradient problem in RNNs, enabling them to capture long-term dependencies in time series data. This is
crucial for stock price forecasting, where past information may significantly impact future prices. Moreover, introducing
a memory cell in LSTM helps to store and access information for longer periods, making it effective for modelling
sequences with long-term dependencies. Finally, LSTMs offer more flexibility in learning and remembering patterns
over time, making them suitable for complex time series data. The GRU is a simplified version of the LSTM, combining
some of the benefits of LSTM while reducing complexity. It may be computationally more efficient than LSTM, leading
to faster training times. In particular, we would like to perform a behavioural analysis comparing these four architectures
when training their models. To do so, we report the results of an experiment in which the performance and behaviour of
these RNN architectures are compared. In particular, we are interested in addressing the following research questions:

—Is the prediction improved when time series data are learned from high epochs and batch size?
—How differently do these architectures (a-RNNs, simple RNNs, LSTM-RNNs, and GRU-RNNG5) treat input data?
—How fast do these four architectures reach equilibrium?

The main contribution of this study lies in demonstrating the application of recurrent neural networks, specifically a
novel class known as exponentially smoothed RNN, within a financial time series modelling framework, as proposed by
[29]. The approach involves utilising cross-validation along with statistical diagnostics to identify the optimal
architecture within this framework. Statistical tests are employed to assess whether the data is suitable for longer-term
forecasting and whether the model needs to account for nonstationarity by characterising stationarity and memory cutoff
length. Additionally, we investigate whether the addition of more training layers enhances prediction capabilities in the
context of financial time series. Furthermore, a behavioural analysis of the learning procedures employed in training
GRU-RNN, LSTM-RNN, and simple-RNN models is conducted. This research contributes to advancing the
understanding and application of RNNs, specifically a-RNNs, in financial time series modelling and explores factors
influencing model performance and behaviour.

The proposed class of a-RNNs is developed for time series forecasting using numeric data, unlike state-of-the-art
RNNSs such as LSTMs and gated recurrent units [10], which were primarily designed for speech transcription. i) The
a-RNNs solve the gradient problem by using fewer parameters, recurrent units, and samples to achieve similar prediction
accuracy. ! ii) supports both stationary and nonstationary time series. Simple RNNs model stationary time series, whereas
GRUs and LSTMs model nonstationary time series, but no hybrid gives the researcher control over which one to deploy;
and iii) be mathematically accessible and characterised in terms of well-known concepts in classical time series modelling,
rather than appealing to logic and circuit diagrams. Consequently, we demonstrate via a straightforward examination of
time series characteristics for o-RNNs how the smoothing parameter directly defines its dynamic behaviour and offers a
model that is efficient and more understandable for time series modelling than GRUs and LSTMs. We contend that some
more intricate elements, like reset gates and cell memory, present in GRUs and LSTMs but absent in a-RNNs—may be
superfluous for our data regarding time series modelling issues in finance. We utilise these attributes in two ways. i) We

' Sample complexity bounds for RNNs have recently been derived by [2]. Theorem 3.1 of [2] shows that for a recurrent unit, inputs

of length at most b, and a single real-valued output unit, the network requires only O(O‘S—zb) samples to attain a population prediction
error of €. Thus, the more recurrent units are required, the more training data is needed. See Appendix A for this theorem.

© 2025 NSP
Natural Sciences Publishing Cor.

J. Stat. Appl. Pro. 14, No. 1, 59-75 (2025) / www.naturalspublishing.com/Journals.asp NS e 61

decide whether to use a static or dynamic &-RNN model by first applying a statistical test for stationarity; ii) we shorten
the training period and the memory needed to store the model, and in general, we expect a-RNN to be more accurate
for shorter time series because they require less training data and are less likely to overfit. The latter is a practical point
because many finance applications are not inherently large data problems, and the limited amount of data makes a design
with fewer parameters more advantageous to prevent overfitting.

1.1 Research Highlights and Key Findings
This study is one of the first to apply the combination of deep learning with statistical methods such as the TBATS;
unlike [1] who used ARIMA and exponential smoothing with advanced deep learning techniques such as long short-term

memory and convolutional neural networks. Therefore, the highlights and key findings of this study are summarised in
Table 1.

Table 1: Financial Time Series Characteristics and Model Suitability

Characteristic Simple RNN LSTM GRU a-RNN TBATS-a-RNN
Volatility Clustering Limited Excellent Good Good Excellent
Trend Detection Weak Excellent Good Excellent Excellent
Seasonality Weak Moderate Moderate Excellent Excellent
Handling Noise Poor Strong Strong Strong Strong
Event Shocks (Jumps) Poor Moderate to Strong Moderate Moderate Strong
Long-Term Dependencies Poor Excellent Good Good Excellent
Training Efficiency Fast Slow Moderate Moderate ~ Moderate to Fast

The overall takeaway from Table 1 is that, the TBATS-o-RNN combination stands out as a highly powerful model
for forecasting financial time series, thanks to its ability to capture volatility clustering, trends, seasonality, and long-term
dependencies, while also handling noise and event shocks effectively. While it may not be the fastest to train, its overall
performance across key financial characteristics makes it an excellent choice for advanced forecasting tasks in volatile
markets. The LSTM model is also a strong contender, especially for long-term dependencies, but its performance is less
robust in capturing seasonality and event shocks compared to TBATS-a-RNN. Simple RNNs, while fast, offer limited
performance across most characteristics, making them less suitable for complex financial time series analysis.

The rest of the paper is organised as follows: Section 2 presents the models; empirical results are presented and
discussed in Section 3; and Section 4 concludes the study.

2 Models

This section of the study presents the methods and procedures followed. The data used for the experimental analysis is
Anglo American Platinum Limited (AMS.JO) stock prices. Anglo American Platinum Limited (JSE: AMS) is the world’s
largest primary producer of platinum, accounting for about 38% of the world’s annual supply. The index is accessed by
the Yahoo finance package using the following Python command:

-Anglo = 'AMS.JO’

—start.date = '2018 — 01 — 01’

—end.date = '2024 — 02— 13’

—data = yf.download(Anglo, start = start.date, end = end.date).

As [27] has suggested, the index is kept in its original currency to avoid any fluctuations due to exchange rate fluctuations.
For ease of exposition, it is assumed that the time series data are univariate and are integrated once, making the predictor
endogenous. Without loss of generality, we set (1) Uy = w, = ¢ € R, (2) o, =1, (3) by =0, and (4) by = u € R for the
RNN with one hidden unit H = 1. The RNN of the form Fy, ,(x;) with sequence length p is a nonlinear Autoregressive
model of order p using backward substitution. Because Autoregressive AR(p) models are known in time series modelling,

© 2025 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

62 NS B K. Makatjane et al.: An end-to-end Combined Forecasting Architecture

we now show that simple RNNs follow a nonlinear AR(p) model with drift in i and coefficients {¢;}?_, and this is shown
in Equation 1 as

;lzfp+1 = g((b)’tfpﬂ)a;lz—pu = g(¢ilz—p+1 + Oy pi2), =0 hy = g((bfz,,l + 0y, Vrim = e+ u, (1)

to yield a nonlinear Autoregressive model in Equation 2 as

Jrim =148 (9 (1+g(L+g (o (L4 +g(oLP1)))))) -)
The next step is to recover an AR model by
p—1 _
Vrpm = U+ Z ¢i+lLlyl (3)
i=0

when the activation has an identity function of g =: ID. In Equation 3, ¢; = ¢/, and thus these Autoregressive coefficients
geometrically decay with an increasing lag when |¢| < 1.

2.1 Proposed Exponential Smoothing Recurrent Neural Network

In this situation, the a-RNN(p) is almost the same as a simple RNN, except for an extra scalar smoothing parameter
a, which provides the recurrent network “long memory,” or Autoregressive memory that goes beyond the sequence
length. To be clear, we are not suggesting that the o-RNN has an extracellular memory similar to that of LSTMs. To
see this, we examine a one-step-ahead univariate a-RNN(p) with a fixed smoothing parameter. For every time step say
s=t—p+2,---,tthen

)A’ter = a))jll + by;]:ls =g (Uhi;sfl + Wy ys +bh) 7Zs = al;s + (] + 06)71;,1. (4)

Equation 4 consists of the output function, the hidden state update, and the smoothing function. By replacing hy_1 in the

hidden layer with an exponentially smoothed hidden state /;_1, this improves the simple RNN model. The smoothing
produces the appearance of infinite memory when o@ = 1. The simple RNN with a small memory of length p < N is
recovered for the exceptional situation where o = 1. By considering inactivated situation and simplifying the
circumstances, we may easily understand this informally. Therefore, Equation 4 is transformed to Equation 5 by setting
by =b;,,U, = ¢ € R, and @, = 1, and this application yields

S =h=¢ (il'zfl +)’t) =0 (Ocil,,l +(1 - Oc)iz',,z +)’z) (5

with the starting condition in each sequence to be flt,l,,ﬂ = ¢y;—p+1. As this happens, we consider p = 2 lags in the
model so that, iz,,l = ¢y;_1 hence,

b1 =0 (0gyr+ (1=)2+) (©)

and the model can be written in the following simpler form

Sl =01+ 0y 1+ 0 (1—a)h o (7)

with AR weights being ¢; = ¢ and ¢» = a¢>. Upon closer inspection, we observe that Equation 7 has a third

component on the right side that disappears when o = 1. This gives the model indefinite memory because Z,,l depends
on y; which is the first observation in the time series, not just the first observation in the sequence. To see this, we unroll
the recursion relation in the exponential smoother; then,

- t—1 R
ht+1:(XZ(l—Oﬂ)shl,s—i-(]—Oc)[y, (8)
s=0

where we used the property that El =yj. It is often convenient to characterise exponential smoothing (ES) by the
half-life, the number of lags needed for the coefficient (1 — &)* to equal a half, which is s = ik We then use partial

1
log, (1—ot
Autocorrelations to characterise the model’s memory to gain further insight.

© 2025 NSP
Natural Sciences Publishing Cor.

J. Stat. Appl. Pro. 14, No. 1, 59-75 (2025) / www.naturalspublishing.com/Journals.asp NS e 63

2.2 Fartial Autocorrelation Function for AR Model

We consider the AR model with the additive white noise of the form y; = §, + &,&N(0, 62), which, when combined with
covariance stationary time series data, bears a signature that makes it possible to establish its order, i.e., p. This signature,
provided by partial Autocorrelations, encodes the model’s memory. Given a time series y;, the partial Autocorrelation of
lag k, denoted by ¢ x, is the Autocorrelation between y; and y,;; with linear dependence of y, on y,; through y; ;i
removed. Equivalently, the Autocorrelation between y, and y; 4 is not accounted for by lags 1 through k — 1 inclusive [40]
and it can be shown that

P =Cov(yry;—1) =E(y — I'Ly)(yt - I'Ly)- ()
Given the AR(p) process: i = Dy + o+ Doy + &, we now show that

P = X0 Pip i+ El&yi 4], Vk = 0,1,2,---. But, E[gry, 4] = 0,Vk = 1,2,3. Therefore, py = Y, ®j,k =1,2,3--.
For a stationary time series, a theoretical partial Autocorrelation function (PACF) is given by

i — 1 ifk=0 o
¢ Z?ZICPijfj, k=23,---,p.

For a given sample y;, let there ¥ be a sample mean. Then, at lag one, the sample Autocorrelation of y; is given by

pi = ZtT:Z ()’; =) Vi1 =) .
Yo — yt)z
Under some general conditions, Equation 11 is a consistent estimator for p;. However, if y; ~ i.i.d (herein referenced
independently and identically distributed) sequence, and E (y:‘}) < oo, then [37] indicated that p; is asymptotically normal
with mean zero and variance % This result, in practice, tests the hypothesis Hy : p; = 0 versus H; : p; # 0. A test statistic

1D

is the usual 7 ratio, which is /TP, and it is asymptotically a standard normal distribution. In general, the lag-/ sample
Autocorrelation of y; is now given by

_):tT:lJrl Ve = 31) Ve—1 =)
):tT:I()’t *)_’z)z

In finite samples, p; is a biased estimator of p;, and % is the one that causes this bias when the sample size is small,
that is, 7' < 30, and to overcome this problem in financial applications, 7 must be large, that is, 7 > 30. In this case, p;
can now be plotted against time. [22] revealed that if the spikes of plotted PACF fall beyond the control bands of the plot,
this indicates highly correlated time series at different lags, and [37] exhibited that there is no correlation if p; = 0, for
I > 0. Nonetheless, financial applications often necessitate joint testing if Autocorrelations of the return series are zero,
1.e., pr = 0. Finally, [25] proposed the following portmanteau statistic

pi (12)

Q*(m)=TY p}, (13)
l

as a test statistic for the following hypothesis Hy : p1,- -+, P = 0 versus H; : p1,--- , pm 7 0 under the assumption that a
time series is an i.i.d. sequence with certain moment conditions. Henceforth, [9] showed that Equation 13 is asymptotically
a chi-squared random statistic with m degrees of freedom that increases the power of a test. Because of finite samples,
[25] modified Equation 13 to

2
!

- (14)

m
Q(m) =T(T+2)},

]
Reject the null hypothesis if the calculated probability value is less than the observed probability value and conclude
that the series is highly correlated. The PACF of the RNN(p) can be used to determine the lower bound on the sequence
length in an a-RNN(p). To see this, we first show that the partial Autocorrelation of the a-RNN(p) is time-independent
and has a sharp cutoff after p lags if @ = 1; and [13] showed that this exhibits T, = 0,5 > p if o« = 1. If o € (0, 1), the
a-RNN(p) has nonzero partial Autocorrelations at lags beyond the sequence length. As in the Autoregressive model, the
partial Autocorrelation is used to identify the order of the &-RNN model from the estimated PACF and hence determine
the sequence length in the a-RNN, which is guaranteed to have at least the same order for a € (0, 1]. This is evident
from an extra term in Equation 7 that contains ¢. Figure 1, which displays the fitted correlogram from data produced by
an a-RNN(3) with additive white noise, provides more information. When o € (0, 1), the memory is always longer than

© 2025 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

64 ~N S B K. Makatjane et al.: An end-to-end Combined Forecasting Architecture

the sequence length 3. The memory of the model grows as o gets closer to zero but has no memory when & = 0. The
sequence length p can be ascertained from the fitted PACF of every covariate. This is according to Theorem 2.2 of [11]
and the characteristics of a-RNN(p). Furthermore, it is recommended that the prediction horizon should not be larger
than the maximum order of statistically significant partial Autocorrelation.

1.0 —— pacf
——— 99% confidence interval (upper)
—— 99% confidence interval (lower)

0.8

0.6

0.4 1

A /\

oo{ | [= =

L ——_ =
o 5 10 15 20 25 30

Figure 1: Fitted PACF for o.- RNN(3). Source: Authors own Computations

2.3 Testing Stability and Training of RNN Models

Time series modelling also emphasises model “stability,” the feature that causes prior random disturbances to dissipate
in the model, and the effect of lagged data becomes less significant to the model output as the lag increases. Therefore,
Theorem 2 of [13] demonstrates that the stability of o-RNN model is completely dictated by the hidden state’s activation
function, with [g(-)| < 1. Suppose that the form has an invertible nonlinear function of the lag operator @(f3), then,

yi= @7 (B = (18 (02 (08 (08 () + -+ 9B%) +0B) &), (15)

where, without loss of generality, we have again conveniently set @, = U, = ¢, @, = 1, and b, = b, = 1. The RNN
now becomes stable if the condition |g(x) < 1, Vx| is met. We now employ a stochastic gradient descent with o as an
extra parameter to train the @-RNN model. In backpropagation, resolving the vanishing gradient problem is one of the
benefits of smoothing the hidden state. A stationary time series is the only scenario in which it is possible to predict the
independence of time. Although restrictive, it suggests that the technique’s efficacy can be predicted by a straightforward
statistical analysis of a time series. Moreover, if the data exhibits covariance-stable behaviour, the ¢-RNN will maintain
the stationarity of the partial Autocorrelation structure. This eliminates the need for intricate architectures like GRUs
and LSTMs, which are frequently motivated exclusively by the vanishing gradient problem. Using a dynamic version of
exponential smoothing, we extend the model to nonstationary time series, which exhibit dynamic partial Autocorrelation.
It is noteworthy that dynamical time series models, which are perfect for nonstationary time series data utilising dynamic
exponential smoothing, may be created with RNNs. Depending on the input and hidden state, the o4-RNN models can
update o; however, a recurrent layer is a helpful alternative. We may simulate the smoothing parameter & € [0, 1] by
assuming a hidden state vector hy € RY and provide a sorted time series as output:

he =Gy Iy + (1= 00) - by, (16)
where - denotes the Hadamard product between vectors, and this smoothing is a vectorised form of the above classical
setting. Only here, we note that the i component of the hidden variable does not change when (&); = 1. Conversely,
the filtered variable that was previously filtered is overlooked. As this happens, the i’ component of the hidden variable
becomes outdated when (&); = 1, returning the filtered hidden variable to its initial value. Equation 16 takes the smoothing
into account by employing a convex combination of the previously smoothed hidden variable and the present hidden
covariate to update long-term memory. The hidden variable is obtained via the semi-affine transformation as shown in
Equation 17; where

h=g (Uhﬁ,,l + o + bh) (17

© 2025 NSP
Natural Sciences Publishing Cor.

J. Stat. Appl. Pro. 14, No. 1, 59-75 (2025) / www.naturalspublishing.com/Journals.asp NS e 65

which in turn depends on the previous smoothed hidden variable. Substituting Equation 17 into Equation 16, this gives
a function of /;_; and x; as

=g (thhxz;a) =g (UﬁH + o, +bh) +(1—04) Ty (18)

Updates from the input x; are not received by the smoothed hidden variable #, when & = 0. The smoothing parameter
can be understood as the sensitivity of a smoothed hidden state to the input x;. This is because the hidden variable acts as
a nonlinear Autoregressive series when & = 1. The tricky part is figuring out how to calculate the dynamically required
amount of error correction. With the recurrent layer defined by the following weights (@q, U — @, by) and biases, we now
solve this problem by learning & = F,, 1/, 5, from the input variables, just like in GRUs and LSTMs. This is to ensure
that

]:lz:Gs (Uaazz—1+waxt+ba) (19)

w. Again, the one-step-ahead forecast of the smoothed hidden state E, is the filtered output of
another simple RNN with weights and biases as (@, Uy, by,).

where, o;(x) :=

3 Empirical Results and Discussion

This section describes an empirical analysis of the study using time series data to test different RNN models. Unless
specified otherwise, all models are implemented in TensorFlow version 2.15 developed by [30]. Time series
cross-validation is carried out on independent training, validation, and test sets. Each set reflects a contiguous sample
period to avoid look-ahead bias, with the test set including the most recent observations.

3.1 Exploratory Data Analysis

Figure 2 shows plots of the closing stock prices. While 2(c) and 2(d) demonstrate that the data is non-normal, the kernel
density plot in Figure 2(b) indicates that the distribution of closing stock prices has a small rightward bias. Furthermore,
it is noteworthy that in Figure 2(a), seasonality is paired with certain positive and negative patterns. These moments of
volatility clustering, according to [21], are the result of events like the COVID-19 pandemic and the market panic caused
by the European debt crisis in 2009-2010. As Figure 2(a) shows, this financial market likewise has the most concentrated
stock return losses. Moreover, this figure represents a potential benefit when conditional heteroscedasticity is considered.
Two important factors are highlighted here: the reason for weight loss; and the erratic nature of weight loss. The latter
contends that irregular shocks in the actual business sector have a greater influence on future volatility, whereas the former
contends that downturn volatility follows these shocks rather than significant losses or gains. However, [44] stated that
the South African Reserve Bank’s (SARB) implementation of a contractionary monetary policy is what produced these
significant losses.

© 2025 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

66 NS P K. Makatjane et al.: An end-to-end Combined Forecasting Architecture

(a) Closing stock price (b) Density plot
o
o
o |
o
wn
N
38 S > ©
5 S 2 9
C
:é © g 2
n _
o
o
o — o
o o
Yol + —
I I I I I I I 8 I I I I I I
2018 2020 2022 2024 0 50000 150000 250000
Date Stock price
(c) Normal Q-Q plot (d) Box plot
o
S _ @00
B o
N
® _
2
T o
(] o
> o _|
g g R N PR
o ~—
Q.
I3 _
M
0
o
o
S -
o
o |o
T T T T T T T T T T T T
-3 -2 -1 0 1 2 3 50000 150000 250000
Theoretical Quantiles Stock price

Figure 2: Plots of the closing stock prices.

3.2 Short-term Forecast of Closing Stock Prices

We use “rolling” forecasts to set up the training, validation, and testing sets for the m-step ahead prediction. For each input
sequence, the former takes lags from s — p+1,--- ¢ and sets the target variables (response) to the observation, which y,,
is increased repeatedly till the conclusion of each test set. This is because the direct forecast approach is not only faster,
but it is also better at identifying longer-term trends and seasonal variations. Every element in the input sequence is either
a vector or a scalar, and the target variable in our empirical analysis is a scalar. We create a fully connected RNN by using
a Keras function as in the work of [23], and proceed to set the number of units H € {5,10,20} and L, regularisation via
a cross-validation process. Then, 2 € {0,1073,1072} is employed using the hidden layer that is activated by the tanh
function. Lastly, the recurrence weights are initialised using an orthogonal matrix for stability, ensuring that the initial
bound of the eigenvalues’ absolute value is unity; see for instance, [19]. The non-recurrent weight matrices are initialised
using the Glorot and Bengio uniform approach of [15]. The gated recurrent unit is estimated using the Keras 2.15.0
version by first applying the reset gate to the hidden state and then performing matrix multiplication. The recurrence layer
employs tanh activation functions, whereas the remaining gates use sigmoid activation function. To create our proposed
alpha-RNN model, Keras’s exponential smoothing layer combines an elementary RNN with the exponential smoothing
layer. More complex versions of the basic RNN were investigated by [35], which stacked many recurrent layers and used

© 2025 NSP
Natural Sciences Publishing Cor.

J. Stat. Appl. Pro. 14, No. 1, 59-75 (2025) / www.naturalspublishing.com/Journals.asp NS e 67

dual attention and dilation to capture multi-scale effects and a method suitable for high-dimensional datasets, respectively.
These differences are significant.

Each architecture is trained using a mini-batch size 32 and the stochastic gradient descent algorithm with 0.01 as the
learning rate and 0.9 as momentum. Finally, “patience” is set to range from 25 to 75 and a minimum absolute difference
between 1078 and 107° to enable early stopping [42] with 1200 epochs. The performance of the four recurrent neural
networks is measured in a Bayesian framework, thereby quantifying aleatoric uncertainty. Our dataset consists of daily
closing prices for Anglo-Americans with a total sample of 1529. The closing stock price time series is used because it
displays both long-term trends and short-term cyclical patterns. To eliminate look-ahead bias in the test data, the predictor
in both the training and test sets is normalised using only the moments of the training data. When testing for stationarity,
the augmented Dickey-Fuller (ADF) test failed to reject the null hypothesis and conclude that the data is nonstationary.
These results are presented in Table 2.

Table 2: Stationarity Test

ADEF tests 1% 5% 10% p-value
-1.7134 -3.4358 -2.8639 -2.568 0.4242

[13]’s empirical analysis also shows the same results of nonstationary stock price data. This author used daily adjusted
close prices of IBM for the period of January 3, 2006, to December 29, 2017. At the same time, the current study uses
AMS.JO closing stock prices from January 02, 2018, to February 13, 2024. Based on the PACF in Figure 3, we select
a sequence length of p = 1 and then execute a rolling of five steps and a ten step ahead forecast. This corresponds to a
one/two-week projection, as a week consists of five business days. The Bayesian RNNs of [14] are now implemented using
the Blitz PyTorch module. Cross-validation is performed over {5, 10, 15} hidden neurons and 4, is varied over the set of
1073,1072,10~1,0} just as in the work of [13]. For each model, the optimal A, is zero. Table 3 compares the performance
of the Bayesian recurrent networks by five-day-ahead and ten-day-ahead forecasts. The next day, 99% confidence intervals
are back-tested over the test set and found to be comparable across different networks. They consistently underestimate
the empirical confidence intervals and more closely correspond to the 90% empirical confidence intervals. The a-RNN
exhibits the most accurate confidence intervals—only 5% of the observations fell outside the 99% confidence intervals.

104

0.8

0.6 q

0.4

PACF

0.2 4

] T A) l l T l l

0.0 25 5.0 75 10.0 125 15.0 175 20.0

Lag

Figure 3: PACF for Selection of Alpha-RNN Order

© 2025 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

68 NS P K. Makatjane et al.: An end-to-end Combined Forecasting Architecture

Table 3: Five-step and ten-step ahead rolling forecasts are compared for various Bayesian recurrent networks.

Architecture H RMSE MSE MAE Coverage Parameters Prediction time
Five-day ahead
RNN 10 0.050396 0.00254 0.039958 0.879 17801 76.55.5
o-RNN 5 0.030063 0.000904 0.030063 0.949 30651 20.30.0
GRU 15 0.055588 0.00309 0.044819 0.859 53901 25.32.8
LSTM 10 0.031557 0.000996 0.024724 0.901 31901 40.31.2
Ten-day ahead
RNN 10 0.237472 0.056393 0.508188 0.687 85 92.242
o-RNN 5 0.087185 0.0082475 0.506706 0.809 116 80.441
GRU 15 0.176856 0.031278 0.519653 0.779 315 100.142
LSTM 10 0.47125 0.02221 0.70556 0.679 240 80.276

For both five and ten days ahead, the o-RNN has the smallest MSE, RMSE, and MAE with coverage of 94.9%
five days ahead and 80.9% ten days ahead. The prediction time of the RNN is less than that of the GRU but despite
exhibiting fewer trainable parameters, it is slower than the LSTM. The LSTM takes longer to train but is faster to predict
due to cellular memory-catching implementation details beyond the scope of this article. Figure 4 further confirms the
reported results that our proposed ot —RNN has the lowest forecasting errors, making it superior to the other three RNN
architectures. For each model performance, the reader is referred to Appendix B.

12550 —
—— Training Data

—— Test Data
—— alpha-RNN

12.254

12.00 4

11754

11.50 9

11254

Close Price

11.00 4

10.75 4

10.50 4

2019 2020 2021 2022 2023 2024
Years

Figure 4: Fitted Conditional Mean for Closing Stock Prices.

3.3 Combined Forecasting Model

Anglo American’s closing stock price is split into the training, validation, and test data sets. We therefore proceed and fit
a TBATS model, and the best TBATS model is automatically selected by using the TBATS Python package for closing
prices. The parameters of a fitted model are A =0. 2603, & = 1.80744, [3 = —0.374124 and the damping parameter is
¢ = 0.7120. Using the minimum score combining proposed by [39], we now combine o-RNN with the TBATS. Based on
the estimates of our combined model, an out-of-sample analysis evaluates the ability of deep learning methods coupled
with Box-Cox transformations, Fourier representations with time-varying coefficients, and ARMA error correction.

© 2025 NSP
Natural Sciences Publishing Cor.

J. Stat. Appl. Pro. 14, No. 1, 59-75 (2025) / www.naturalspublishing.com/Journals.asp NS e 69

Table 4: Five-step and ten-step ahead rolling forecasts for TBATS-c-RNN.

Architecture H RMSE MSE MAE Coverage Parameters Prediction time
Five-day ahead
TBATS-o-RNN 5 0.00132 0.0035 0.00363 0.987 26812 18.37.1
Ten-day ahead
TBATS-o-RNN 5 0.00171 0.00521 0.0606 0.8876 100 77.421

The results of the rolling forecasts for the TBATS-a-RNN model indicate that it performs well for short-term
predictions (five-step ahead). For this horizon, the model achieves low errors (RMSE, MSE, MAE), high coverage
(98.7%), and reasonable prediction time (18.37 seconds). However, as the forecast horizon extends to ten steps, the
accuracy of the model decreases, with higher errors (RMSE, MSE, MAE) and lower coverage (88.76%). The prediction
time also increases significantly to 77.42 seconds for the ten-step forecast. Overall, the model is highly effective for
short-term forecasting but shows a decrease in performance as the forecast horizon lengthens. The possible reason of the
decline in performance as the horizon increases is because the estimated p for our exponential smoothing recurrent
neural network is 1 and [31] has recommended that the prediction horizon should not be larger than the maximum order
of statistically significant partial Autocorrelation. The TBATS-¢-RNN model proves effective for short-term predictions
(five-step ahead), which aligns with the fast-moving and volatile nature of the commodities market, particularly in the
context of platinum prices and production. This allows Anglo American Platinum (AAP) to make highly accurate
predictions for immediate operational decisions, such as inventory management, production planning, and market
positioning. As the prediction horizon extends (ten-step ahead), the performance of the model deteriorates, with
increased errors and reduced coverage. This suggests that for longer-term planning, AAP should exercise caution when
relying on such models and perhaps combine them with other strategies like expert judgment, market insights, and
macroeconomic forecasting models to address uncertainty over longer time frames. The recommendation not to exceed
the maximum order of statistically significant PACF is particularly relevant in this case, as it highlights the importance of
staying within the model’s optimal performance range.

Figure 5 presents the forecasting performance of the combined model. This model’s key performance indicators are
significantly lower than the others. We employ three error metrics in this stock price case study. Each model’s performance
is assessed using these metrics, and the results are summarised in Table 4. This table leads to a few speculative inferences.
The findings demonstrate that combining point forecasts from various models enhances the predictive capability of the
model. The best model is given in Table 4.

12.50 4 =
—— Training Data

—— Test Data
12.251 —— TBATS-alpha-RNN
12.00
11.75 1
11.50 4
11.251
11.00
10.75 4

10.50

Close Price

T T T T T T
2019 2020 2021 2022 2023 2024

Years

Figure 5: Fitted Conditional Mean for Combined TBATS-o¢ RNN

3.4 Discussion of Results

Forecast combinations offer a practical method for synthesising the information acquired from data by separate models.
Its success is ascribed to its capacity to decrease individual model misspecification, its robustness against structural

© 2025 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

70 NS e K. Makatjane et al.: An end-to-end Combined Forecasting Architecture

breakdowns, and the diversification improvements that result from combining forecasts derived under multiple
assumptions [26]. In this study, we set a two-stage procedure where in the first stage we train four models, namely RNN,
a-RNN, GRU-RNN, and finally the LSTM-RNN, and perform the comparative analysis. This was to find the best-fitting
model to the data before combining it with the TBATS model. For the five-day-ahead forecast, the RNN shows moderate
RMSE (0.050396) and MAE (0.039958) with a coverage of 87.9%. Its prediction time is 76.55 seconds with 17,801
parameters. a-RNN performs better in RMSE (0.030063) and MSE (0.000904) with high coverage (94.9%) and a faster
prediction time (20.30 seconds), though it has the highest number of parameters (30,651). The GRU-RNN has the
highest RMSE (0.055588) and lowest coverage (85.9%) among the five-day-ahead models. The prediction time is
relatively fast at 25.32 seconds. Moreover, LSTM performs well with a low RMSE (0.031557), decent MAE (0.024724),
and coverage of 90.1%, but with a slower prediction time of 40.31 seconds. With the ten-day ahead forecast, the RNN
has significantly higher RMSE (0.237472) and MAE (0.508188) compared to the five-day ahead forecast, with low
coverage (68.7%) and prediction time of 92.242 seconds. The a-RNN outperforms the others in this set, with the RMSE
of 0.087185, the MSE of 0.0082475, high coverage (80.9%), and the lowest prediction time (80.441 seconds). The
GRU-RNN has an RMSE of 0.176856, slightly better coverage (77.9%) than RNN, and a prediction time of 100.142
seconds. The LSTM has a high RMSE (0.47125) and the lowest coverage (67.9%) in the ten-day ahead forecast. The
prediction time is similar to @-RNN (80.276 seconds) but has significantly more parameters. In summary, the @-RNN
appears to consistently perform well across five-day and ten-day forecasts with lower RMSE, higher coverage, and
relatively quick prediction times.

The RNN struggles with higher RMSE and lower coverage, particularly for ten-day forecasts, and the LSTM shows
good performance in the five-day forecast but underperforms in the ten-day forecast. Finally, the GRU-RNN performs
decently across both horizons but does not outperform a-RNN. The performance differences between models in five and
ten-day forecasts have direct the following economic and stock market implications:

—Short-term vs. Long-term Forecasting: Investors relying on RNN or LSTM models for longer-term (ten-day)
forecasts face increased risk due to higher RMSE and lower coverage. This may result in sub-optimal trading
decisions, particularly in volatile markets.

—Model Selection for Trading Strategies: o-RNN consistently outperforms others, making it more reliable for both
short- and long-term predictions. Traders using this model can better manage risk and optimize their portfolio
management strategies.

—Computational Trade-offs: While GRU performs decently, it still lags behind ¢-RNN, suggesting that traders
seeking a balance between prediction accuracy and computational cost may prefer a-RNN for efficient
decision-making.

Moreover, [32] showed that popular deep learning architectures for stock market forecasting include the gated recurrent
unit and long short-term memory models. According to several studies, forecasting that takes into account the emotion
of financial news might outperform stock attributes alone. Therefore the study of these authors objectively evaluated the
importance of using financial news feelings in stock market forecasting by comparing the normalised performances of
LSTM and GRU for stock market forecasting under identical settings. However, our study combined the TBATS with
o-RNN.

Our approach is different from that of [18] where these authors combined the ARIMA model with the LSTM. The
advantage of our approach is that TBATS handles complex seasonal patterns, especially in time series with multiple
seasonalities like the closing stock price of Anglo-American used in this study. While the a-RNN captures nonlinear
relationships and long-term dependencies. This fusion of models improves the overall forecasting accuracy by addressing
both seasonal and nonlinear elements in stock prices. [41] on the other side performed the comparative analysis to see if
the gated unit architecture has a positive impact and whether LSTM is still better than RNN in flood forecasting work.
These authors used the Bayesian optimisation algorithm (BOA) to optimise the hyperparameters while in this study we
only use Bayesian architecture for the proposed model and enable early stopping to avoid overfitting of the parameters.
This is because training for more epochs allows the model to learn complex patterns more deeply, potentially improving
accuracy. However, overfitting can occur if trained too long, where the model performs well on training data but poorly
on new data. Larger batches can stabilise the training process and lead to faster convergence but may miss finer details
in the data patterns, which smaller batches could capture more effectively. [43] in their study proposed an effective ES
strategy that consistently detects near-peak performance in various computational imaging tasks and deep image prior
(DIP) variants. Simply based on the running variance of DIP intermediate reconstructions, their early stopping method
not only outpaces the existing ones—which only work in very narrow regimes but also remains effective when combined
with methods that try to mitigate overfitting.

To answer the second question of this study, we find that the architectures used treat the closing stock price of
Anglo-Americans differently. Simple-RNN processes inputs sequentially, but struggles with long-term dependencies due
to vanishing gradients. The LSTM-RNN uses gates (input, forget, output) to manage long-term dependencies, making it
effective for sequential tasks. While the GRU-RNN is similar to LSTM but with fewer gates (update, reset), making it

© 2025 NSP
Natural Sciences Publishing Cor.

J. Stat. Appl. Pro. 14, No. 1, 59-75 (2025) / www.naturalspublishing.com/Journals.asp NS e 71

computationally lighter. Finally the o-RNN: Enhances memory retention by incorporating exponential smoothing,
aiding in capturing both short- and long-term patterns. Finally, we found that the speed at which these four architectures
reach equilibrium, meaning the point where they stabilise in learning, varies based on their internal mechanisms. With
simple-RNN, this architecture reaches equilibrium relatively quickly but struggles with long-term patterns due to
vanishing gradients. Then, the LSTM-RNN is found to be slower to reach equilibrium because of complex gating
mechanisms that handle long-term dependencies effectively, but, the GRU-RNN is faster than LSTM, as it has fewer
gates but still captures long-term dependencies. While we found that o-RNN is faster due to its exponential smoothing
nature, but depends on the specific application of the smoothing parameter. For more readings the reader is directed to
the work of [28].

Nonetheless, our results show that combining the TBATS with a-RNN is a robust framework that potentially
outperforms simple time series models, providing more accurate stock price predictions over various forecast horizons.
This could be particularly be useful for investors seeking precise short and long-term forecasts in highly volatile markets.
Investors can mitigate risks associated with volatile markets by leveraging the precise predictions from this combined
model, which improves capital allocation and reduces unexpected losses. This combination enhances the efficiency of
algorithmic trading strategies by accurately predicting price movements, reducing transaction costs, and enhancing profit
margins. In addition to improved prediction accuracy and risk management, combining TBATS with «-RNN offers
several other benefits: (1) handling complex seasonality. The TBATS is effective at modelling multiple seasonal cycles,
which is crucial for stock prices influenced by recurring market conditions. (2) Flexibility in Modeling. Our combined
approach is versatile for various financial data, accommodating both linear and nonlinear patterns. (3) The method can be
applied to different forecast horizons, making it useful for both short and long-term financial planning. (4) By combining
these models, the system can generalise better to unseen data. Our findings are similar to that of [36] who explored time
series forecasting using Prophet (which has similarities with TBATS) combined with machine learning models to
improve accuracy. While [35] used an advanced hybrid of exponential smoothing models (similar to TBATS) with neural
networks to win the M4 forecasting competition.

4 Limitations, Recommendations and Conclusion

In this section of the study, we present the limitations, recommendations and conclusion.

4.1 Limitations

While our study introduces an innovative combination of TBATS and a-RNN models for forecasting financial time
series, several potential limitations exist. (1) Complexity and interpretability. The combination of TBATS and o-RNN
introduces significant complexity, affecting a model’s interpretability. Understanding how each component (seasonality,
memory decay, and noise) influences the predictions is challenging, especially when trying to explain the results to non-
technical stakeholders. (2) Data sensitivity. The performance of our model is highly sensitive to the quality and quantity of
the data. If the financial time series used in the study has noise, missing data, or anomalies, it could skew the predictions
and reduce the model’s robustness. (3) Computational resources. The use of deep learning models alongside statistical
methods like TBATS is computationally expensive, especially with large datasets. The training and forecasting process
requires significant computational power, which limits the scalability of the model. (4) Limited consideration of external
factors. While our study combines TBATS and a-RNN, it is still limited by not incorporating other external variables
such as macroeconomic indicators, geopolitical factors, or sentiment from financial news in real-time. These factors
significantly influence financial markets and might improve forecasting accuracy when included. (5) Forecast horizon
limitations. As observed in our analysis, the model performs well in short-term forecasts but the performance deteriorates
as the forecast horizon extends. This limitation may hinder the model’s applicability for longer-term strategic planning
or investment decisions. (6) Model validation. Given the novelty of combining TBATS with &-RNN, extensive validation
across different financial markets and datasets is required to establish the generalisability of the findings. If the model
works well in one market (e.g., platinum) but not in others, its broader applicability might be limited.

4.2 Recommendations
To address the limitations of our study, several recommendations are proposed. First, enhancing interpretability can be

achieved by leveraging explainable Al techniques, such as SHAP or LIME, to visualise and quantify the contribution
of each model component. Improving data quality and robustness involves implementing pre-processing techniques like

© 2025 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

72 NS e K. Makatjane et al.: An end-to-end Combined Forecasting Architecture

outlier detection, imputation for missing data, and expanding datasets with diverse historical financial data. To optimise
computational resources, cloud-based platforms and model optimisation techniques, such as pruning or quantisation,
should be utilised. Incorporating external factors, including macroeconomic indicators, geopolitical data, and sentiment
from real-time financial news, will significantly improve forecasting accuracy. To address forecast horizon limitations, the
model should focus on short to medium-term projections and explore hybrid models for long-term forecasting. Expanding
model validation is essential, requiring tests across diverse datasets, asset classes, and market conditions, alongside stress
testing to evaluate robustness. Finally, continuous model updates and real-time monitoring are necessary to adapt to
changing market conditions, with periodic retraining to maintain relevance and accuracy. These strategies aim to enhance
the utility, reliability, and generalisability of the proposed TBATS-a-RNN model in financial forecasting.

4.3 Conclusion

The study focused on evaluating five models within a Bayesian framework in quantifying aleatoric uncertainty of
financial time series data and, in particular, stock prices. Despite the computational challenges, the study of daily closing
prices for Anglo-Americans has shown patterns indicative of both long-term trends and short-term cyclical behaviours
common in stock market dynamics. Through various methodologies, including lagged adjusted closing price
observations and normalization techniques, the study has addressed biases and paved the way for accurate forecasting.
The confirmation of nonstationarity in our data aligns with previous empirical analyses, emphasizing the complexity
inherent in financial datasets. The a-RNN model showed precise confidence interval estimations, highlighting its
effectiveness in capturing the uncertainties within the data. Additionally, integrating traditional time series methods, such
as TBATS, with deep learning approaches, has provided a comprehensive framework for enhanced forecasting
performance. Through out-of-sample analyses and the application of various error metrics, we have demonstrated the
effectiveness of combining multiple models, leading to improved predictive capabilities. This study demonstrates the
value of using Bayesian methodologies in addressing aleatoric uncertainty within financial time series data, offering
valuable insights for practitioners and researchers alike in quantitative finance.

Acknowledgments

The authors thank numerous people for their helpful comments on this paper.

Competing Interests

The authors declare that they have no competing interests

Declaration of generative Al

The authors hereby disclose that no generative Al tools were used to compile this research work.

References

[1] Ade, M. (2023). Hybrid Approaches in Time Series Forecasting: Combining Statistical
Models and Deep Learning for Financial Predictions. Unpublished work. Available at

223_Hybrid. saches.in_Time_Series Forccasting. Combining.Statistical_Models nd_Decp-Lcaring.for_Financial] T9c6¢82: y pp “Time- Series- Forecasting-Combining- Statistical-Models-and- Deep-Learning-for-Financial- Predictions.pdf o

(Accessed 2025 January, 14)

[2] Akpinar, N.-J., Kratzwald, B., and Feuerriegel, S. (2019). Sample Complexity Bounds for Recurrent Neural
Networks with Application to Combinatorial Graph Problems. Available at https://doi.org/10.48550/arXiv.1901.10289.
(Accessed on 2024 February 26).

[3] Alizadegan, H., Rashidi Malki, B., Radmehr, A., Karimi, H., and Ilani, M. A. (2024). Comparative
Study of Long Short-term Memory (LSTM), Bidirectional LSTM, and Traditional Machine Learning
Approaches for Energy Consumption Prediction. Energy Exploration and Exploitation, 01445987241269496.
https://doi.org/10.1177/0144598724126949

© 2025 NSP
Natural Sciences Publishing Cor.

https://www.researchgate.net/profile/Martins-Ade/publication/384665223_Hybrid_Approaches_in_Time_Series_Forecasting_Combining_Statistical_Models_and_Deep_Learning_for_Financial_Predictions/links/67041c279e6e82486f0a478c/Hybrid-Approaches-in-Time-Series-Forecasting-Combining-Statistical-Models-and-Deep-Learning-for-Financial-Predictions.pdf
https://doi.org/10.48550/arXiv.1901.10289
https://doi.org/10.1177/0144598724126949

J. Stat. Appl. Pro. 14, No. 1, 59-75 (2025) / www.naturalspublishing.com/Journals.asp NS e 73

[4]Bao, W., Yue, J, and Rao, Y. (2017). A Deep Learning Framework for Financial Time
Series using Stacked Autoencoders and Long-Short-Term Memory. PloS one, 12(7): e0180944.
https://doi.org/10.1371/journal.pone.0180944

[5] Bayer, J. S. (2015). Learning Sequence Representations (Doctoral Dissertation), Technische Universitdit Miinchen.
Available at https://mediatum.ub.tum.de/1256381. (Accessed on 2024 February, 23).

[6] Borovkova, S., and Tsiamas, L. (2019). An Ensemble of LSTM Neural Networks for High-frequency Stock Market
Classification. Journal of Forecasting, 38(6): 600-619. https://doi.org/10.1002/for.2585

[7] Borovykh, A., Bohte, S., and Oosterlee, C. W. (2017). Conditional Time Series Forecasting with Convolutional Neural
Networks. Available at https://doi.org/10.48550/arXiv.1703.04691 (Accessed on 2024 February 26)

[8] Box, G. (2013). Box and Jenkins: Time Series Analysis, Forecasting, and Control. InA Very British Affair:
Six Britons and the Development of Time Series Analysis During the 20" Century, 161-215: Springer.
https://doi.org/10.1057/9781137291264_6

[9] Chen, M.Y., (2013). Financial Time Series and their Characteristics. National Chung Hsing University. Available at
http://web.nchu.edu.tw/~finmyc/timserp.pdf. (Accessed on 2024 February, 26)

[10] Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical Evaluation of Gated Recurrent Neural
Networks on Sequence Modelling. In NIPS 2014 Workshop on Deep Learning, December 2014. Available at
https://courses.physics.illinois.edu/cs546/sp2018/Slides/Feb20_Chung.pdf. (Accessed on 2024 February, 26)

[11] Ding, X., Zhou, Z., (2024). On the Partial Autocorrelation Function for Locally Stationary Time
Series: Characterisation, Estimation and Inference. arXiv preprint arXiv:2401.15778. Available at
https://doi.org/10.48550/arXiv.2401.15778. (Accessed on 2024 February, 27)

[12] Dixon, M. (2018). Sequence Classification of the Limit Order Book using Recurrent Neural Networks. Journal of
computational science, 24:277-286. https://doi.org/10.1016/j.jocs.2017.08.018

[13] Dixon, M. (2022). Industrial Forecasting with Exponentially Smoothed Recurrent Neural Networks. Technometrics,
64(1):114-124. https://doi.org/10.1080/00401706.2021.1921035

[14] Ferianc, M., Que, Z., Fan, H., Luk, W., and Rodrigues, M. (2021). Optimising Bayesian Recurrent Neural
Networks on an FPGA-based Accelerator. In International Conference on Field-Programmable Technology (ICFPT).
https://doi.org.10.1109/ICFPT52863.2021.9609847

[15] Glorot, X., and Bengio, Y. (2010). Understanding the Difficulty of Training Deep Feedforward Neural Networks.
In Proceedings of the thirteenth international conference on artificial intelligence and statistics. 249-256.
https://proceedings.mlr.press/v9/glorot10a.html

[16] Graves, A. (2013). Generating Sequences with Recurrent Neural Networks. arXiv preprint arXiv

[17] Hamilton, J. D. (2020). Time Series Analysis: Princeton University Press.

[18] Hamiane, S., Ghanou, Y., Khalifi, H., and Telmem, M. (2024). Comparative Analysis of LSTM, ARIMA, and Hybrid
Models for Forecasting Future GDP. Ingénieriedes Systemes d’Information. 29(3):853-861. http://iieta.org/journals/isi

[19] Henaff, M., Szlam, A., and LeCun, Y. (2016). Recurrent Orthogonal Networks and Long-memory Tasks. In
International Conference on Machine Learning, 2034-2042.

[20] Hochreiter, S., and Schmidhuber, J. J. N. c. (1997). Long Short-term Memory. Neural Computation MIT-Press,
9(8):1735-1780.

[21] Jacobo, A.D., Marengo, A., (2020). Are the Business Cycles of Argentina and Brazil Different? New
Features and Stylised Facts. Paradigma ecoriomico. Revista de economia regional y sectorial 12(2):5-38.
https://doi.org/10.36677/paradigmaeconomico.v12i2.14028

[22] Jonathan, D.C., Kung-Sik, C., 2008. Time series analysis with applications in R. 2nd ed.; Springer Texts in Statistics;
Springer: Berlin/Heidelberg, Germany.

[23] Kumari, A., and Sood, M. (2021). Implementation of Simple RNN and LSTMs-based Prediction Model
for Coronavirus Disease (Covid-19). In IOP Conference Series: Materials Science and Engineering.
https://doi.org//10.1088/1757-899X/1022/1/012015

[24] Li, D., and Zhu, K. (2020). Inference for Asymmetric Exponentially Weighted Moving Average Models. Journal of
Time Series Analysis, 41(1): 154-162. https://doi.org/10.1111/jtsa.12464

[25] Ljung, G. M., and Box, G. E. (1978). On a Measure of Lack of Fit in Time Series Models. Biometrika, 65(2):297-303.
https://doi.org/10.1093/biomet/65.2.297

[26] Makatjane, K., and Mmelesi, K. (2024). An Improved Model Accuracy for Forecasting Risk Measures: Application of
Ensemble Methods. Journal of Applied Economics, 27(1): 2395775. https://doi.org/10.1080/15140326.2024.2395775

[27] Makatjane, K., and Moroke, N. (2022). Examining Stylised Facts and Trends of FTSE/JSE TOP40:
A Parametric and Non-parametric Approach. Data Science in Finance and Economics, 2(3):294-320.
https://doi.org/10.3934/DSFE.2022015

[28] Or, B. (2020). The Exploding and Vanishing Gradients Problem in Time Series. Medium. Towards Data Science.
Available at https://medium.com/metaor-artificial-intelligence/the-exploding-and- vanishing- gradients- problem-in-time- series-
(Accessed on 2024 February, 23).

© 2025 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp
https://doi.org/10.1371/journal.pone.0180944
https://mediatum.ub.tum.de/1256381
 https://doi.org/10.1002/for.2585
https://doi.org/10.48550/arXiv.1703.04691
https://doi.org/10.1057/9781137291264_6
http://web. nchu. edu. tw/~ finmyc/tim serp. pdf
https://courses.physics.illinois.edu/cs546/sp2018/Slides/Feb20_Chung.pdf
https://doi.org/10.48550/arXiv.2401.15778
https://doi.org/10.1016/j.jocs.2017.08.018
https://doi.org/10.1080/00401706.2021.1921035
https://doi.org.10.1109/ICFPT52863.2021.9609847
https://proceedings.mlr.press/v9/glorot10a.html
http://iieta.org/journals/isi
https://doi.org/10.36677/paradigmaeconomico.v12i2.14028
https://doi.org//10.1088/1757-899X/1022/1/012015
https://doi.org/10.1111/jtsa.12464
https://doi.org/10.1093/biomet/65.2.297
https://doi.org/10.1080/15140326.2024.2395775
https://doi.org/10.3934/DSFE.2022015
https://medium.com/metaor-artificial-intelligence/the-exploding-and-vanishing-gradients-problem-in-time-series-6b87d558d22

74 NS P K. Makatjane et al.: An end-to-end Combined Forecasting Architecture

[29] Pirani, M., Thakkar, P., Jivrani, P., Bohara, M. H., and Garg, D. (2022). A Comparative Analysis of
ARIMA, GRU, LSTM, and BiLSTM on Financial Time Series Forecasting. In 2022 [EEE International
Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE), Ballari, India, 1-6.
https://doi.org/10.1109/ICDCECE53908.2022.9793213.

[30] Ramchandani, M., Khandare, H., Singh, P., Rajak, P., Suryawanshi, N., Jangde, A. S., and Sahu, M. (2022).
Survey: Tensorflow in Machine Learning. In Journal of Physics: Conference Series, 2273(1): 012008. IOP Publishing.
https://doi.org/10.1088/1742-6596/2273/1/012008

[31] Rastogi, V. R., and Dhar, J. (2012). Effect of Increasing the Forecast Horizon on Correlation between Forecasted
Returns and Actual returns: An Empirical Analysis. International Journal of Accounting and Finance, 3(3): 193-206.
https://doi.org/10.1504/1JAF.2012.048498

[32] Shahi, Tej Bahadur, Ashish Shrestha, Arjun Neupane, and William Guo. (2020). Stock Price Forecasting with Deep
Learning: A Comparative Study Mathematics 8(9): 144 1. https://doi.org/10.3390/math8091441

[33] Siami-Namini, S., Tavakoli, N., and Namin, A. S. (2018). A Comparison of ARIMA and LSTM in Forecasting Time
Series. In 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), 1394-1401.
IEEE. https://doi.org/10.1109/ICMLA.2018.00227

[34] Sirignano, J., and Cont, R. (2021). Universal Features of Price Formation in Financial Markets:
Perspectives from Deep Learning. In Machine Learning and Al in Finance, 5-15: Routledge.
https://doi.org/10.1080/14697688.2019.1622295

[35] Smyl, S. (2020). A Hybrid Method of Exponential Smoothing and Recurrent Neural Networks for Time Series
Forecasting. International journal of forecasting, 36(1):75-85. https://doi.org/10.1016/].ijforecast.2019.03.017.

[36] Taylor, S. J., and Letham, B. (2018). Forecasting at Scale. The American Statistician, 72(1):37-45.
https://doi.org/10.1080/00031305.2017.1380080

[37] Tsay, R. S. (2014). An Introduction to the Analysis of Financial Data with R. Hoboken, NJ: John Wiley and Sons.

[38] Tsay, R. S. (2010). Financial Time Series and Their Characteristics. Analysis of Financial Time Series, Third Edition,
1-27. Hoboken, NJ: Wiley.

[39] Tru¢ios, C., Taylor, J.W, (2020). Forecasting Value-at-Risk and Expected Shortfall of
Cryptocurrencies using Combinations Based on Jump-robust and Regime-switching Models. Available at
http://dx.doi.org/10.2139/ssrn.3751435. (Accessed on 2024 February, 24).

[40] Ullrich, T. (2021). On the Autoregressive Time Series Model using Real and Complex Analysis. Forecasting,
3(4):716-728. https://doi.org/10.3390/forecast3040044

[41] Wang, Y., Wang, W., Zang, H., and Xu, D. (2023). Is the LSTM Model Better than RNN for Flood Forecasting
Tasks? A Case Study of HuaYuankou Station and LouDe Station in the Lower Yellow River Basin. Water 15(22):3928.
https://doi.org/10.3390/w 15223928

[42] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., and Sun, J. (2023). Early Stopping for Deep Image Prior.
Transactions on Machine Learning Research. Available at https://openreview.net/forum?id=231ZzrLC8X

[43] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., and Sun, J. (2021). Early Stopping for Deep Image Prior.

[44] Wang, L., Ma, F.,, Niu, T., He, C., (2020). Crude Oil and BRICS Stock Markets under Extreme Shocks: New evidence.
Economic Modelling, 86:54—68. https://doi.org/10.1016/j.econmod.2019.06.002

Appendix A

Theorem 1.The previous size-adaptive RNN with ReLU activation functions can be trained with sample complexity limited
to

12 1 4
Mp(g,0) < 8—28 [ln (36) +1In (3?) 4(n2—|—4n+3) (4n4+8n3+4n+ 10+log2(8e))

.

|§

and thus My (€,8) € O (

(S

€

© 2025 NSP
Natural Sciences Publishing Cor.

https://doi.org/10.1109/ICDCECE53908.2022.9793213
https://doi.org/10.1088/1742-6596/2273/1/012008
https://doi.org/10.1504/IJAF.2012.048498
https://doi.org/10.3390/math8091441
https://doi.org/10.1109/ICMLA.2018.00227
https://doi.org/10.1080/14697688.2019.1622295
https://doi.org/10.1016/j.ijforecast.2019.03.017
https://doi.org/10.1080/00031305.2017.1380080
http://dx.doi.org/10.2139/ssrn.3751435
https://doi.org/10.3390/forecast3040044
https://doi.org/10.3390/w15223928
https://openreview.net/forum?id=231ZzrLC8X
https://doi.org/10.1016/j.econmod.2019.06.002

J. Stat. Appl. Pro. 14, No. 1, 59-75 (2025) / www.naturalspublishing.com/Journals.asp

75

Appendix B

Closing Prices Closing Prices

Closing Prices

12.50 A

12.25 4

12.00 1

11.75 4

11.50 4

11.25 4

11.00 4

10.75 A

10.50

= training data
— testdata
—— simple-RNN

12.50 A

12.25 1

12.00 4

11.75 4

11.50 4

11.25 4

11.00 4

10.75 4

10.50 -

—— training data
— test data
LSTM-RNN

12.50 A

12.25 4

12.00 4

11.75 4

11.50 -

11.25

11.00 4

10.75 4

10.50

—— training data
—— test data
—— GRU-RNN

2019 2020 2021 2022 2023 2024
Years

Appendix C

TBATS-alpha-RNN

2.75 4

2.50 o

2.25 4

2.00

175

1.50

1.25

1.00

—— Training Data
—— oOut-of-Sample Predictions

o 200 400 600 800 1000 1200
Day

© 2025 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Models
	Empirical Results and Discussion
	Limitations, Recommendations and Conclusion

