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Abstract: This work presents hyperchaos synchronization between two identical hyperchaotic systems by using nonlinear control
technique. This technique is applied to achieve chaos synchronization fortwo identical hyperchaotic complex Chen systems. The
idea of hyperchaos synchronization is to use the output of the drive system to control the response system so that the output of the
response system follows the output of the drive system asymptotically. Lyapunov functions are derived to prove that the error systems
are asymptotically stable. Expressions are derived for the control functions which are used to achieve chaos synchronization. Numerical
simulations show the validity of these expressions.
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1 Introduction

Research in the area of the synchronization of dynamical
systems dates back over 300 years. Huygens, most
famous for his studies in optics and the construction of
telescopes and clocks, was probably the first scientist who
observed and described the synchronization phenomenon
as early as in the 17th century. The pioneering paper on
the concept of chaos synchronization was not presented
until 1990. Pecora and Carroll introduced a method [1] to
synchronize two identical chaotic systems with different
initial conditions. Because of their works, chaos
synchronization has been intensively studied in the last
few years. It has been widely explored in a variety of
fields including physical, chemical and ecological [2]
systems, secure communications [3–5].

Hyperchaos synchronization is a very important
nonlinear phenomenon, which has been studied to date on
dynamical systems described by real variables. There also
exist, however, interesting cases of dynamical systems,
where the main variables participating in the dynamics
are complex, as for example when amplitudes of
electromagnetic fields are involved. Another example is
when chaos synchronization is used for communications,
where doubling the number of variables may be used to

increase the content and security of the transmitted
information. A similar generalization of the real Lorenz
system to the corresponding one with complex ODEs has
been introduced to describe and simulate the physics of
laser and thermal convection of liquid flows [6–10]. The
electric field amplitude and the atomic polarization
amplitude are both complex, for details see, e.g. [11–14]
and references therein.

Recently, we have introduced the hyperchaotic
complex Chen system [15]. This system is hyperchaotic
and exhibit chaotic and hyperchaotic attractors. The fixed
points and their stability are studied of these complex
systems. The main goal of this paper is to investigate and
study the chaos synchronization of two identical
hyperchaotic complex Chen systems by using nonlinear
control technique [16–20]. The hyperchaotic complex
Chen system expressed by:

.
x = α (y− x) ,
.
y = (γ −α)x− xz+ γy+w,
.
z = 1/2(x̄y+ xȳ)−β z+w,
ẇ = 1/2(x̄y+ xȳ)−dw,

(1)

whereα, β , γ are positive parameters andd is control
parameter,x = u1 + iu2, y = u3 + iu4 are complex
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function, i =
√
−1 and z,w are real function. Dots

represent derivatives with respect to time and
(

−
...

)

the
complex conjugate function. For the caseα = 32, β = 4,
γ = 25 and d = 5 with the initial conditionst0 = 0,
u1(0) = 1, u2(0) = 2, u3(0) = 3,u4(0) = 4, u5(0) = 5 and
u6(0) = 6 we calculate the Lyapunov exponents as:
λ1 = 2.23, λ2 = 1.13, λ3 = 0, λ4 = −8.41, λ5 = −11.07,
λ6 =−17.06 [21].

This paper is organized as follows: In Section 2, we
study the synchronization of two identical hrperchaotic
complex Chen systems with parameter perturbation via
nonlinear control technique. Expressions are derived for
the control functions which are used to achieve
hyperchaos synchronization. Numerical simulations show
the validity of these expressions. Some figures are
presented to show our results for chaos synchronization
and their errors. Finally in Section 3 we summarize the
main conclusions of our investigations.

2 Synchronization of two identical
hyperchaotic complex Chen systems

2.1 Theoretical results

This subsection is devoted to study the hyperchaos
synchronization of the complex Chen system using the
idea of nonlinear control technique as follows :
We assume that we have two hyperchaotic complex Chen
systems and the drive system with the subscript ”d” is to
control the response system with subscript ”r”. The derive
and response systems defined respectively as:

.
xd = α (yd − xd) ,.
yd = (γ −α)xd − xdzd + γyd +wd ,.
zd = 1/2(x̄dyd + xd ȳd)−β zd +wd ,
ẇ = 1/2(x̄dyd + xd ȳd)−dwd

(2)

and
.

xr = α (yr − xr)+(v1+ iv2),.
yr = (γ −α)xr − xrzr + γyr +wr +(v3+ iv4),.
zr = 1/2(x̄ryr + xrȳr)−β zr +wr + v5,
ẇr = 1/2(x̄ryr + xrȳr)−dw+ v6,

(3)

wherexd = u1d + iu2d , yd = u3d + iu4d are complex state
variables, zd = u5d , wd = u6d are real state variable,
xr = u1r + iu2r, yr = u3r + iu4r andzr = u5r,wr = u6r,

(

−
...

)

denotes the complex conjugate variable andv1 + iv2,
v3+ iv4 andv5,v6 are complex and real control functions
respectively, which are to be determined.
The complex system (2) can be rewritten as a five real
first order ODEs of the form :

u̇1d = α (u3d −u1d) ,
u̇2d = α (u4d −u2d) ,
u̇3d = (γ −α)u1d −u1du5d + γu3d +u6d ,
u̇4d = (γ −α)u2d −u2du5d + γu4d ,
u̇5d = u1du3d +u2du4d −βu5d +u6d ,
u̇6d = u1du3d +u2du4d −du6d ,

(4)

and the response system (3) can be rewritten as a five real
first order differential equations of the form:

u̇1r = α (u3r −u1r)+ v1,
u̇2r = α (u4r −u2r)+ v2,
u̇3r = (γ −α)u1r −u1ru5r + γu3r +u6r + v3,
u̇4r = (γ −α)u2r −u2ru5r + γu4r + v4,
u̇5r = u1ru3r +u2ru4r −βu5r +u6r + v5.
u̇6r = u1ru3r +u2ru4r −du6r,

(5)

In order to obtain the active control signals, we define as
the error states between the response system that is be
controlled and the controlling derive system as :

eu1 + ieu2 = xr − xd = (u1r −u1d)+ i(u2r −u2d),
eu3 + ieu4 = yr − yd = (u3r −u3d)+ i(u4r −u4d),

eu5 = zr − zd = u5r −u5d .
eu6 = wr −wd = u6r −u6d . (6)

and using

u1du5d −u1ru5r =−u1ru5r +u1ru5d −u1ru5d +u1du5d
=−(u5r −u5d)u1r −u5d(u1r −u1d)
=−eu5u1r −u5deu1,

u2du5d −u2ru5r =−u2ru5r +u2ru5d −u2ru5d +u2du5d
=−(u5r −u5d)u2r −u5d(u2r −u2d)
=−eu5u2r −u5deu2,

u3ru1r −u1du3d = u3ru1r −u3ru1d +u3ru1d −u1du3d
= u3r(u1r −u1d)+u1d(u3r −u3d)
= u3reu1 +u1deu3,

u4ru2r −u2du4d = u4ru2r −u4ru2d +u4ru2d −u2du4d
= u4r(u2r −u2d)+u2d(u4r −u4d)
= u4reu2 +u1deu4.

(7)
Subtracting (2) from (3) using (6) and(7) to get :

ėu1 + iėu2 = α
[(

eu3 − eu1

)

+ i(eu4 − eu2)
]

+(v1+ iv2) ,
ėu3 + iėu4 =−α (eu1 + ieu2)+ γ [(eu1 + eu3)

+ i(eu2 + eu4)]− eu5 (u1r + iu2r)
−u5d (eu1 + ieu2)+ eu6 +(v3+ iv4) ,

ėu5 =−βeu5 +u1deu3 +u3reu1 +u2deu4
+u4reu2 + eu6 + v5,

ėu6 =−deu6 +u1deu3 +u3reu1 +u2deu4
+u4reu2 + v5.

(8)

Equation (8) describes a dynamical system via which the
“errors” evolve in time and finally the ODEs of this system
in real form become:

ėu1 = α
(

eu3 − eu1

)

+ v1,
ėu2 = α (eu4 − eu2)+ v2,
ėu3 =−αeu1 + γ(eu1 + eu3)− eu5u1r

−u5deu1 + eu6 + v3,
ėu4 =−αeu2 + γ(eu2 + eu4)− eu5u2r

−u5deu2 + eu6 + v4,
ėu5 =−βeu5 +u1deu3 +u3reu1 +u2deu4

+u4reu2 + eu6 + v5,
ėu6 =−deu6 +u1deu3 +u3reu1

+u2deu4 +u4reu2 + v6.

(9)
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Fig. 1: Hyperchaos synchronizations of systems (4) and (5) with (12):
(a) u1d(t) andu1r(t) versust, (b) u2d(t) andu2r(t) versust, (c) u3d(t) andu3r(t) versust, (d) u4d(t) andu4r(t) versust, (e) u5d(t) and
u5r(t) versust (f) u6d(t) andu6r(t) versust

For positive parametersγ , α and β , one defines a
Lyapunov function by the following quantity:

V (t) = 1/2
6

∑
i=1

e2
ui
. (10)

The derivative ofV (t) along the solution of system (8) is :

V̇ (t) = eu1[α(eu3 − eu1)]
+ eu2[α(eu4 − eu2)]
+ eu3[−αeu1 + γ(eu1 + eu3)
− eu5u1r −u5deu1 + eu6]
+ eu4[−αeu2 + γ(eu2 + eu4)
− eu5u2r −u5deu2]
+ eu5[−βeu5 +u1deu3 +u3reu1
+u2deu4 +u4reu2 + eu6]
+ eu6[−deu6 +u1deu3 +u3reu1

+u2deu4 +u4reu2]+∑6
i=1 vieui .

(11)
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Fig. 2: Hyperchaos synchronizations errors (solutions of system (9))
(a) (eu1, t) diagram, (b) (eu2, t) diagram, (c) (eu3, t) diagram, (d) (eu4, t) diagram, (e) (eu5, t) diagram, (f) (eu6, t) diagram

If we choose the active control functionvi such that:

v1 = (α −1)eu1,
v2 = (α −1)eu2,
v3 =−(γ +1)eu3 + eu1eu5

+(u5d − γ)eu1 − eu6,
v4 =−(γ +1)eu4 + eu2eu5 +(u5d − γ)eu2,
v5 = (β −1)eu5 −u3reu1 −u4reu2 − eu6,
v6 = (d −1)eu6 −u3reu1 −u4reu2.

(12)

Equation (11) becomes:

V̇ (t) =−(e2
u1
+e2

u2
+e2

u3
+e2

u4
+e2

u5
+e2

u6
)< 0. (13)

SinceV (t) is a positive function anḋV (t) is negative
function, it follows that the equilibrium points (eu1 = 0,
eu2 = 0, eu3 = 0, eu4 = 0, eu5 = 0, eu6 = 0) of the system (9)
is asymptotically stable, which means that the error states
eu1,eu2,eu3,eu4, eu5 andeu6 are converged to zero as timet
tends to infinity and hence the nonlinear control technique
of two identical chaotic systems is achieved.
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2.2 Numerical results

Systems (2) and (3) with (12) are solved numerically
(using e.g. Mathematica 7 software) forα = 32, β = 4,
γ = 25 and d = 5 with the initial conditionst0 = 0,
u1d (0) = 1, u2d (0) = 2, u3d (0) = 3, u4d (0) = 4,
u5d (0) = 5,u6d (0) = 6 andu1r (0) =−13, u2r (0) =−12,
u3r (0) =−13, u4r (0) =−14, u5r (0) = 40,u6r (0) = 30 .
The simulation results are illustrated in Figures 1 and 2.
In Figure 1 the solutions of (2) and (3) are plotted subject
to different initial conditions. It shows that the hyperchaos
synchronization is achieved after very small values oft.
In Figure 2 it can be seen that the synchronization errors
eu j j = 1,2, ...,6 will converge to zero.

3 Conclusions

Our main goal in this paper is to investigate and study the
synchronization of two identical hyperchaotic complex
Chen systems by using nonlinear control technique. This
work demonstrates that hyperchaos synchronization
between two identical hyperchaotic systems using
nonlinear control technique is achieved. Figures 1 shows
the chaos synchronizations is achieved after small values
of t using the technique of this paper. In Figures 2 It’s
clear that the synchronization errorseu j will converge to
zero. Numerical results show that this technique is very
effective.
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