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Abstract: This work presents hyperchaos synchronization between two idengipar¢haotic systems by using nonlinear control
technique. This technique is applied to achieve chaos synchronizatiawdoidentical hyperchaotic complex Chen systems. The
idea of hyperchaos synchronization is to use the output of the driversyt® control the response system so that the output of the
response system follows the output of the drive system asymptoticallpunov functions are derived to prove that the error systems
are asymptotically stable. Expressions are derived for the contreiifuns which are used to achieve chaos synchronization. Numerical
simulations show the validity of these expressions.
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1 Introduction increase the content and security of the transmitted
information. A similar generalization of the real Lorenz
Research in the area of the synchronization of dynamicasystem to the corresponding one with complex ODESs has
systems dates back over 300 years. Huygens, modieen introduced to describe and simulate the physics of
famous for his studies in optics and the construction oflaser and thermal convection of liquid flowH{L0]. The
telescopes and clocks, was probably the first scientist whelectric field amplitude and the atomic polarization
observed and described the synchronization phenomenoamplitude are both complex, for details see, eld—14]
as early as in the 17th century. The pioneering paper o@nd references therein.
the concept of chaos synchronization was not presented Recently, we have introduced the hyperchaotic
until 1990. Pecora and Carroll introduced a methtjd¢ complex Chen systeml§]. This system is hyperchaotic
synchronize two identical chaotic systems with different and exhibit chaotic and hyperchaotic attractors. The fixed
initial conditions. Because of their works, chaos points and their stability are studied of these complex
synchronization has been intensively studied in the lassystems. The main goal of this paper is to investigate and
few years. It has been widely explored in a variety of study the chaos synchronization of two identical
fields including physical, chemical and ecologic&] [ hyperchaotic complex Chen systems by using nonlinear
systems, secure communicatiosH]. control technique 16-20]. The hyperchaotic complex
Hyperchaos synchronization is a very important Chen system expressed by:
nonlinear phenomenon, which has been studied to date on

dynamical systems described by real variables. There also X=a(y—Xx),

exist, however, interesting cases of dynamical systems, y=(y—a)x—xz+y+w, @
where the main variables participating in the dynamics z=1/2(xy+xy) — Bz+w,

are complex, as for example when amplitudes of W=1/2(xy+ xy) — dw,

electromagnetic fields are involved. Another example is
when chaos synchronization is used for communicationswhere a, 3, y are positive parameters amdis control
where doubling the number of variables may be used tgarameter,x = u; + iUz, y = Uz + iug are complex
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function, i = /=1 and zw are real function. Dots and the response systeB8) €an be rewritten as a five real
represent derivatives with respect to time aﬁa) the first order differential equations of the form:
complex conjugate function. For the case= 32, § = 4,

y =25 andd = 5 with the initial conditionsty = 0, Usr = o (Ugr — Uar ) + Vi,
u1(0) = 1, Up(0) = 2, u3(0) = 3, us(0) = 4, us(0) = 5 and Ur = 01 (Uar —Uzr) + Vo,
ug(0) = 6 we calculate the Lyapunov exponents as: Ugr = (V— @) Uzr — U Usr + YUz + Ugr + V3, 5)
M =223 A =113 A3 =0, As = —8.41, A5 = —11.07, Ugr = (Y — O1) Uzr — UzrUsy + YUar + Va,
As = —17.06 [21] Usr = Uy Usr + Uzr Usr — BUsy + Ugr +Vs.
This paper is organized as follows: In Section 2, we Ugr = Usr Uy + Uzr Usr — dUer,

study the synchronization of two identical hrperchaotic In order to obtain the active control signals, we define as

com_plex Chen systems with parameter perturbafuon Vi3he error states between the response system that is be
nonlinear control technique. Expressions are derived for

the control functions which are used to achieve controlled and the controlling derive system as :
hyperchaos synchronization. Numerical simulations show g, 1jg, =x —xq = (Uzr — Ug) +i(Ugr — Upg),
the validity of these expressions. Some figures are ' 4 je’ —y. —yy— (Usr — Usq) +i(Usr — g

presented to show our results for chaos synchronization N 4 2 — Zg = Ugy — Usg. )’
and their errors. Finally in Section 3 we summarize the ° '

main conclusions of our investigations. Bug = W — W = Usr — Uga. (6)
and using
2 Synchronization of two identical UzdUsq — UrUsy = —UarUsy + Uty Usg — U1y Usg + UrgUsd
hyper chaotic complex Chen systems = —(Usr — Usg)Utr — Usg (U1r — Usd)
= _QJ5U1T - u5daJla
2.1 Theoretical results UzgUsg — UzrUsy = —UgrUsy + UprUsg — Uzr Usq + LiagUsd
= —(Usr — Usg)Uzr — Usg(Uzr — Uaqg)
This subsection is devoted to study the hyperchaos = —8usUzr — Usd €,
synchronization of the complex Chen system using the UsrUir —UidUsd = UgrUir — UgrUid + UsrUzd — UrdUsd
idea of nonlinear control technique as follows : = Ugr (Uzr — Uag) + Uzg (Uzr — Usd)
We assume that we have two hyperchaotic complex Chen = Ugr€y; + Uid€us,
systems and the drive system with the subscript "d” is to  UarU2r — UzdUad = UarUzr — Uar Uzg + Ugr Uzd — UzgUad
control the response system with subscript "r”. The derive = Uy (U2r — Uzg) + Uzq (Uar — Usg)
and response systems defined respectively as: = Usr €y, + U1d€ua- @
Xg =0 (Yd—Xd), Subtracting 2) from (3) using ) and7) to get :
Ya = (Y— Q) Xd — XdZd + Y¥d + W, @ S _
79 =1/2(XqYd +*dYd) — Bzg +Wq, ey +le, =0a [(eus __edl) +1 (%4 - eUz)]
W= 1/2(Xayd +Xayd) — dwy + (Vi +ivz),
er + i.ad4 =—-a (eUl + ialz) + V[(Qll +ads)
and +i(aJ2+QJ4)] — €5 (U1r+iu2r_)
Yo = o (Yr — %)+ (Va+iva), ~ —Usg(ey +iey,) +ey+(va+iva), (8)
Yo = (Y= Q)X — X% Z + Yy +Wr + (Va+ivs), 3) Qus = —Beus + U1d8ys + Uzr&y; + Uzgey,
7 =1/2(X%Yr +%Yr) — BZ + W + Vs, . =+ Usr €, + €y + Vs,
We = 1/2(% Yy + % Yr ) — dw+ Vg, Bus = —dey, + U1d€u; + Usr€y; + Upd€y,
+Ugrey, +Vs.

wherexy = Ui + ilyg, Yg = Usg + iUgg are complex state

variables,zy = Usq, Wy = Ugq are real state variable, Equation 8) de_scr_ibes a dy_namical system via _vvhich the
X = Uzr + iUy, Yy = Uz +iUs andz = Us;, Wy = Ug, (*) “errors” evolve in time and finally the ODEs of this system
denotes the complex conjugate variable andt iv,,  inreal form become:

V3 +iv4 andvs, Vg are complex and real control functions . B

respectively, which are to be determined. gl _ g ((21’3 B ;’1)) :\\//1’

The complex system2{ can be rewritten as a five real =~ _qe. n 'Z‘ +2’ ) — ey

first order ODEs of the form : Cug = 08 + V(G + Q) — Bl

- u5daJ1 + a,le + V3,
Uyg = @ (Usg — Uaq), &, = —0ey, +y(ey, +ey,) — ey Uar )
Uzg = O (Ugg — Uzg) — Usq€y, + €y + V4,
Usg = (Y — ) U1g — U1dUsq + YUsd + Usd, @) €us = —Beug + U1d€y, + Usr€y, + Uzgey,
Usg = (Y — @) Upg — UzqUsg + YUad, + Usr€y, + g + Vs,
Usg = UzgUsd + UzgUad — BUsg + Ued, s = —deys + Urg€y, + Uzrey,
Usd = UzgUsd + UzgUad — dUsg, + Uzg€y, + Usar€y, + V6.
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Fig. 1: Hyperchaos synchronizations of systedisand 6) with (12):
(a) uzg(t) andus, (t) versud, (b) uyg(t) anduy (t) versus, (c) usqg(t) andusy (t) versug, (d) ugg(t) andug, (t) versug, (e) usq(t) and
us; (t) versugt (f) ueg(t) andug (t) versust

For positive parametery, a and 3, one defines a The derivative o¥ (t) along the solution of systen8) is :

Lyapunov function by the following quantity: V(t) — (e, —ay)]
- 1 3 1

+ €u, [a (eU4 - le)}

+ aJs[_anl + V(eul + eus)

- aJsull' - u5dQJ1 + a.le]

+ %4[_0{6“2 + V(euz + eU4)

— €ygUzr — Usg€y,)

+ €y [—Beys + U1y, + Uzrey,

6 + Upgey, + Uar €, + ey
V(t)=1/2 Zleﬁi. (10) + €ug[—deus + Urdey; + Uy,

= + Upg€y, + Ugrey,] + 58 1 viey.

(11)
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Fig. 2. Hyperchaos synchronizations errors (solutions of sys@®im (
(a) (eu, 1) diagram, (b) é,,.t) diagram, (c) ,.t) diagram, (d) €y,.t) diagram, ()és.t) diagram, (f) y,.t) diagram

If we choose the active control functionsuch that: SinceV(t) is a positive function an¥ (t) is negative
function, it follows that the equilibrium points( = O,
V1= (a—1)ey, ew, =0,e,;, =0, &, =0, e, =0, g, =0) of the systemg)
V2= (a—1)ey, is asymptotically stable, which means that the error states
Va3 = —(V+ 1)€y; + €u g ey, €y, €us. 8y, Eu; andey, are converged to zero as time
+ (Usd — ¥)€u; — €us; (12)  tendsto infinity and hence the nonlinear control technique
Va = —(y+ 1)€y, + eueus + (Usq — ¥)€u,, of two identical chaotic systems is achieved.

Vs = (B — 1)y — Usr€y, — Ugr€y, — €y,
Ve = (d — 1)€y; — Usr€u; — Usru,.

Equation (1) becomes:

V(t)=—(ef, +&,+e, +&,+e, +€) <0  (13)
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2.2 Numerical results [13] E.E. Mahmoud, Journal of The Franklin Institute 349 (2012)
1247.
Systems 2) and 6) with (12) are solved numerica”y [14] P. Liu, S. Liu, Physica Scripta 83 (2011) 83:065006.

y = 25 andd = 5 with the initial conditionsty = 0, Appl. Math. Stat. 12 (2007) 90.
Ug (0) = 1, Uxg(0) = 2, Usq(0) = 3, Usg(0) = 4 [16] J. H. Park, Chaos Solitons Fractals. 25(2) (2005) 699.

(v !
_ _ _ _ 17] J. H. Park, Chaos Solitons Fractals. 25(3) ( 2005) 579.
Usq (0) = 5, Ugq (0) = 6 anduy, (0) = —13, uy (0) = —12, |
U ((0)) _ 3 L(J4r>(0) 14 ru(Sr)(o) _ 20 UGrr<(0)) _ 30 [18] L . Huang, R. Feng and M. Wang, Phys. Lett. A 320 (2004)
. 7 . I : 271.
The simulation results are illustrated in Figures 1 and 2. .

In Figure 1 the solutions o2{ and @) are plogtted subject [19] H. K. Chen, Chaos Solitons Fractals. 23 (2005) 1245.709.
. . 20] W Ji D Bi Fei Xi h lit
to different initial conditions. It shows that the hyperoka [20] Frzzgalsl,agg iZO%%? 12";;““ el Xiangyang, Chaos Solitons
synchronization is achieved after very small valueg.of ' '

In Figure 2 it can be seen that the synchronization errors
ey J =1,2,...,6 will converge to zero.
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3 Conclusions

Our main goal in this paper is to investigate and study the
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