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Abstract: In recent decades, there has been increased interest in the dynamic behaviors of fractional order differential systems. Many

results on fractional-order chaotic systems were obtained only via analytical and numerical techniques. This paper aims to numerically

study the demeanor of three different classes of piecewise chaotic systems. This system is Lorenz chaotic system. The fractional

derivatives are defined in the Caputo and Riemann-Liouville senses. The deterministic model is expanded using the constant

proportional Caupto operator. Grünwald−Letnikov non-standard finite difference scheme is presented to approximate the constant

proportional Caupto fractional operator. Finally, numerical simulations are provided to confirm the accuracy of our research and

provide comparison analyses.

Keywords: Lorenz mathematical model; Caputo proportional constant fractional derivative; nonstandard finite difference method.

1 Introduction

It is known that a chaotic demeanor has a serious impact on people in their daily lives, for example climate change.
Newly, many researchers have become interested in the chaotic demeanor of fractional order dynamic systems that have
been observed in several fields of science, engineering, meteorology ([1]-[7]) and hereditary properties of different
materials and processes. In reality, these effects are disregarded in models with traditional integer order. The main benefit
of fractional derivatives can be seen as this, and it is essential in describing the dynamics between two separate points in
many other domains as well ([4]-[12]). Although fractional derivatives and integrals can be thought of as a generalization
of their conventional counterparts, they are nevertheless an extraordinary and challenging topic to comprehend. Unlike
widely used differential operators, it does not correspond to some significant geometrical meaning, such as the trend of
functions or their convexity. Thus, this mathematical tool may occasionally be considered ”far from reality”. Fractional
order calculus is crucial to understanding a wide range of physical phenomena since they are described in fractional
orders ([4]). Fractional derivatives have several different definitions. For instance, Caputo and Riemann-Liouville
introduced the concept of fractional order differentiation with power law in [5,6]. Another variant of fractional order
derivative using the generalized Mittag-Leffler function with strong memory as a non-local and non-singular kernel was
proposed by Atangana and Baleanu [8]. Baleanu and et al. introduce the hybrid fractional operator in [13]. A linear
combination of a Riemann-Liouville integral and a Caputo derivative can express this operator. However, various
research suggests that the system’s memory may vary with time, place, or other circumstances. Many physical events and
processes have memory and inherited qualities that can be explained by the variable order fractional(VOF) operators
based on their non-stationary power-law kernel. In 1993, Samko and Ross [17] introduced the notion of variable order
integral and differential as well as certain fundamental features. Thus, (VOF) calculus was a viable option for creating an
efficient mathematical framework to characterize complicated physical systems and processes [16] accurately. Due to its
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suitability in modelling a wide range of phenomena across many fields of science and engineering, such as anomalous
diffusion ([18]-[21]), control systems [22], petroleum engineering [23], and numerous further fields of physics and
engineering, we mention some of them ([24]-[32]), VOF differential equations have subsequently drawn increasing
amounts of attention.

In this work, we developed the Lorenz model by using the concept of a piecewise model. In the first interval, we
defined differential equations with the correct order, the fractional order differential equations were defined in the second
interval, and in the third interval the variable order differential equations were defined or vice versa. On the other hand,
we will introduce modern numerical techniques. This technique is a constant proportional Cupto Grünwald−Letnikov
nonstandard finite difference method (GLNFDM). Numerical simulations will be provided to demonstrate the
effectiveness and broad application of the suggested strategy.

In this paper, the basic mathematical formulas are introduced in Section 2. In Section 3, the piecewise hybird fractional
order derivatives for Lorenz mathematical model in the Caputo and Riemann-Liouville senses is presented. Section4
discusses equilibrium points and stability analysis. Existence and uniqueness are given in section 5. The numerical scheme
for the Caputo proportional constant Grünwald−Letnikov nonstandard finite difference numerical method is presented in
Section 6. Numerical simulations are discussed in Section 7. Finally, the conclusions are presented in Section 8.

2 Basic notations

In this section, we review certain crucial definitions that were utilised in the next portions of this article. Let’s think about
the following differential equation of the fractional order ϑ [5,6]

RL
a Dϑ

t y(t) = ξ (y(t), t), y(0) = y0, n− 1 < ϑ ≤ n.

Definition 1.On the left and the right sides for a continuous function f(t), Riemann-lioville’s derivatives of order ϑ are

defined by [5,6]

RL
a Dϑ

t y(t) =
1

Γ (n−ϑ)
(

d

dt
)n

∫ t

a

y(ν)

(t −ν)1−n+ϑ
dν, t > a,

RL
t Dϑ

b y(t) =
1

Γ (n−ϑ)
(
−d

dt
)n

∫ b

t

y(ν)

(ν − t)1−n+ϑ
dν, t < b.

such that

−∞ < a < b <+∞,ϑ ∈ C.

Definition 2.On the left and the right sides for a continuous function f(t), Caputo’s derivatives of order ϑ are defined by

[5,6]

C
a Dϑ

t y(t) =
1

Γ (n−ϑ)

∫ t

a

yn(ν)

(t −ν)1−n+ϑ
dν, t > a

C
t Dϑ

b y(t) =
(−1)n

Γ (n−ϑ)

∫ b

t

yn(ν)

(ν − t)1−n+ϑ
dν, t < b

such that

−∞ < a < b <+∞,ϑ ∈ C.

Definition 3.The Caputo proportional constant fractional order operator CPC is defined as [13]:

CPC
0 Dϑ

t y(t) = (

∫ t

0
(k1(ϑ ,ν)y(ν)+ k0(ϑ ,ν)y

′
(ν))dν)

(t −ν)−ϑ

Γ (1−ϑ)

=
t−ϑ

Γ (1−ϑ)
(y

′
(t)k0(ϑ , t)+ y(t)k1(ϑ , t)).
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Or

The CPC fractional order operator can be defined as follows [13]:

CPC
0 Dϑ

t y(t) = (

∫ t

0
(t −ν)−ϑ(k0(ϑ)y

′
(ν)+ k1(ϑ)y(ν)dν)

1

Γ (1−ϑ)

= k1(ϑ)RL
0 I1−ϑ

t y(t)+ k0(ϑ)c
0Dϑ

t y(t),

(1)

where,k1(ϑ),k0(ϑ) are constants. Here we consider, k0(ϑ) = ϑQ(1−ϑ ),k1(ϑ) = (1−ϑ)Qϑ , and Q is constant.

Definition 4.The piecewise derivative is retrieved as follows, where y ∈C[0,T ] is the differentiable function [14]:

PWC
0 Dϑ

t y(t) =











y
′
(t) 0 < t ≤ t1

C
0 Dϑ

t y(t) t1 < t ≤ t2
C
0 D

ϑ (t)
t y(t) t2 < t ≤ T.

In this work, we will introduce the piecewise CPC fractional derivative, which is retrieved as follows:

CPC
0 Dϑ

t y(t) =











y
′
(t) 0 < t ≤ t1

CPC
0 Dϑ

t y(t) t1 < t ≤ t2
CPC
0 D

ϑ (t)
t y(t) t2 < t ≤ T.

(2)

Where y is the differentiable function.

3 The hybird piecewise variable order fractional for the Lorenz system

We introduce here the three various instances of the cross-over Lorenz model.

3.1 The piecewise variable order Lorenz model

Case 1: We developed the integer order Lorenz model [15] to be a piecewise model where the integer order Lorenz
model is defined in the first interval (0, t1], the fractional Lorenz model is defined in the second interval (t1, t2] and the
variable order Lorenz model is defined in the third interval (t2,T ]. Then, the cross-over model of the Lorenz system is
given as:











dx(t)
dt

= δ (y(t)− x(t)),
dy(t)

dt
= x(t)(γ − z(t))− y(t), 0 < t ≤ t1,

dz(t)
dt

= x(t)y(t)−ϖz(t),

(3)

x(0) = x0,y(0) = y0,z(0) = z0.











CPC
0 Dϑ

t x(t) = δ (y(t)− x(t)),
CPC
0 Dϑ

t y(t) = x(t)(γ − z(t))− y(t), t1 < t ≤ t2,
CPC
0 Dϑ

t z(t) = x(t)y(t)−ϖz(t),

(4)

x(t1) = x1,y(t1) = y1,z(t1) = z1.
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









CPC
0 D

ϑ (t)
t x(t) = δ (y(t)− x(t)),

CPC
0 D

ϑ (t)
t y(t) = x(t)(γ − z(t))− y(t), t2 < t ≤ T,

CPC
0 D

ϑ (t)
t z(t) = x(t)y(t)−ϖz(t),

(5)

x(t2) = x2,y(t2) = y2,z(t2) = z2.

Where the Prandtl number is denoted by δ , γ is referred to as the Rayleigh number, and ϖ gives the approximate size of
the region the system uses. All δ ,ϖ ,γ > 0, but generally δ = 10, γ = 28, and ϖ = 8/3. The Lorenz model presents a
chaotic attractor for δ = 10, γ = 28, and ϖ = 8/3.

Table 1: The variables in the system (3) [15].

The variable Description
x is proportional to the strength of the convective motion
y is proportional to the difference in temperature between the currents that are ascending and dropping
z is proportional to distortion of the vertical temperature profile from linearity.

Case 2: We develop here the Lorenz model [15] to be a piecewise model, where the variable order Lorenz model is
defined in the first interval (0, t1], in the second interval (t1, t2] the fractional Lorenz model is defined, and the integer
order Lorenz model in the third interval (t2,T ]. Then, the model is given by:















CPC
0 D

ϑ1(t)
t x(t) = δ (y(t)− x(t)),

CPC
0 D

ϑ2(t)
t y(t) = x(t)(γ − z(t))− y(t), 0 < t ≤ t1,

CPC
0 D

ϑ3(t)
t z(t) = x(t)y(t)−ϖz(t),

(6)

x(0) = x0,y(0) = y0,z(0) = z0.



















CPC
0 Dϑ

t x(t) = δ (y(t)− x(t)),
CPC
0 Dϑ

t y(t) = x(t)(ρ − z(t))− y(t), t1 < t ≤ t2,
CPC
0 Dϑ

t z(t) = x(t)y(t)−ϖz(t),
(7)

x(t1) = x1,y(t1) = y1,z(t1) = z1.



















dx(t)
dt

= δ (y(t)− x(t)),
dy(t)

dt
= x(t)(γ − z(t))− y(t),

dz(t)
dt

= x(t)y(t)−ϖz(t), t2 < t ≤ T,
(8)

x(t2) = x2,y(t2) = y2,z(t2) = z2.

Case 3: We develop here the Lorenz model [15]to be a piecewise model, where the fractional order Lorenz model is
defined in the first interval (0, t1], the integer Lorenz model is defined in the second interval (t1, t2] , and the variable
order Lorenz model in the third interval (t2,T ]. Then, the proposed model is given by:











CPC
0 D

ϑ1
t x(t) = δ (y(t)− x(t)),

CPC
0 D

ϑ2
t y(t) = x(t)(γ − z(t))− y(t), 0 < t ≤ t1,

CPC
0 D

ϑ3
t z(t) = x(t)y(t)−ϖz(t),

(9)

x(t1) = x1,y(t1) = y1,z(t1) = z1.
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









CPC
0 D

ϑ1(t)
t x(t) = δ (y(t)− x(t)),

CPC
0 D

ϑ2(t)
t y(t) = x(t)(γ − z(t))− y(t), t1 < t ≤ t2,

CPC
0 D

ϑ3(t)
t z(t) = x(t)y(t)−ϖz(t),

(10)

x(0) = x0,y(0) = y0,z(0) = z0.



















dx(t)
dt

= δ (y(t)− x(t)),
dy(t)

dt
= x(t)(γ − z(t))− y(t),

dz(t)
dt

= x(t)y(t)−ϖz(t), t2 < t ≤ T,
(11)

x(t2) = x2,y(t2) = y2,z(t2) = z2.

4 Equilibrium points and stability analysis:

We solved the system and then found two equilibrium points, where one is clearly in origin ζ1 = (0;0;0), and for values

of the parameters δ = 10,γ = 28 and ϖ = 8
3
, are ζ2 = 1.0e−15 ∗ (−0.2643;−0.2643;−0.2990). The Jacobian matrix J

of the Lorenz model at the equilibrium points. (X∗,Y ∗,Z∗)

J =





−δ δ 0
γ −Z∗ −1 X∗

Y ∗ X∗ −ϖ



 , (12)

The eigenvalues for equilibria λ1 and λ2 are same eigenvalues ς1 ≈ −22.8277ς2 ≈ 11.8277ς3 ≈ −2.6667. All two
equilibria are unstable.

5 Existence and uniqueness of the solution

In the following, we give the existence and uniqueness piecewisely. But to do this, we check the Lipschitz condition and
the linear growth properties [36,37]. Also, let B is a Banach space and the norm ‖ ϕ ‖∞= supt∈Dϕ

|ϕ(t)|. We assume that

∀t ∈ (0, t1], there existence three positive constant ‖ x ‖∞< A1,‖ y ‖∞< A2 and ‖ z ‖∞< A3.

dx

dt
= g1(x,y,z, t), (13)

dy

dt
= g2(x,y,z, t),0 < t ≤ t1, (14)

dz

dt
= g3(x,y,z, t), (15)

where gρ(x,y,z, t),ρ = 1,2,3, symbolize the right-hand side of the equations in the Lorenz system 3. We first verify that

| gρ(xρ , t) |
2< kρ(| xρ |2 +1),

| gρ(x1, t)− gρ(x2, t) |
2< kρ | x1 − x2 |

2, where kρ is constant .
To substantiate the existence and uniqueness:
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| g1(x,y,z, t) |
2 =| δy− δx |2,

≤(| δy |2 + | δx |2),

≤(δ 2 | y |2 +δ 2 | x |2),

≤(δ 2[ sup
t∈[0,t1]

| y |2 + | x |2]),

≤(δ 2[||y2||∞ + |x|2]),

≤δ 2(|x|2(1+
||y2||∞
|x|2

)),

≤δ 2(|x|2 + 1),

under the condition
(||y2||∞)≤ 1.

We have
| g1(x,y,z, t) |

2< k1(| x |2 +1).

Using the same routine,

| g2(x,y,z, t) |
2 =| xγ − γz− y |2,

≤(| xγ |2 + | γx |2 + | y |2),

≤( sup
t∈[0,t1]

| xγ |2 + sup
t∈[0,t1]

| γz |2 + | y |2),

≤(γ2(||x2||∞ + ||z2||∞)+ |y|2),

≤γ2(||x2||∞ + ||z2||∞ +
1

γ2
|y|2),

≤
1

γ2
(γ2|y|2(1+

γ2(||x2||∞ + ||z2||∞)

|y|2
)),

under the condition
(γ2(||x2||∞ + ||z2||∞))≤ 1.

Then
| g2(x,y,z, t) |

2< k2(| y |2 +1).

| g3(x,y,z, t) |
2 =| xy−ϖz |2,

≤(| x |2| y |2 +ϖ2 | z |2),

≤( sup
t∈[0,t1]

| x |2| y |2 +ϖ2 | z |2),

≤(‖ x2 ‖∞‖ y2 ‖∞ +ϖ2 | z |2),

≤ϖ2(|z|2(
‖ x2 ‖∞‖ y2 ‖∞

ϖ2|z|2
+ 1)),

≤ϖ2(1+ |z|2),

under the condition

(
‖ x2 ‖∞‖ y2 ‖∞

ϖ2
)≤ 1.

Then
| g3(x,y,z, t) |

2< k3(| z |2 +1).

Therefore the condition of linear growth is achieved if

max {‖ y2 ‖∞,(γ
2(‖ x2 ‖∞ + ‖ z2 ‖∞)),(

‖x2‖∞‖y2‖∞
ϖ )} < 1.
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6 Numerical scheme for Lorenz model

We can write the relation (1) as follows:

CPC
0 Dϑ

t y(t) = (Γ (1−ϑ))−1

∫ t

0
(t −ν)−ϑ (y′(ν)K0(ϑ)+K1(ϑ)y(ν))dν,

= K1(ϑ)RL
0 I1−ϑ

t y(t)+K0(ϑ)C0 Dϑ
t y(t),

= K1(ϑ)RL
0 Dϑ−1

t y(t)+K0(ϑ)C0 Dϑ
t y(t), (16)

where, K1(ϑ(t)), K0(ϑ(t))are solely dependent on ϑ(t). The non-standard finite difference method (NSFDM), first
presented by Mickens in [33], is a more accurate and stable approach than the standard finite difference method, see [34].
With the Grünwald−Letnikov nonstandard finite difference method (GLNSFDM), we can discretize (16) as follows:

CPC
0 Dϑ

t y(t)|t=tn1 =
K1(ϑ)

(Θ(∆ t))ϑ−1

(

yn1+1 +
1+n1

∑
i=1

yn1+1−iωi

)

+
K0(ϑ)

(Θ(∆ t))ϑ

(

−
1+n1

∑
i=1

µiyn1+1−i− qn1+1y0 + yn1+1

)

. (17)

6.1 Numerical scheme for case 1

In the first interval 0 < t ≤ t1, the discretization scheme of (3) using the (nonlocal) GLNSFDM (17) can be expressed as
follows:

xn+1 =
δyn − k1(ϑ)(θ (∆ t))1−ϑ ∑

n1+1
j=1 w j xn+1− j

k1(ϑ)(θ (∆ t))1−ϑ + k0(ϑ)(θ (∆ t))−ϑ + δ

+
k0(ϑ)(θ (∆ t))−ϑ (∑

n1+1
j=1 µ j xn+1− j − qn+1x0)

k1(ϑ)(θ (∆ t))1−ϑ + k0(ϑ)(θ (∆ t))−ϑ + δ
, (18)

yn+1 =
γxn − xnzn − k1(ϑ)(θ (∆ t))1−ϑ ∑

n1+1
j=1 w j yn+1− j

k1(ϑ)(θ (∆ t))1−ϑ + k0(ϑ)(θ (∆ t))−ϑ + 1

+
k0(ϑ)(θ (∆ t))−ϑ )(∑

n1+1
j=1 µ j yn+1− j − qn+1y0)

k1(ϑ)(θ (∆ t))1−ϑ + k0(ϑ)(θ (∆ t))−ϑ + 1
, (19)

zn+1 =
xnyn − k1(ϑ)(θ (∆ t))1−ϑ ∑

n1+1
j=1 w j zn+1− j

k1(ϑ)(θ (∆ t))1−ϑ + k0(ϑ)(θ ()∆ t))−ϑ +ϖ

+
k0(ϑ)(θ (∆ t))−ϑ (∑

n1+1
j=1 µ j zn+1− j − qn+1z0)

k1(ϑ)(θ (∆ t))1−ϑ + k0(ϑ)(θ ()∆ t))−ϑ +ϖ
. (20)

Where n = 0, ...,n1. k0(ϑ) = ϑQ(1−ϑ ),k1(ϑ) = (1−ϑ)Qϑ ,∆ t = T
Nn
,Nn ∈ N,

µ = ϑ ,q1 =
1

Γ (1−ϑ ) ,µi = 1− (ϑ+1
i
)µi−1,ω1 = 1,ωi = 1− (ϑ

i
)ωi−1.

The discretization of (4)in the second interval, t1 < t ≤ t2, is provided using the discretization of the CPC operator and
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GLNSFDM (17) can be expressed as follows :

xn+1 =
δyn − δxn − k1(ϑ)(θ (∆ t))1−ϑ ∑

n2+1
j=1 w j xn+1− j

k1(ϑ)(θ (∆ t))1−ϑ + k0(ϑ)(θ (∆ t))−ϑ

+
k0(ϑ)(θ (∆ t))−ϑ (∑

n2+1
j=1 µ j xn+1− j − qn+1x0)

k1(ϑ)(θ (∆ t))1−ϑ + k0(ϑ)(θ (∆ t))−ϑ
, (21)

yn+1 =
γxn − yn − xnzn − k1(ϑ)(θ (∆ t))1−ϑ ∑

n2+1
j=1 w j yn+1− j

k1(ϑ)(θ (∆ t))1−ϑ + k0(ϑ)(θ (∆ t))−ϑ )

+
k0(ϑ)(θ (∆ t))−ϑ (∑

n2+1
j=1 µ j yn+1− j − qn+1y0)

k1(ϑ)(θ (∆ t))1−ϑ + k0(ϑ)(θ (∆ t))−ϑ )
, (22)

zn+1 =
xnyn −ϖzn − k1(ϑ)(θ (∆ t))1−ϑ ∑

n2+1
j=1 w j zn+1− j

k1(ϑ)(θ (∆ t))1−ϑ + k0(ϑ)(θ (∆ t))−ϑ

+
k0(ϑ)(θ (∆ t))−ϑ (∑

n2+1
j=1 µ j zn+1− j − qn+1z0)

k1(ϑ)(θ (∆ t))1−ϑ + k0(ϑ)(θ (∆ t))−ϑ
. (23)

Where n = n1, ...,n2, k0(ϑ) = ϑQ(1−ϑ ),k1(ϑ) = (1−ϑ)Qϑ ,∆ t = T
Nn
,Nn ∈ N,

µ = ϑ ,q1 =
1

Γ (1−ϑ ) ,µi = 1− (ϑ+1
i
)µi−1,ω1 = 1,ωi = 1− (ϑ

i
)ωi−1.

The discretization of (5) in the third interval, t2 < t ≤ T , is provided using the discretization of the CPC operator and
(GLNSFDM) (17)can be expressed as follows :

xn+1 =
δyn − δxn − k1(ϑ(t))(θ (∆ t))1−ϑ (t) ∑

n3+1
j=1 w j xn+1− j

k1(ϑ(t))(θ (∆ t))1−ϑ (t)+ k0(ϑ(t))(θ (∆ t))−ϑ (t)

+
k0(ϑ(t))(θ (∆ t))−ϑ (t)(∑

n3+1
j=1 µ j xn+1− j − qn+1x0)

k1(ϑ(t))(θ (∆ t))1−ϑ (t)+ k0(ϑ(t))(θ (∆ t))−ϑ (t)
, (24)

yn+1 =
γxn − yn − xnzn − k1(ϑ(t))(θ (∆ t))1−ϑ (t) ∑

n3+1
j=1 w j yn+1− j

k1(ϑ(t))(θ (∆ t))1−ϑ (t)+ k0(ϑ(t))(θ (∆ t))−ϑ (t)

+
k0(ϑ(t))(θ (∆ t))−ϑ (t)(∑

n3+1
j=1 µ j yn+1− j − qn+1y0)

k1(ϑ(t))(θ (∆ t))1−ϑ (t)+ k0(ϑ(t))(θ (∆ t))−ϑ (t)
, (25)

zn+1 =
xnyn −ϖzn − k1(ϑ(t))(θ (∆ t))1−ϑ (t) ∑

n3+1
j=1 w j zn+1− j

k1(ϑ(t))(θ (∆ t))1−ϑ (t)+ k0(ϑ(t))(θ (∆ t))−ϑ (t)

+
k0(ϑ(t))(θ (∆ t))−ϑ (t)(∑

n3+1
j=1 µ j zn+1− j − qn+1z0)

k1(ϑ(t))(θ (∆ t))1−ϑ (t)+ k0(ϑ(t))(θ (∆ t))−ϑ (t)
. (26)

Where n = n2, ...,n3, k0(ϑ(t) = ϑ(t)Q(1−ϑ (t)),k1(ϑ(t)) = (1−ϑ(t))Qϑ (t),∆ t = T
Nn
,Nn ∈ N,

µ = ϑ(t),q1 =
1

Γ (1−ϑ (t)) ,µi = 1− (
ϑ (t)+1

i
)µi−1,ω1 = 1,ωi = 1− (

ϑ (t)
i
)ωi−1.
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Fig. 1: Numerical simulation for case1 at ϑ1 = ϑ2 = ϑ3 = 0.95, ,ϑ1(t) = ϑ2(t) = ϑ3(t) = 0.9−0.001t.

6.2 Numerical scheme for case 2

In the first interval 0 < t ≤ t1, the discretization scheme of (5) is provided using the discretization of CPC operator and
(GLNSFDM) (17)can be expressed as follows :

xn+1 =
δyn − δxn − k1(ϑ1(t))(θ (∆ t))1−ϑ1(t) ∑

n1+1
j=1 w j xn+1− j

k1(ϑ1(t))(θ (∆ t))1−ϑ1(t)+ k0(ϑ1(t))(θ (∆ t))−ϑ1(t)

+
k0(ϑ1(t))(θ (∆ t))−ϑ1(t)(∑

n1+1
j=1 µ j xn+1− j − qn+1x0)

k1(ϑ1(t))(θ (∆ t))1−ϑ1(t)+ k0(ϑ1(t))(θ (∆ t))−ϑ1(t)
, (27)

yn+1 =
γxn − yn − xnzn − k1(ϑ2(t))(θ (∆ t))1−ϑ2(t) ∑

n1+1
j=1 w j yn+1− j

k1(ϑ2(t))(θ (∆ t))1−ϑ2(t)+ k0(ϑ2(t))(θ (∆ t))−ϑ2(t)

+
k0(ϑ2(t))(θ (∆ t))−ϑ2(t)(∑

n1+1
j=1 µ j yn+1− j − qn+1y0)

k1(ϑ2(t))(θ (∆ t))1−ϑ2(t)+ k0(ϑ2(t))(θ (∆ t))−ϑ2(t)
, (28)

zn+1 =
xnyn −ϖzn − k1(ϑ3(t))(θ (∆ t))1−ϑ3(t) ∑

n1+1
j=1 w j zn+1− j

k1(ϑ3(t))(θ (∆ t))1−ϑ3(t)+ k0(ϑ3(t))(θ (∆ t))−ϑ3(t)

+
k0(ϑ3(t))(θ (∆ t))−ϑ3(t)(∑

n1+1
j=1 µ j zn+1− j − qn+1z0)

k1(ϑ3(t))(θ (∆ t))1−ϑ3(t)+ k0(ϑ3(t))(θ (∆ t))−ϑ3(t)
. (29)

Where n = 0, ...,n1, k0(ϑ(t) = ϑ(t)Q(1−ϑ (t)),k1(ϑ(t)) = (1−ϑ(t))Qϑ (t),∆ t = T
Nn
,Nn ∈ N,

µ = ϑ(t),q1 =
1

Γ (1−ϑ (t)) ,µi = 1− (ϑ (t)+1

i
)µi−1,ω1 = 1,ωi = 1− (ϑ (t)

i
)ωi−1.

The discretization of (4)in the second interval, t1 < t ≤ t2, is provided using the discretization of the CPC operator, and
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GLNSFDM (17) can be expressed as follows :

xn+1 =
δyn − δxn − k1(ϑ)(θ (∆ t))1−ϑ ∑

n2+1
j=1 w j xn+1− j

k1(ϑ)(θ (∆ t))1−ϑ + k0(ϑ)(θ (∆ t))−ϑ

+
k0(ϑ)(θ (∆ t))−ϑ (∑

n2+1
j=1 µ j xn+1− j − qn+1x0)

k1(ϑ)(θ (∆ t))1−ϑ + k0(ϑ)(θ (∆ t))−ϑ
, (30)

yn+1 =
γxn − yn − xnzn − k1(ϑ)(θ (∆ t))1−ϑ ∑

n2+1
j=1 w j yn+1− j

k1(ϑ)(θ (∆ t))1−ϑ + k0(ϑ)(θ (∆ t))−ϑ )

+
k0(ϑ)(θ (∆ t))−ϑ (∑

n2+1
j=1 µ j yn+1− j − qn+1y0)

k1(ϑ)(θ (∆ t))1−ϑ + k0(ϑ)(θ (∆ t))−ϑ )
, (31)

zn+1 =
xnyn −ϖzn − k1(ϑ)(θ (∆ t))1−ϑ ∑

n2+1
j=1 w j zn+1− j

k1(ϑ)(θ (∆ t))1−ϑ + k0(ϑ)(θ (∆ t))−ϑ

+
k0(ϑ)(θ (∆ t))−ϑ (∑

n2+1
j=1 µ j zn+1− j − qn+1z0)

k1(ϑ)(θ (∆ t))1−ϑ + k0(ϑ)(θ (∆ t))−ϑ
. (32)

Where n = n1, ...,n2, k0(ϑ) = ϑQ(1−ϑ ),k1(ϑ) = (1−ϑ)Qϑ ,∆ t = T
Nn
,Nn ∈ N,

µ = ϑ ,q1 =
1

Γ (1−ϑ ) ,µi = 1− (ϑ+1
i
)µi−1,ω1 = 1,ωi = 1− (ϑ

i
)ωi−1.

The discretization of (5) in the third interval, t2 < t ≤ T , is provided using the (nonlocal) GLNSFDM (17) can be
expressed as follows:

xn+1 =
δyn − k1(ϑ)(θ (∆ t))1−ϑ ∑

n3+1
j=1 w j xn+1− j

k1(ϑ)(θ (∆ t))1−ϑ + k0(ϑ)(θ (∆ t))−ϑ + δ

+
k0(ϑ)(θ (∆ t))−ϑ (∑

n3+1
j=1 µ j xn+1− j − qn+1x0)

k1(ϑ)(θ (∆ t))1−ϑ + k0(ϑ)(θ (∆ t))−ϑ + δ
, (33)

yn+1 =
γxn − xnzn − k1(ϑ)(θ (∆ t))1−ϑ ∑

n3+1
j=1 w j yn+1− j

k1(ϑ)(θ (∆ t))1−ϑ + k0(ϑ)(θ (∆ t))−ϑ + 1

+
k0(ϑ)(θ (∆ t))−ϑ )(∑

n3+1
j=1 µ j yn+1− j − qn+1y0)

k1(ϑ)(θ (∆ t))1−ϑ + k0(ϑ)(θ (∆ t))−ϑ + 1
, (34)

zn+1 =
xnyn − k1(ϑ)(θ (∆ t))1−ϑ ∑

n3+1
j=1 w j zn+1− j

k1(ϑ)(θ (∆ t))1−ϑ + k0(ϑ)(θ ()∆ t))−ϑ +ϖ

+
k0(ϑ)(θ (∆ t))−ϑ (∑

n3+1
j=1 µ j zn+1− j − qn+1z0)

k1(ϑ)(θ (∆ t))1−ϑ + k0(ϑ)(θ ()∆ t))−ϑ +ϖ
. (35)

Where n = n2, ...,n3, k0(ϑ) = ϑQ(1−ϑ ),k1(ϑ) = (1−ϑ)Qϑ ,∆ t = T
Nn
,Nn ∈ N,

µ = ϑ ,q1 =
1

Γ (1−ϑ ) ,µi = 1− (ϑ+1
i
)µi−1,ω1 = 1,ωi = 1− (ϑ

i
)ωi−1.
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Fig. 2: Numerical simulation for case2 at ϑ1 = ϑ2 = ϑ3 = .85, ϑ1(t) = 0.9−0.001t, ϑ2(t) = 0.98−0.001t, ϑ3(t) = 0.97−0.001t.

6.3 Numerical scheme for case 3

We can formulate the discretization scheme of (4) in the first interval 0 < t ≤ t1, using the discretization of the CPC
operator and GLNSFDM (17) as follows :

xn+1 =
δyn − δxn − k1(ϑ1)(θ (∆ t))1−ϑ1 ∑

n1+1
j=1 w j xn+1− j

k1(ϑ1)(θ (∆ t))1−ϑ1 + k0(ϑ1)(θ (∆ t))−ϑ1

+
k0(ϑ1)(θ (∆ t))−ϑ1(∑

n1+1
j=1 µ j xn+1− j − qn+1x0)

k1(ϑ1)(θ (∆ t))1−ϑ1 + k0(ϑ1)(θ (∆ t))−ϑ1
, (36)

yn+1 =
γxn − yn − xnzn − k1(ϑ2)(θ (∆ t))1−ϑ2 ∑

n1+1
j=1 w j yn+1− j

k1(ϑ2)(θ (∆ t))1−ϑ2 + k0(ϑ2)(θ (∆ t))−ϑ2)

+
k0(ϑ2)(θ (∆ t))−ϑ2(∑

n1+1
j=1 µ j yn+1− j − qn+1y0)

k1(ϑ2)(θ (∆ t))1−ϑ2 + k0(ϑ2)(θ (∆ t))−ϑ2)
, (37)

zn+1 =
xnyn −ϖzn − k1(ϑ3)(θ (∆ t))1−ϑ3 ∑

n1+1
j=1 w j zn+1− j

k1(ϑ3)(θ (∆ t))1−ϑ3 + k0(ϑ3)(θ (∆ t))−ϑ3

+
k0(ϑ3)(θ (∆ t))−ϑ3(∑

n1+1
j=1 µ j zn+1− j − qn+1z0)

k1(ϑ3)(θ (∆ t))1−ϑ3 + k0(ϑ3)(θ (∆ t))−ϑ3
. (38)

Where n = 0, ...,n1, k0(ϑ) = ϑQ(1−ϑ ),k1(ϑ) = (1−ϑ)Qϑ ,∆ t = T
Nn
,Nn ∈ N,

µ = ϑ ,q1 =
1

Γ (1−ϑ )
,µi = 1− (ϑ+1

i
)µi−1,ω1 = 1,ωi = 1− (ϑ

i
)ωi−1.

The discretization of (5)in the second interval, t1 < t ≤ t2, is provided using the discretization of the CPC operator, and
GLNSFDM (17) can be formulated as follows :
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xn+1 =
δyn − δxn − k1(ϑ1(t))(θ (∆ t))1−ϑ1(t) ∑

n2+1
j=1 w j xn+1− j

k1(ϑ1(t))(θ (∆ t))1−ϑ1(t)+ k0(ϑ1(t))(θ (∆ t))−ϑ1(t)

+
k0(ϑ1(t))(θ (∆ t))−ϑ1(t)(∑

n2+1
j=1 µ j xn+1− j − qn+1x0)

k1(ϑ1(t))(θ (∆ t))1−ϑ1(t)+ k0(ϑ1(t))(θ (∆ t))−ϑ1(t)
, (39)

yn+1 =
γxn − yn − xnzn − k1(ϑ2(t))(θ (∆ t))1−ϑ2(t) ∑

n2+1
j=1 w j yn+1− j

k1(ϑ2(t))(θ (∆ t))1−ϑ2(t)+ k0(ϑ2(t))(θ (∆ t))−ϑ2(t)

+
k0(ϑ2(t))(θ (∆ t))−ϑ2(t)(∑

n2+1
j=1 µ j yn+1− j − qn+1y0)

k1(ϑ2(t))(θ (∆ t))1−ϑ2(t)+ k0(ϑ2(t))(θ (∆ t))−ϑ2(t)
, (40)

zn+1 =
xnyn −ϖzn − k1(ϑ3(t))(θ (∆ t))1−ϑ3(t) ∑

n2+1
j=1 w j zn+1− j

k1(ϑ3(t))(θ (∆ t))1−ϑ3(t)+ k0(ϑ3(t))(θ (∆ t))−ϑ3(t)

+
k0(ϑ3(t))(θ (∆ t))−ϑ3(t)(∑

n2+1
j=1 µ j zn+1− j − qn+1z0)

k1(ϑ3(t))(θ (∆ t))1−ϑ3(t)+ k0(ϑ3(t))(θ (∆ t))−ϑ3(t)
. (41)

(42)

(43)

Where n = n1, ...,n2, k0(ϑ(t) = ϑ(t)Q(1−ϑ (t)),k1(ϑ(t)) = (1−ϑ(t))Qϑ (t),∆ t = T
Nn
,Nn ∈ N,

µ = ϑ(t),q1 =
1

Γ (1−ϑ (t)) ,µi = 1− (ϑ (t)+1
i

)µi−1,ω1 = 1,ωi = 1− (ϑ (t)
i
)ωi−1.

We can write the discretization of (3) in the third interval t2 < t ≤ T , using the (nonlocal) GLNSFDM (17) as follows:

xn+1 =
δyn − k1(ϑ)(θ (∆ t))1−ϑ ∑

n3+1
j=1 w j xn+1− j

k1(ϑ)(θ (∆ t))1−ϑ + k0(ϑ)(θ (∆ t))−ϑ + δ

+
k0(ϑ)(θ (∆ t))−ϑ (∑

n3+1
j=1 µ j xn+1− j − qn+1x0)

k1(ϑ)(θ (∆ t))1−ϑ + k0(ϑ)(θ (∆ t))−ϑ + δ
, (44)

yn+1 =
γxn − xnzn − k1(ϑ)(θ (∆ t))1−ϑ ∑

n3+1
j=1 w j yn+1− j

k1(ϑ)(θ (∆ t))1−ϑ + k0(ϑ)(θ (∆ t))−ϑ + 1

+
k0(ϑ)(θ (∆ t))−ϑ )(∑

n3+1
j=1 µ j yn+1− j − qn+1y0)

k1(ϑ)(θ (∆ t))1−ϑ + k0(ϑ)(θ (∆ t))−ϑ + 1
, (45)

zn+1 =
xnyn − k1(ϑ)(θ (∆ t))1−ϑ ∑

n3+1
j=1 w j zn+1− j

k1(ϑ)(θ (∆ t))1−ϑ + k0(ϑ)(θ ()∆ t))−ϑ +ϖ

+
k0(ϑ)(θ (∆ t))−ϑ (∑

n3+1
j=1 µ j zn+1− j − qn+1z0)

k1(ϑ)(θ (∆ t))1−ϑ + k0(ϑ)(θ∆ t))−ϑ +ϖ
. (46)

Where n = n2, ...,n3, k0(ϑ) = ϑQ(1−ϑ ),k1(ϑ) = (1−ϑ)Qϑ ,∆ t = T
Nn
,Nn ∈ N,

µ = ϑ ,q1 =
1

Γ (1−ϑ )
,µi = 1− (ϑ+1

i
)µi−1,ω1 = 1,ωi = 1− (ϑ

i
)ωi−1.
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Fig. 3: Numerical simulation for case3 at ϑ1 = 1,ϑ2 = .9,ϑ3 = .85, ϑ1(t)= 0.9−0.001t,ϑ2(t) = 0.98−0.001t, ϑ3(t) = 0.97−0.001t.

Stability of CPC−GLNSFDM:

Consider the following fractional-order Lorenz system in the general form [35] :

CPC
0 Dϑ

t ys(t) =Λs(y1,y2, ...,yk)− ysΘ(y1,y2, ...,yk), (47)

ys(t0) = ys,0,s = 1, ...,k.

Where Λs is continuous function on Rk.

Theorem 1.The CPC-GLNSFDM is a stable method.

Proof.Using CPC-GLNSFDM to approximate (6.3) we have:

ll1ys,n+1 + ll1

n+1

∑
i=1

ys,n+1−iωi + ll2ys,n+1 − ll2

n+1

∑
i=1

µiys,n+1−i − l2qs,n+1ys,0 (48)

= Λs(y1,n,y2,n, ...,yk,n)− ys,n+1Θs(y1,n+1,y2,n+1, ...,yk,n+1),

where ll1 =
(1−ϑ )Qϑ

∆ tϑ−1 , ll2 =
ϑQ(1−ϑ)

∆ tϑ .

Then we have :

ys,n+1 =
−ll1 ∑n+1

i=1 ys,n+1−iωi + ll2 ∑n+1
i=1 µiys,n+1−i + ll2qs,n+1ys,0 +Λs(y1,n,y2,n, ...,yk,n)

l1 + ll2 +Θs(y1,n+1,y2,n+1, ...,yk,n+1)
, (49)

since

ll1 + ll2 +Θs(y1,n+1,y2,n+1, ...,yk,n+1)> 1,
then

ys,1<ys,0
, and ys,n+1 < ys,n < ys,n−1... < ys,1 < ys,0.

So the proposed scheme is stable.
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Fig. 4: Numerical simulation for case 3.1 at ϑ (t) = 0.9−0.001t in case of orange color and ϑ = 0.85−0.001t in case of blue color.

Fig. 5: Numerical simulation for case(3.1) ϑ1(t) = 0.99−0.001t,ϑ2(t) = 0.98−0.001t,ϑ3(t) = 0.97−0.001t with different order
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Fig. 6: Numerical simulation for case(3.1)at ϑ1(t) = 0.99−0.001t,ϑ2(t) = 0.9−0.002t,ϑ3(t) = 0.9−0.005t in case of orange color

and ϑ1(t) = 0.9−0.002t,ϑ2(t) = .99− .02cost2t,ϑ3(t) = .99− .02sin2t in case of blue color

7 Numerical simulations

Here, we take into account the simulation of the Lorenz model. The following are the parameter values. :δ = 10,γ = 28
and ϖ = 8

3
, initial conditions used as follow: X(0)= 10,Y(0) = 1 and Z(0) = 0. The numerical results of the Lorenz model

for the three cases are presented graphically at various values of 0 < ϑ ≤ 1. The simulations were executed using CPC-
GLNSFDM. Figure (1) is the representation of the dynamical behaviour of case (3.1); the ϑ values used are ϑ1 = ϑ2 =
ϑ3 = 0.95,ϑ1(t) = ϑ2(t) = ϑ3(t) = 0.9−0.001t .Figure (2) is the representation of the dynamical behaviour of case (3.1);
the ϑ values used are ϑ1 =ϑ2 =ϑ3 = .85,ϑ1(t) = 0.9−0.001t,ϑ2(t) = 0.98−0.001t,ϑ3(t) = 0.97−0.001t.Also, figure
(3) is the representation of the dynamical behaviour of case (3.1); the ϑ values used are ϑ1 = 1,ϑ2 = .9,ϑ3 = .85,ϑ1(t) =
0.9−0.001t,ϑ2(t) = 0.98−0.001tϑ3(t) = 0.97−0.001t.Figure(4) shows how the solutions change with changing values
of ϑ for case(3.1), the values used in case of blue colour are ϑ1 =ϑ2 = ϑ3 = 0.97,ϑ1(t) =ϑ2(t) = ϑ3(t) = 0.85−0.001t,
and the values used in case of orange color are ϑ1 =ϑ2 =ϑ3 = 0.95,ϑ1(t) =ϑ2(t) =ϑ3(t) = 0.9−0.001t.The order used
in the two colors is fractional order in the first region, integer order in the second region, and variable order in the third
region. Figure(5) shows how the solutions change with changing order for case(3.1) with the same values of ϑ ; the order
used in blue colour is integer order in the first region, fractional order in the second region and variable order in the third
region. The order used in orange colour is variable in the first region, fractional order in the second region and integer order
in the third region. Figure(6) for (3.1) show how the solutions change with changing the values of ϑ , the values used in case
of blue color are ϑ1 = .75,ϑ2 = .93,ϑ3 = 0.83,ϑ1(t)= 0.9−0.002t(i),ϑ2(t)= .99− .02cos2t(i),ϑ3(t)= .99− .02sin2t(i),
and the values used in case of orange color are ϑ1 = .95,ϑ2 = .94,ϑ3 = 0.85,ϑ1(t) = 0.9− 0.001t(i),ϑ2(t) = 0.9−
0.002t(i),ϑ3(t) = 0.9− 0.005t(i), these illustrations showcase the chaotic model’s new dynamic aspects.

8 Conclusion

In this paper, a hybrid fractional piecewise Lorenz mathematical model has been developed. The CPC operator is one of
the most dependable and efficient, and it is also more versatile than the Caputo fractional operator. The deterministic
model is expanded using the CPC operator. For the approximation CPC fractional operator, GLNSFDM is used. For
solving these proposed systems, have great stability qualities, and precise approximations are given. Graphical outcomes
for suggested models are shown. Finally, utilizing the piecewise hybrid mathematical model of Lorenz, we have gotten
more realistic and general results.
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