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Abstract: The main objective of this manuscript is to establish the sufficient conditions for the existence of solutions to the proposed
inclusion problem under certain boundary conditions by applying fixed point results. Two cases of multivalued maps are explored with
convex and non convex values. The results in the case of convex set-valued map are established using the Leray-Schauder theorem while
the results in the case of non convex set-valued map are established through Nadler and Covitz set-valued theorem. The manuscript is
concluded with apt examples to demonstrate the theoretical findings and inclusive innovation.
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1 Introduction

In a fractional integro-differential inclusion (FIDI), the unknown function is defined on a given interval, and the inclusion
involves a set-valued operator that contains both fractional derivatives and integrals. The inclusion represents a family of
differential equations that can have multiple solutions [1,2,3,4,5,6].

The combination of fractional calculus and integro-differential equations in an inclusion setting allows for the
consideration of non-local effects, memory effects, and long-range interactions, making it a powerful tool for modeling
complex phenomena in physics, engineering, and other fields [7,8,9,10,11,12,13,14].

FIDI finds its applications in various areas such as population dynamics, fractional diffusion processes, and so on.
Analyzing and solving these inclusions typically involve specialized mathematical techniques such as fixed-point theory,
semigroup theory and so forth [15,16,17,18,19]. The application of Atangana-Baleanu (AB) derivative in variational
problems of mathematical physics and signal processing are aplenty [20].

Over the years, extensive research studies aimed at exploring the existence of solutions for various mathematical
problems in fractional differential equations (FDEs) and FIDEs have been conducted [21,22,23,24,25,26]. Lachouri et al
[27], in their work have established the sufficient conditions for the existence of solutions for a class of inclusion problems
of fractional order involving the Atangana-Baleanu-Caputo (ABC) derivative under certain boundary conditions.
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Motivated by the aforementioned studies, this manuscript explores the existence results of the following FIDI problem
with ABC derivative involving BCs as given below:

b
peog et (o.:(),

z(0) = z0,2(b) = z. (1.1)

(@ v, 2(0))av, [ wh(w,v,z(v))dv) @el=(0.]

where éBC@g is the ABC derivative of order @ € I = [0,b]. Here D = (@,s) cvxv:s<®@ and e,h: DX Y — Y are
continuous functions and z9,z1 € R, H : I x R — € (R) is an SVM.

For our convenience, we assume that Eyw(o) = fobe(w, v,2(v))dv and Exw(@) = [’ h(®@,v,z(v))dv.

0" 75:(®)

€eH(®,z(@),Eyw(a),Exw(a)), @ € 1 =1[0,b]
z(0) = z0,2(b) =z

(1.2)

This manuscript is organized as follows: in Section 3 we determine the existence results for a class of FIDIs under certain
BCs. In section 4 we validate the results with suitable examples and in section 5 we conclude the results.

2 Preliminaries

Let € = %’[I,R] be a Banach space under the norm ||.2|| = supger| 2 (@)

Definition 2.1[28] Let 2" € H'(I) and 0 < § < 1. For order 0 < § < 1, the non-singular derivatives for the function 2~
is given by,

o, —v)S
and
¥0j —)8
=

respectively. Here the normalizing function . (§) > 0 satisfies .#(0) = .# (1) = 1 where Ez is a Mittag-Liffler
function.

Definition 2.2 [28] The fractional integral of AB of order @ € (0, 1) and function r: (d,§) — R is,

5 o N
m/o (W) (@ —v) v F € (0,1).

Definition 2.3 [29] Let § € (n — 1,n] and let x be x(*) € H'(I),

WIS (@) = S o) +

25 75(m) =5 25" (@).

Lemma 1 [30] Let & € €, the soln of problem,
ABC S (@) € H[h(®), Eyw(a), Eaw(at)] , 0 € 1
with boundary conditions

w(0) = wp,x(b) = x,
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is obtained as,

( )_afx1+xo(b—af)_ o2-73)
A= b bA(F—1)

oE-1) b _

T AG-NTR) | =) Ih) [Eiw(a), Exw(e))dv
2-5 (®

+m/o h(v) [Erw(a), Eyw(at)] dv

-1 o -
* T o @) B, Eav( ] e

/0 ’ () [Erw(at), Eaw(a)] dv

Suppose (98,]].|]) is a normed space and let,
Ou(B) =4 € O(B) : A is closed,
Oep(B) = A € O(B) : A is compact,

and
Oepe(B) =M € O(B) : A is compact and convex.

We refer [31,32,33] and H at point o € € is 2y, = {3 € L'(I,R) : 3(®) € H(®,0) (a.e)® € I}.

Definition 2.4 [27] Let H : I Xx R — O(R) is MVM. H can be called a Caratheodory, if the map @ — H(®@,x) is
measurable for all x € R,&x — H(®,x) is @ € I a.e. Similarly, a SVM H is L' — Caratheodory, if for every w > 0,
@ < L'(I,R") so,

|H(@,x)|| = sup{|6| € H(@,x)} < P(®),

V||x|| <wand @ € I ae.

3 Existence results

Definition 3.1 The function x € € is a solution of (1), if 3 € L'(I,R) with 3(@) € H(®,x), for every @ € I satisfies the
BCs as, z(0) = z9,2(b) = z.
The solution is obtained as,

- w)q-l—X()(b—G)') 67(2—3)
d®m) = b oG-

/0 S () [Ewlce) Eyw(ct)] dv

OG- [
G a0 S0 Ew@) Ean(aas
2-F (@
F e SWIEN(@) Exv(@)ay
-1

+ /w(w SIS () [Evw(at), Eaw(at)] dv.
0

A (F = 1((T)) -

For multi-valued maps, we apply Leray-Schauder-type theorem [34] to obtain the existence results related to the convex
valued H map.

Theorem 3.2 Let

1 2b%
= 2b 3.1
'7 //1(51)( +r(s+1))’ -1

and

(HDH : 1 xR — O¢p(R) is a L' — Caratheodory MVM.
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(H2)3 1y € C(1,[0,%)) and a non-decreasing W, € C([0,0),[0,0)) so that
|H(@,x)||lo = sup| ©|: © € H(@,x) <y (@) ya([|x]]), V(@,x) € I x R.

(H3)Let a constant 4~ > 0,
N

> 1.
Per| =+ [xol +n[wil[wa ()

(H4)There existe,h € €(_7 ,R+),
| J3 e(@,v,2(v))dv|| < e(®)|[3]], foreach @ € 7,3 € E and
1 12 h(@,v,2(v))dv|| < h(®@)||3||, foreach @ € 7,3 € E.

Then (1) has a solution on /.
Proof: Firstly, let the problem (1) be converted to a fixed point problem and for this purpose let us define 2 : & — O(€&)
as

) =¢ee: (@) =21 “Z(b*“’)
. eG-
IYZEE
2-5 (O
tET /0 S(v) [Erw(@), Eaw(a)] dv
F-1)

— e N 7 —v)5 13 w w V.
IR b @S0 (@) Eavia)] s

M/ /3 [Evw(a), Esw(a)] dv

) /ob(b —)E NS () [Eyw(@), Eow(@)] dv

for y € Dy ..
. Z is a fixed point solution of (1).

Case 1: Z(x) is convex for any § € €.
Let {1, 8, € 2 (x). Then there exist Y1, Yo € 2y «, so that for every @ € I,

(o) = EXIJFXZ(b o) /3 [Eyw(a), Eyw(ax)]dv
o(F—1)

B AT /ob“’* V)E 08, 0) [Erw(a), Exw(ar))dv

/3 VEtw(@), Eaw(a)] dv

—(3 ) ’ ¥ w w V.
+/m_1)(r(3))/0 (@ )13, (0) [Evw(@), Exyw(r) v

and letting 6 € [0, 1], we have forall @ €/

(081 + (1 —-96)5)(@)
“’x1+xz(b @) / 83, (v 8)32(v) [Etw(@), Eaw(at)] dv
oF-1) b N
_b///(s e /0 (b—v)% D83, () + (1 — 8)32(v) [Erw(a), Eaw(at)] dv
/ 831(v) + (1 — 8)32(v) [Eyw(at), Eaw()] dv

(3 @
+m/o (@ — )5 183, (v) + (1 = §)32(v) [Evw(ax), Eaw(at)] dv.

Hence, H and 2 , has a convex values, and [03(v) + (1 —8)32(v)] € L ».
Thus 68 + (1 —6)5 € Z(x).
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Case 2: .Z° be bounded on bounded sets of €. Let for ¢ € R,
Be={xe €:[lx[[ <},

be a bounded set in €,

e Z(x),xeB;,andy € 2y,

then,

(@)= Tatnb-o) o2-3)
- b bA(F—1)
oF—1) b )
b (- 1)(1"(3))/0 (b—v)E=V3(v) [Eyw(a), Eaw(ax)] dv
2-F% o
+m/o 3(v) [Evw(@), Eaw(o)]dv

-1 @ _
) L @ S Ee), (e

/0 "3 (v) [Evw(), Eaw(at)] dv

From (H,) and for every @ € I, we have

R S e T

S N N
T AG-DTRE) | =080 [Evw(), Eaw(on)] v

2—-5 )
,///(3'_ 1) /0 |3(V) [EIW(OC),Ezw(OC)] |dv

-1 @ B
T AG-DTE) /O (@ )5S ) [Erw(er), Egw(at)] |dv.

lwillya(s) 2%
AGE 1) (2”+F(s+1))'

7 " 1S [Erw(r), Exw(@0)] v

+

< x|+ x| +

Thus,

1EIF < Tl + [Xol + nllwal[wa(g)-

Case 3: To prove that 2°(B;) is equi-continuous.
Letx € By and § € Z'(x) and a function y € 2y ,, then

- Ox; +xo(b— @) o2-73)
$(@) = b oG-

oG- s
G a0 S @) Ean(aas

2-§ (©
+ s /0 3(v) [Evw(e), Eyw(at)]dv

L @G-
AG-DIE).

/O " S (v) [Evw(e), Eaw(at)] dv

/0' % (6= )5 13 () [Eyw(@), Exw(a0)] dv.
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Let @, € I < ®,. Then

18(@2) — (@)
(@ — @) (Jx1]+ |xo) (@ —@1)(2
b b (3 —

(@-@)F-1) (b

<

/ IS (v) [Evw(@), Eaw(ct)] |dv

G- I3 /0 (b—v)E VIS () [Evw(), Exw(at)] |dv
* % [ 180) Enw(@), Exw(a] ay
(F-1) @ 3 B
*m/o (@ =% = (@ =)") [SO) [Evw(er), Exw(@)] ldv
(F-1) (a5} B
Y AG-r®) /G,I (@ —v)5 1S (v) [Eyw(@), Eyw()]|dv.
Similarly by using (H») — (Hy), we get
(@)~ (@)
_ @—@)(nl+x) | @=a)wlvaolsll , b5(@—a)lvllv(s)lll]
) ’ AE=1) b A~ DI +1)
L @=o)lvillva(©llll , (@~ a)lwllvae)lls]
A (S 1) AEF-DEE+1)

As ©) — @, we obtain

|6(@) — E(@1)] = 0.

By Arzela-Ascoli theorem, 3 is completely continuous and 3(34) is equi-continuous. From [[31], Proposition 1.2], 3 has
a closed graph, then consequently 3 is SVM.

Case 4: The graph of 3 is closed.

Let x, — x4, §, € 3(x,) and §, converges to ..
To prove &, € 3(x.).

Because hy, € 3(xy), and Y, € Ly,

(@)~ 2N D) OB T [, 1) (e, Bl ay
o5 1)

TG DTE) ./Qb(b =) T03,(0) [Er(0), Exw(e)]

2-F% o
m/o Su() [Erw(ar), Exw(at)] dv

F-1 @ _
TR L, @ S0 (e, B

Thus, we need to show that v, € Dy, ,@ €1,

+

+

(@) - Z0=0) OB T 5. 0) [Erwa). Exvlcn)as
o 1)

B 4 (S D) ./(;b(” —)ED3, () [Eyw(at), Exw(ar)] dv

/3 ) [Erw(a), Eaw(a)] dv

(S

TG 1><r<s>> .

/Ow(w V)31, (v) [Evw(er), Eaw(a)] dv.
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Define the continuous linear operator & : L' (I, (—oc0,00)) — C(I(—o0,0)) by,

v 2()(@) = P00 BRT 75 0) Ew(a). Bl
s [ 6= 9IS 0) Erw(a) By
+ % /0 7 3(0) [Evw(ar), Eyw(a0)] dv
+m /0 % (@ =513 () [Evw(@), Eaw(a)] dv.
Observe that,
16—l =11 M,S 1/8 )+ 3..() [Evw(ct) Exw(t)] dv
o(F-1)

7b///(3 0T (3))/0 (b*V)(gfl)Sn(V)*3*(V)[E1w((x),E2w(a)]dv

EIW( )7E2W((X)]dv
@—] ' v)S! %) [Eyw w v
TaG-nr (S))/o (@ —v)¥13u(v) = Sa () [Eyw(ar), Exw(a)] dv — O]},

From Lazota-Opial result [35],when n — oo and &7 o 2y , ia a closed graph operator,
we get

6 € P (2u,)-
Because x,, — x4,
C*(w):a;leer(b ?) b///g 1/3 Erw(o), Ex(n)]dv
B Mffé(f 1)(1%@)) /0 (b= )7V, () [Erw(@0), Ew(@)] dv
+%/f&@)[Ew(a)ﬂzvv(aﬂdv

for some 3, € Dy ..

Case 5: Let ¥ C € be an open set with x ¢ VV3(x) forevery vV € (0,1) and Vx € 1 7.
LetV € (0,1) and x € V3(x). Then for 3 € 2y ,,

‘ Vx| + Vxo(b— @) B Vo (2—73F)
b bt (F—1)

Vo (g—1)
CbAF-1)(F)

W) [Eyw(a), Exw(a@)] dv

/0 S () [Erw(ct) Eyw(ct)] dv

(@) =

/Ob(b —)SEN3 ) [Eyw(a), Eyw(a)]dy

T G-
VE-1) @ _
*m/{) (@ —v)S13() [Eyw(a), Eaw()] dv)|

< erl =+ ol +ml [l [wa (S)113]]-

Thus, we have
e(@)] < [x1]+ |xol +nl[wil[y2(x)|[3][,@ €1
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and we obtain
|||

et | =+ ol + [y l[wa ()l —

By [H3],

YV ={xe&:|x|]| <N}

By Case 1 —4, 37 — O((E)) is completely continuous.
.. There is at least one solution to problem (1).

Next using a theorem of Covitz-Nadler [21], we derive an existence result for the inclusion problem (1), when H is a
nonconvex-valued mapping.
Define H, : O(€) x O(€) — [0,00) Uco by,

Hy(G,J) max{supd(G J), supd(g, )} ,
geG jEJ

where d(G,J) = inf éd(é,f) and d(g,J) = inf; jd (G,J). Then ((0),.i(€),Hy) is a metric space.
Definition 3.3 3 : € — D (¢€) is 7— Lipschitz iff there exists 7 > 0, so that

Ha(3(B),3(Us)) < d(B,Un)for anyB,Us € e.

In particular if, T < 1, we have that 3 is a contraction.

Theorem 3.4 Let,

(HS5)H : I xR— O.p(R)isa H(x) : I — O.p(R) is measurablefor any x € R.
(H6)H,(H(®,x),H(@,x)) < p(@)|x—x|V® € I and x,x € R with p € C(I,[0,)) and d(0.H(@,0)) < p(@)V@ € I.

The FIDI of (1) has one solution on I, for when
nllell <1,

7 is given in equation (3.1).

Proof: From [H4] and [36], Theorem III H is measurable 3 : I — R,3 € L'((I),R). Dy # @. Let {@,}, > 0 € 3(x) be
aw, — 0n—o)inC.ocC&3,0c Py,

0, (@) = w’“ﬂz(” @) / 3, (v) [Evw(@), Eaw(a)] dv
- %(‘g(f 1)(111(&)) /Ob(bfv)(g’l)sn(v) (Evw(a), Eyw(a)] dv
+ s [ S0 Bl Bl
m /0 7 (@ = v)51G,(v) [Evw(a), Eaw(a)] dv, VD € 1.

Thus 3 € 2y, x and

ox1 +xo(b— (D')
b b///

(3)) /ob(b —v)E NI ) [Eyw(a), Eaw(a)]dv

0,(0) = o(®) =

o1
b AT
2-F (@

G /0 S(v) [Evw(at), Exw(ar)]dv
-1
AE-D®)

/3 (Evw(a), Eaw(at)] dv

+ /w(w—v)gflS(v) [Eyw(a), E;w(a)]dv,V@ € 1.
0
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Hence o € 3(x).
Now to show that, 0 < @ < 1,(@ = n||p||).

Hy(3(x),3(%) < @||x — x||for eachx,x € 7.
Here x,x and §; € 3(x), and 3| (@) € H(@,x(®)), © € I

oxi+xb-o) 2
b b///& 1)

oF-1)
T b AF-1)(TE)) /0 (b =) 131 () [Evw(@r), Exw(e)] dv

2-F @
t e ) S WE@), Eav@]ay

E-1
A (F - 1)((3))

Gi(@) =

/31 VEiw(@), Eaw(a)] dv

+ /Ow(w —v)S13, (V) [Eyw(a), Eyw ()] dv, V@ € 1.

Using [He|
’ Hy(H(@,2),H(®,5)) < p(@)x(@) - (@),

Thus, & (@) € H(@,%),
31(@) - &| < p(@) x(@) - x(@)], @ < 1.
Let the operator .% : I — O(R) be defined as

F (@) =& €R:S1(@) - &| < p(@)|x(@) — X(@)].

We find that 3| and A = p|x — X| are measurable, so MVM .% (@) N H(®, %) is measurable. Choosing 3,(®) € H(®,%),

we have
S1(@) = 32(0)| < p (@) |x(@) —x(@)|,Vo € 1.
Using

ox +x(b-@) ©(2
b b/// (F-1)
oE-1) .
b3~ 1><r<s>>/o (b=TV8 () [Evw(@), Eyw(@)] dv
2-F (O
+m/o So(v) [Erw(a), Exw(a)] dv
_ G-
A (F—1D(I(F))

(@) = / 35 (v) [Eyw(at), Exw(a)] dv

+ /Ow(w — )13, (v) [Eyw(a), Eyw ()] dv, V@ € 1.

Also,

61(@) — G(@ v) [Evw(a), Eyw(a)]|dv

b///g 1) /'3'

oF—1) _
YA 1)(1~(3))/0 (0 —v)F VIS (1)S2(v) [Erw(a), Eaw(ax)] [dv

2—-F o
+m/0 191 (v)32(v) [Eyw(a), Exw(a)] |dv

F-1) o _
+m/{) (@ — )57 [31(v)32(v) [Erw(@), Epw(ax)] |dv

2b . 268 >
§-1) #F-1)IF+1))°

<l (7

Hence

161 = Gall < mllp|l{]x—x].
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Now, swapping x and X, one has
Ha(3(x),3(%)) < nllp||{}x— 4],

As I is a contraction, we can conclude that it has FP and hence according to Covitz-Nadler theorem problem (1) has a
solution.

4 Examples

To demonstrate the validation of the results obtained in the previous section, we consider the following two examples.
Example 1: Suppose we have the following FIDI

[0)

SBC@éZ((IJ) cH (w,z((ﬂ), /(;be(w,s,z(s))ds,/o
2(0)=z0,z() =1L Z(F—1)=1 4.1)

h(ai,s,z(s))ds) ,oel=(0,1)

Here, § = 3,b=1&H : [0,1] x R— O(R) is aMVM,

x> H(®@,x) :{ : - LI }

10(@3 +3exp(@)) (x*+1)" Vo + 16 x|+ 1
Obviously H fulfills [H;], and

|H(@,%)||o = sup{|© | :€ H(@,x)}

< ﬁ — vi (@) (| Dllsll

which implies || y1 || = § and y»(|[x||) = 1.
By [H3] and in view of theorem 3.2, we get 91 > 1.8761. Thus 3 a soln for (1) on [0, 1].

Example 2: Suppose we have the following FIDI

5 b o]
ABC ol (@) e H (w,z(w), /0 o(®@,5,2(s))ds, /O h(w,s,z(s))ds) @el=(0,1)
200) =z0,2(1) = 1,.4(F—1)=1 (4.2)
Here, §=2,b=1and H:[0,1]xR— O(R)isaMVM,

B 2sin(x?) 1
x—>H(w,x) = [O,m‘f’ﬁ] .
Hy(H(®,x),H(®,%)) < p(@)|x — x|, where p(@) =

~lpll= 1 and n||p|| ~0.75 < 1.
By [Hs) and in view of theorem 3.4, 3 at least a solution for the problem (1) on [0, 1] .

g as well d(0,H(®,0)) = ; < p(@),® € [0,1].

5 Conclusion

In this study we have analysed a class of FIDIs using the ABC derivative. Two cases of MVM with convex and non
convex values were discussed wherein Leray-Schauder theorem was applied to study the former case and Covitz-Nadler
theorem was applied to study the latter. The results obtained were then validated with the help of suitable examples.
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