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Abstract: This article presents a novel approach to modeling a heavily tailed continuous distribution known as the logarithmic slash

model. This model is built upon the transformation Y = eX , where X follows the slash distribution. Our aim is to introduce a model

with desirable characteristics for practical applications, drawing inspiration from the unique features of the logarithmic model. As a

result, we develop both univariate and multivariate extensions of the logarithmic slash model and conduct a thorough exploration of

its mathematical properties. We employ the maximum likelihood method to estimate the model parameters and conduct simulation

studies to assess the biases and mean square errors of these estimators. One of the primary concerns addressed by the logarithmic slash

model is its ability to effectively accommodate various types of data. To demonstrate its versatility, we utilize a range of datasets and

compare the performance of the logarithmic slash model to a strong competitor in terms of data fit. The results clearly indicate that the

logarithmic slash model outperforms its competitor, highlighting its efficacy in handling different types of data.
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1 Introduction

In today’s highly advanced era, distribution theory has garnered significant attention due to its ability to offer a wide array
of probability models. This surge in interest arises from the growing need for users and applied researchers to effectively
address the challenges of formulating models and analyzing real-world datasets. Consequently, there is an urgent demand
for the development of practical models to enhance our understanding of real-world phenomena. Notably, advancements in
high computing capacity have brought about a profound transformation in the approach to designing probability models,
diverging significantly from those proposed before 1997 (refer to Tahir and Cordeiro, [1]). In light of the above, the
primary objective of developing or generalizing models is to cater to the contemporary requirements prevalent across
various domains, including insurance, engineering, medical sciences, actuarial science, biostatistics, biomathematics, and
numerous others. For instance, traditional distributions such as Weibull, Rayleigh, exponential, gamma, Gompertz, and
Lindley, commonly used in these fields, exhibit limited properties and lack the flexibility required for comprehensive
data modeling. Consequently, heavy-tailed distributions have emerged as a focal point in statistical literature and practical
applications, particularly in areas like financial sciences, reliability engineering, and biomedical sciences. In practice,
datasets in these domains often exhibit positive skewness, with higher values in the tails and a narrower central distribution
compared to a normal distribution. Existing distributions in the literature struggle to adapt to such high-tailed datasets.
For instance, the Pareto distribution, commonly employed for representing financial data, falls short in many applications,
while the Weibull model performs well for smaller losses but fails to adequately cover significant losses (as discussed
in Bhati and Ravi, [2]). Heavy-tailed distributions, on the other hand, offer dependable and accurate models for such
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scenarios. Practitioners have introduced various probability models tailored to capture these characteristics. However,
there remains a scarcity of probability distributions that effectively address all of these qualities. Hence, the creation
of new models by building upon existing distributions has become a compelling avenue of research, attracting a growing
number of researchers. For more details, someone can see Rogers and Tukey [3], Kafadar [4], Shah et al. [5], Morgenthaler
[6], El-Morshedy [7], Lange et al. [8], Ahmad et al. [9],Jamshidian [10], Khan et al. [11], Kashid and Kulkarni [12], Reyes
et al. [13], Ferede et al. [14], Ghayour et al. [15], Jehhan et al. [16], Ahmed et al. [17], Alizadeh et al. [18], Altun et al.
[19], Eldeeb et al. [20], Eliwa and Ahmed [21], Eliwa et al. ([22],[23]), Haj Ahmad et al. [24], Handique et al. [25], among
others. Furthermore, in severe event analysis, heavy-tailed distributions are recommended over light and intermediate tail
distributions (see Murshed, [26]). Nevertheless, it is crucial to maintain a parsimonious approach when determining the
number of parameters to avoid excessive information loss. Typically, an optimal model is characterized by having only
three parameters, as elucidated in the work of Johnson et al. [27]. With this principle in mind, we introduce and explore a
heavy-tailed distribution with three parameters. In this context, the standard normal distribution N(0,1) is recognized for
its density function, which is as follows

f (z) =
1√
2π

e−
z2

2 , −∞ < z < ∞. (1)

The slash random variable is defined as the ratio of two independent random variables: Assume the standard normal

random variable Z be independent of the uniform random variable U on (0,1). Then, the random variable S = ZU−1/q

has the standard slash normal (SSN) distribution with the following density

Ψ (s;q) = q

∫ 1

0
tq f (st)dt, −∞ < s < ∞, (2)

where q > 0 is the shape parameter and f (.) denotes the standard normal distribution density function given in (1). Setting
q = 1, the distribution is called the SSN distribution, and it has the following density

Ψ (s;1) =





1√
2πs2

(
1− e−

s2

2

)
; if s 6= 0

1

2
√

2π
; otherwise.

(3)

The SSN density has heavier tails than those of the normal. The log-normal (LoN) distribution is based on the normal
distribution. It describes a variable W = eµ+σZ where Z ∼ N(0,1), symbolically, we write W ∼ Log−N(µ ,σ2). It is valid
for values of W which are greater than zero. The LoN distribution is used to model continuous random quantities when
the distribution is believed to be skewed, such as certain income and lifetime variables. The probability density function
(PDF) of the LoN distribution is given by

Φ(w; µ ,σ) =
1

w
√

2πσ
e
− (log(w)−µ)2

2σ2 , 0 < w < ∞, (4)

where −∞ < µ < ∞ and σ > 0. The main goal of this article is to offer a novel distribution whose density has longer tails
than the LoN distribution based on the transformation Y = eX , where X has the slash distribution with position parameter
µ , scale parameter σ , and shape parameter q > 0. The resulted model can be called log-slash (LoS) distribution. The
motivation behind proposing heavy-tailed probability distributions is rooted in the need to better model and understand
real-world data that often exhibit characteristics deviating significantly from normal or Gaussian distributions. Several
key motivations for considering heavy-tailed distributions include:

–Accurate Data Representation: Many real-world phenomena involve extreme events, outliers, or rare occurrences that
cannot be effectively represented by light-tailed distributions like the Gaussian distribution. Heavy-tailed distributions
provide a better fit for such data by allowing for the possibility of extreme values.

–Risk Assessment: In fields such as finance, insurance, and environmental science, the accurate modeling of tail events
is crucial for risk assessment. Heavy-tailed distributions are essential for capturing tail risk, which is the potential for
extreme events to have a significant impact on outcomes.

–Economic and Social Data: Economic and social data often exhibit heavy-tailed behavior due to factors like wealth
distribution, income inequality, and social networks. Accurate modeling of these phenomena is vital for economic
policy-making, social analysis, and decision-making.

–Natural Phenomena: Natural systems, such as earthquakes, weather patterns, and biological processes, can produce
data with heavy tails. Understanding and predicting the tails of these distributions are vital for disaster management,
weather forecasting, and epidemiology.
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–Technological Applications: In technology and engineering, the performance and reliability of systems often depend
on understanding the tails of distributions. Heavy-tailed distributions are used to model component failures, network
traffic, and various other aspects of system behavior.

–Statistical Inference: Heavy-tailed distributions can have a significant impact on statistical inference. Neglecting heavy
tails in data analysis can lead to biased estimates, improper confidence intervals, and incorrect hypothesis testing.

–Robustness: Heavy-tailed distributions offer robustness against outliers and unexpected data behavior. They can handle
extreme observations without disproportionately affecting the overall model.

In summary, the motivations for proposing heavy-tailed probability distributions stem from the recognition that many
real-world phenomena exhibit heavy-tailed behavior. To accurately capture the characteristics of such data, heavy-tailed
distributions are essential for a wide range of applications in science, finance, economics, technology, and more. They
allow for a more comprehensive understanding of data that goes beyond the assumptions of light-tailed distributions like
the Gaussian

The paper’s remaining sections are organized as follows: In Section 2, we present the univariate log-slash distribution.
Section 3 systematically establishes the key characteristics of the log-slash distribution, supported by comprehensive
proofs. In Section 4, we delve into the calculation of moments for the log-slash distribution. Section 5 is dedicated to
introducing the multivariate log-slash distribution, along with discussions on specific special cases. The estimation of
likelihood is covered in Section 6. Section 7 explores Monte Carlo simulations with varying sample sizes. In Section 8,
we analyze three real-world datasets, showcasing the adaptability of the LoS(µ ,σ ,q). Finally, Section 9 draws conclusions
and presents the key findings derived from this study.

2 Univariate Log-Slash Distribution

As previously mentioned in Section 1, researchers are perpetually in search of fresh heavy-tailed distributions suitable for
modeling various types of data. In this section, we leverage the theorem below to introduce a new heavy-tailed distribution,
referred to as LoS(µ ,σ ,q).

Theorem 1. Assume the random variable X = µ +σS has the slash (S) distribution with location parameter −∞ < µ < ∞,
scale parameter σ > 0 and shape parameter q > 0, where S has the SSN distribution, symbolically, we can write X ∼
S(µ ,σ ,q). If we defined a new random variable Y = eX , then Y has log-S (LoS) distribution, symbolically, we can write
Y ∼ LoS(µ ,σ ,q). The PDF of the random variable Y is given by

f (y; µ ,σ ,q) =
q

σ
√

2πy

∫ 1

0
e
− (log(y)−µ)2

2σ2 t2

tqdt , 0 < y < ∞. (5)

Proof. Since X ∼ S(µ ,σ ,q), then

Pr(Y < k) = Pr(eX < k) = Pr(X < log(k))

=
∫ log(k)

−∞

(
q

σ
√

2π

∫ 1

0
e
− (x−µ)2

2σ2 t2

tqdt

)
dx , −∞ < x < ∞.

Apply the transformation Y = eX , then

Pr(Y < k) =

∫ k

−∞

(
q

σy
√

2π

∫ 1

0
e
− (log(y)−µ)2

2σ2 t2

tqdt

)
dy , 0 < y < ∞.

The last term above, is the cumulative density function of Y , so we have our result.

Remarks

1.Using Maple software package, the PDF of S(µ ,σ ,q) can be expressed in a closed form as

f (y) =
q2

q+3
4

(q+ 1)(q+ 3)σy
√

π

(
lny− µ

σ

)− 1+q
2

e
−
(

lny−µ
2σ

)2

W

(
q+ 1

4
,

q+ 3

4
,
(lny− µ)2

2σ2

)

+
q2

q+3
4

(q+ 1)σy
√

π

(
lny− µ

σ

)− 5+q
2

e
−
(

lny−µ
2σ

)2

W

(
q+ 5

4
,

q+ 3

4
,
(lny− µ)2

2σ2

)
,
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where W (., ., .) is a Whittaker function introduced by Whittaker and Edmund [28].
2.Putting µ = 0 and σ = 1 in (5), the standard form of the univariate LoS distribution can be generated, say LoS(0,1,q).

For q = 1, the PDF can be formulated as

f (y;0,1,1) =
( 1

y
√

2π
−Φ(y))

(log(y))2
, 0 < y < ∞, (6)

where Φ(.) denotes the standard form of the LoN distribution density function Φ(y;0,1) given in (4). Figure 1 shows
the PDFs for different models.

Figure 1. The PDF plots of the LoN and LoS distributions for various values of q.

From Figure 1, one can easily see that, the LoS distribution is heavier in tails than the LoN model. Heavy tails and less
peak of the distribution are associated with smaller q. The limiting distribution of LoS(µ ,σ ,q), as q → ∞ is LoN(µ ,σ).
Also, one can easily see that, when q increases the curve of LoS(µ ,σ ,q) approach to the curve of LoN(µ ,σ). We can
directly proof this result from the definition of LoS(µ ,σ ,q), since

Y = eX
∼ LoS(µ ,σ ,q) =⇒ X ∼ S(µ ,σ ,q)

and

Y = eZ/U1/q ⇒ Y = eZ (at q → ∞)⇒ Y ∼ Log−N(µ ,σ).

3 Statistical Properties

Proposition 1. If Y ∼ LoS(µ ,σ ,q), then the random variable W = aY is also LoS distribution, say W ∼ LoS(log(a)+
µ ,σ ,q), where a is a real number.

Proof.

Pr(W < k) = Pr(aY < k) = Pr

(
Y <

k

a

)

=
∫ k

a

−∞

(
q

σ
√

2πy

∫ 1

0
e
− (log(y)−µ)2

2σ2 t2

tqdt

)
dy ; 0 < y < ∞.

Apply the transformation W = aY , then

Pr(W < k) =

∫ k

−∞

(
aq

σw
√

2π

∫ 1

0
e
− (log( w

a )−µ)2

2σ2 t2

tqdt

)
1

a
dw

=

∫ k

−∞

(
q

σw
√

2π

∫ 1

0
e
− (log(w)−(log(a)+µ)2

2σ2 t2

tqdt

)
dw,
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where 0 < w < ∞. The last term above, is the cumulative density function for LoS(log(a)+µ ,σ ,q), so we have our result.

Proposition 2. If Y ∼ LoS(µ ,σ ,q), then the random variable W = 1
Y

is also LoS distribution, say W ∼ LoS(−µ ,σ ,q).

Proof.

Pr(W < k) = Pr(
1

Y
< k) = Pr(Y >

1

k
)

=

∫ ∞

1
k

(
q

σ
√

2πy

∫ 1

0
e
− (log(y)−µ)2

2σ2 t2

tqdt

)
dy; 0 < y < ∞.

Apply the transformation W = 1/Y , then

Pr(W < k) =−
∫ 0

k


 wq

σ
√

2π

∫ 1

0
e
− (

log(w−1)−µ)
2

2σ2 t2

tqdt


 1

w2
dw

=

∫ k

0

(
q

σw
√

2π

∫ 1

0
e
− (log(w)+µ)2

2σ2 t2

tqdt

)
dw,

where 0 < w < ∞. The last term above, is the cumulative density function for LoS(−µ ,σ ,q), so we have our result.

Proposition 3. Assume Y ∼ LoS(µ ,σ ,q), then the random variable W = Y a is also LoS distribution, say
W ∼ LoS(aµ ,aσ ,q).

Proof.

Pr(W < k) = Pr(Y a < k) = Pr
(

Y < k1/a
)

=

∫ k1/a

−∞

(
q

σ
√

2πy

∫ 1

0
e
− (log(y)−µ)2

2σ2 t2

tqdt

)
dy, 0 < y < ∞.

Apply the transformation W = Y a, then

Pr(W < k) =

∫ k

0


 q

aσw1/a
√

2π

∫ 1

0
e
− (

1
a log(w)−µ)

2

2σ2 t2

tqdt


w

1
a−1dw

=

∫ k

0

(
q

aσw
√

2π

∫ 1

0
e
− (log(w)−aµ)2

2a2σ2 t2

tqdt

)
dw,

where 0 < w < ∞. The last term above, is the cumulative density function for LoS(aµ ,aσ ,q), so we have our result.

Proposition 4. If Y ∼ LoS(µ ,σ ,q), then the random variable W =Y +c is said to have a shifted LoS model with support
y ∈ (c,∞). The PDFof W can be expressed as

f (w; µ ,σ ,q) =
q

σ
√

2π(w− c)

∫ 1

0
e
− (log(w−c)−µ)2

2σ2 t2

tqdt; c < w < ∞.

Proof: The proof is easy, so we omitted it.
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4 Moments

The cth moment of the random variable S = ZU−1/q is given by Wang and Genton [29] as a form

E(Sc) =

{
0 if c is odd
[(c−1)(c−3)....3.1]q

q−c
if c is even

,q > c. (7)

Thus, the cth moment of the of the random variable X = µ +σS ∼ S(µ ,σ ,q), is given as

E(X c) = E([µ +σS]c) =
c

∑
i=0

(
c

i

)
µc−iσ cE(Sc), (8)

where E(Sc) given in (7). For more detail about E(Sc) and E(X c) (see Wang and Genton, [29]). The rth moment of the
LoS(µ ,σ ,q) can be derived in the following Proposition.

Proposition 5. The rth moment of the random variable Y ∼ LoS(µ ,σ ,q) can be formulated as

E(Y r) =
∞

∑
k=0

rk

k!

(
k

∑
c=0

(
k

c

)
σ cµk−cE(Sc)

)
; r = 1,2, .... , (9)

where E(Sc) is the cth moment of the of the random variable X ∼ S(µ ,σ ,q), given in (7).

Proof. From the definition of the random variable Y = eX , one can easily get

E(Y r) = E
(
erX
)
= MX(r); r = 1,2,3, ... ,

where MX (r) is the moment generating function of the random variable X = µ +σS ∼ S(µ ,σ ,q), then

E(Y r) = MX(r) =
∞

∑
k=0

rk

k!
E(X k). (10)

Substituting from (8) in (10), we get (9) which complete the proof.

Remarks

1.Putting µ = 0 and σ = 1 in Equation (9), the rth moment of the standard LoS distribution can be derived as

E(Y r) =
∞

∑
k=0

rk

k!
E(Sr); r = 1,2, .... .

2.Using Maple software package, the skewness and kurtosis of the LoS(µ ,σ ,q) at µ = 0.3 and σ = 0.8 for different
values of q can be given in Table 1.

Table 1. The skewness and kurtosis measures.

Measure ↓ q → 1 2 3 4 5 6 7 8 9 10

Skewness 1.365 1.129 1.029 0.968 0.734 0.661 0.509 0.506 0.499 0.487
Kurtosis 2.998 2.963 2.954 2.863 2.657 2.651 2.649 2.641 2.598 2.579

As we can see, the proposed model can be used to discuss positively skewed data with playkurtic shapes.
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5 Multivariate LoS Distribution

In numerous practical situations, one encounters bivariate or multivariate data. Consequently, several researchers have
endeavored to propose distributions tailored to handle the diverse forms of such data. Within this section, we delve into
the probability density function (PDF) of the multivariate LoS distribution. In this sequence, we denote k− dimensional
multivariate normal distribution with mean vector µ ∈ R

k and covariance matrix Σ ∈ R
k×k by Nk(µ ,Σ), the PDF can be

proposed as

φk(x; µµµ,Σ ) =
1

(2π)k/2 |Σ |1/2
e−

(x−µµµ)T Σ−1(x−µµµ)
2 , x ∈ R

k. (11)

Tarmast [30] defined the multivariate LoN distribution as the distribution of the random vector Y = [Y1,Y2, ....,Yk] ∈
R

k. By using the transformation Yi = exp(Xi), where Xi = [X1,X2, ....,Xk] be a k−component random vector having a
multivariate normal distribution with a mean vector µ ∈ R

k and covariance matrix Σ ∈ R
k×k. The PDF of the random

vector Y is given by

gk(y; µµµ,Σ ) =
1

(2π)k/2 |Σ |1/2

k

∏
i=1

y−1
i e−

(log(y)−µµµ)T Σ−1(log(y)−µµµ)
2 , 0 < yi < ∞, (12)

where log(y) = [log(y1), log(y2), ...., log(yk)] is a k−component column vector. Wang and Genton [29] defined the
multivariate slash distribution as a random vector

X = µ +
1/2

Σ ZU−1/q, (13)

where Z ∼ Nk(0, Ik) is independent of U ∼U(0,1). The PDF of the random vector X in (13) is given by

Ψk(x; µ ,ΣΣΣ ,q) = q

∫ 1

0
tq+k−1φk(xt; µt,ΣΣΣ)dt, x ∈ R

k. (14)

where φk(.) denotes the k− dimensional multivariate normal distribution density function given in (11). When µ = 0
and Σ = Ik , X in (13) has a standard form of a multivariate slash distribution, symbolically we write SLk(0, Ik,q). For
more details about the multivariate slash distribution (see, Wang and Genton, [29]).

Definition 1. Assume X = [X1,X2, . . . .,Xk] be a k−component random vector having multivariate slash distribution with
location parameter µ , positive definite scale matrix parameter Σ and tail parameter q > 0. Now, we use the
transformation Yi = exp(Xi) and define a k−component random vector Y = [Y1,Y2, . . . .,Yk]. The density of Y is
multivariate LoS distribution, symbolically, we can write Y ∼ LoSk(µ ,Σ ,q), and it is easily shown to be

fk(y; µµµ ,,,ΣΣΣ ,q) = q
k

∏
i=1

(yi)
−1
∫ 1

0
tq+k−1φk(t log(y); µµµt,ΣΣΣ)dt, 0 < yi < ∞. (15)

where log(y) = [log(y1), log(y2), ...., log(yk)] is a k−component column vector and φk(.) denotes the k− dimensional
multivariate normal distribution density function given in (11). The standard form of a multivariate LoS distribution, say
LoSk(0, Ik,q) can be derived from (15) when µ = 0 and Σ = Ik.

Special Cases

1.If q → ∞, the PDF in (15) tends to the PDF of the multivariate LoN distribution given in (12).
2.If k = 1, the PDF in (15) tends to the PDF of the univariate LoS distribution given in(5).
3.If k = 2 in (15), then we obtain the bivariate LoS distribution and its PDF is given by

f2(y; µµµ,,,ΣΣΣ ,q) = q
2

∑
i=1

yi

∫ 1

0
tq+1φk(t log(y); µµµt,ΣΣΣ)dt, 0 < y1,y2 < ∞, (16)

where log(y) = [log(y1), log(y2)] and q > 0.
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6 Univariate and Multivariate Extensions: Maximum Likelihood Estimation

There are typically several methods at one’s disposal for estimating unknown parameters. One of the most widely
recognized and frequently employed techniques is the maximum likelihood estimator (MLE). Estimators derived through
this method possess valuable properties and can be employed to establish confidence intervals and perform various other
statistical tests. In this case, we use the MLE method to estimate the LoS(µ ,σ ,q) parameters. Let y1, ...,yn be a data set
modelled at the location scale by the LoS(µ ,σ ,q) distribution. In this Section, we evaluate the MLE of the model
parameters from complete samples. The log-likelihood (L) function is represented by

L(µ ,σ ,q) = n log

[
q√
2π

]
− n log(σ)−

n

∑
i=1

log(yi)+
n

∑
i=1

log

∫ 1

0
e
− (log(yi)−µ)2

2σ2 t2

tqdt. (17)

On taking partial derivatives of the L function with respect to µ ,σ and q and equating the derivatives to 0, we get

n

∑
i=1

(
(log(yi)− µ̂)

σ̂2

∫ 1

0
e
− (log(yi)−µ̂)2

2σ̂2 t2

t q̂+2dt

)(∫ 1

0
e
−−(log(yi)−µ̂)2

2σ̂2 t2

t q̂dt

)−1

= 0, (18)

− n

σ̂
+

n

∑
i=1

(∫ 1

0
e
− (log(yi)−µ̂)2

2σ̂2 t2

t q̂dt

)−1(
(log(yi)− µ̂)

σ̂3

∫ 1

0
e
− (log(yi)−µ̂)2

2σ̂2 t2

tq+2dt

)
= 0 (19)

and

n

q̂
+

n

∑
i=1

(∫ 1

0
e
− (log(yi)−µ̂)2

2σ̂2 t2

t q̂dt

)−1(
q̂

∫ 1

0
e
− (log(yi)−µ̂)2

2σ̂2 t2

t q̂−1dt

)
= 0. (20)

The system of non-linear equations can be solved numerically using Maple software to get µ̂MLE , σ̂MLE and q̂MLE . The
µ̂MLE and σ̂MLE can be given by

µ̂ =
∑n

i=1 ωi log(yi)

∑n
i=1 ωi

and σ̂2 =
1

n

n

∑
i=1

ωi (log(yi)− µ̂)
2
, (21)

where

ωi(s) =

(∫ 1

0
e−

(st)2

2 tqdt

)−1(∫ 1

0
e−

(st)2

2 tq+2dt

)
; s = |log(yi)− µ̂|/σ̂ . (22)

If the random vector having LoSk(µ ,Σ ,q), then the L function can be expressed as

L(µµµ ,,,ΣΣΣ ,q) = n log[q]−
k

∑
j=1

n

∑
i=1

log(y ji)+
n

∑
i=1

log

∫ 1

0
tq+k−1φk(t log(y); µµµt,ΣΣΣ)dt. (23)

7 Simulation

In this section, we have conducted a simulation study to evaluate how the performance of Maximum Likelihood Estimators
(MLEs) varies with sample size n. We focus on estimating the unknown parameters of the LoS(µ ,σ ,q) distribution.
Additionally, we explore both univariate and multivariate scenarios, as outlined below:

7.1 Univariate case

In this segment, we investigate the performance of the MLEs for LoS(µ ,σ ,q) distribution with respect to sample size n.
The evaluation is based on a simulation study: Generate 1000 samples of size n from LoS(µ ,σ ,q) distribution; calculate
the MLEs for the 1000 samples, say (µ̂i, σ̂i, q̂i) for i = 1,2, ....,1000; compute the biases and mean squared errors (MSE)

where Bias(n) = 1
1000

1000

∑
i=1

(
∧
θ i−θ ) and MSE(n) = 1

10500

1000

∑
i=1

(
∧
θ i−θ )2. Repeat these steps for n = 20,50,200,300,500 with

LoS(0.6,0.7,0.8) and LoS(0.5,0.7,1.9). Table 2 show how the biases and MSEs decrease with respect to the change of
the sample size.
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Table 2. Simulation results for the LoS distribution parameters.

LoS(0.6,0.7,0.8) LoS(0.5,0.7,1.9)
n Parameter Bias MSE MRE Bias MSE MRE

20 µ 0.23846363 0.13654294 0.15386441 0.38967159 0.34283456 0.37762549
σ 0.43894531 0.28468708 0.32745513 0.53027643 0.32046535 0.43966416
q 0.53846815 0.34095681 0.42057641 0.28468149 0.17745321 0.23098462

50 µ 0.19364710 0.07485341 0.12056497 0.29548252 0.25497632 0.31745780
σ 0.37743052 0.20437865 0.26635480 0.37458309 0.21835573 0.33096645
q 0.41486820 0.25004682 0.33484651 0.23264571 0.13946830 0.20947675

100 µ 0.13394634 0.00332835 0.07486344 0.21994689 0.18620835 0.23087541
σ 0.27496391 0.14993655 0.18454731 0.27749510 0.17759462 0.21047634
q 0.29474640 0.18554751 0.21764505 0.17745381 0.10377642 0.14404639

200 µ 0.08452854 0.00047527 0.00450764 0.15548363 0.12885649 0.15937728
σ 0.18354951 0.08846836 0.12548615 0.18703062 0.12056783 0.14009527
q 0.18846405 0.11946542 0.13846655 0.12995642 0.02284681 0.10443771

300 µ 0.02437549 0.00008947 0.00086534 0.11376074 0.03938614 0.13927465
σ 0.11047531 0.00443845 0.02275381 0.08846581 0.07949974 0.05548621
q 0.12846554 0.03054682 0.05547538 0.05548360 0.00544375 0.01048654

500 µ 0.00043785 0.00000038 0.00008165 0.00520483 0.00275493 0.07745921
σ 0.00774953 0.00069465 0.00438461 0.00365489 0.00054037 0.00284558
q 0.02945781 0.00054792 0.00659462 0.00194693 0.00060947 0.00026486

Table 3. Simulation results for the multivariate LoS distribution parameters.

LoS2(0.6,0.9,0.8,1.2,2.6) LoS2(1.5,1.7, 1.9,1.3,1.8)
n Parameter Bias MSE MRE Bias MSE MRE

20 µ1 0.88462482 0.72365495 0.93196825 0.59231695 0.43196309 0.51030289
µ2 0.63484650 0.58996285 0.65320395 0.45039557 0.34028741 0.41036948
σ1 0.34072075 0.25312585 0.28531957 0.46329871 0.31039857 0.35202894
σ2 0.53076381 0.41096582 0.49306552 0.35031258 0.26736985 0.32098257
q 0.34745095 0.29832484 0.31023982 0.27036281 0.24302897 0.22993647

50 µ1 0.62548504 0.53012846 0.72139568 0.41395348 0.36032695 0.39203298
µ2 0.47740719 0.44231089 0.51309559 0.32087169 0.28031894 0.30298567
σ1 0.28464997 0.21202395 0.26387128 0.31032985 0.27039698 0.28810394
σ2 0.41946945 0.34295348 0.38663294 0.26032698 0.21093874 0.23019859
q 0.24364841 0.20713907 0.22836428 0.21039087 0.18503298 0.16620874

100 µ1 0.41046327 0.37103956 0.49326954 0.29312847 0.25032997 0.27719385
µ2 0.30947689 0.25531925 0.32039852 0.20139655 0.17032039 0.18803298
σ1 0.21548504 0.15397356 0.19832585 0.19032987 0.16930284 0.17032697
σ2 0.27493469 0.25319758 0.24196574 0.18893257 0.15023967 0.17712962
q 0.19464965 0.14429307 0.16328549 0.15509689 0.12039592 0.10883017

200 µ1 0.28496609 0.23185468 0.24963285 0.15530379 0.13302896 0.14330935
µ2 0.19406563 0.13320284 0.20123689 0.14302698 0.11082396 0.13392854
σ1 0.13984560 0.11933597 0.13395452 0.12037028 0.10223987 0.11096384
σ2 0.19453985 0.17302398 0.15563929 0.12029856 0.08823749 0.11930195
q 0.13338850 0.07193028 0.10268874 0.10023987 0.06632987 0.04238749

300 µ1 0.13493651 0.10320482 0.15329564 0.10239524 0.07829345 0.08203964
µ2 0.08946582 0.00931398 0.07125695 0.08231965 0.06620841 0.05507496
σ1 0.08756823 0.04239698 0.07032958 0.07035913 0.03018557 0.05930328
σ2 0.11263476 0.08732968 0.10218958 0.08259637 0.00370971 0.02296547
q 0.07358551 0.00632987 0.05526987 0.00296385 0.00877129 0.00530148

500 µ1 0.08533601 0.01289458 0.09654855 0.00128939 0.00054036 0.00089355
µ2 0.00328458 0.00029344 0.00212858 0.00020398 0.00080289 0.00062641
σ1 0.00077496 0.00029713 0.00052972 0.00050397 0.00035967 0.00070395
σ2 0.00883574 0.00073182 0.00725896 0.00083036 0.00012957 0.00059344
q 0.00294672 0.00001395 0.00094128 0.00028996 0.00007496 0.0002398
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7.2 Multivariate case

In this Section, a simulation is discussed for the bivariate LoS model as a special case of the multivariate formula. Thus,
we investigate the performance of the MLEs for the LoS2(µ1,σ1,µ2,σ2,q) distribution with respect to sample size n. The
evaluation is based on a simulation study: Generate 1000 samples of size n from Log−SL2(µ1,σ1,µ2,σ2,q) distribution;
calculate the MLEs for the 1000 samples, say (µ̂1i, σ̂1i, µ̂2i, σ̂2i, q̂i) for i = 1,2, ....,1000; compute the biases and MSE;
repeat these steps for n = 20,50,100,200,500 with LoS2(0.6,0.9,0.8,1.2,2.6) and LoS2(1.5,1.7, 1.9,1.3,1.8). Table 3
show how the biases and MSEs decrease with respect to the change of the sample size.

The simulation results for both univariate and multivariate cases are depicted in Table 2 and Table 3, respectively.
These tables present the biases and mean square errors (MSEs) of the estimated parameters for the LoS(µ ,σ ,q) and
LoS2(µ1,σ1,µ2,σ2,q) distributions. The results showcased in these tables demonstrate that the estimates for the
parameters of both the LoS(µ ,σ ,q) and LoS2(µ1,σ1,µ2,σ2,q) distributions perform admirably. They exhibit minimal
bias and commendable MSEs across all parameter configurations. Furthermore, as the sample size increases, the biases
steadily approach zero, indicating that the estimates behave as asymptotically unbiased estimators. Additionally, the
MSEs decrease with larger sample sizes, signifying that these estimators consistently provide accurate estimates for the
LoS(µ ,σ ,q) and LoS2(µ1,σ1,µ2,σ2,q) parameters.

8 Real Data Analysis

In this section, we illustrate the empirical importance of the Log− SL(µ ,σ ,q) distribution using four applications to real
data with making a comparison with well-known models such as exponential (E) and log-normal (Log-N) distributions.
The fitted distributions are compared using some criteria namely, the maximized log-likelihood (-L), Akaike Information
Criterion (AIC), correct Akaike information criterion (CAIC), bayesian information Criterion (BIC), Hannan-Quinn
information criterion (HQIC) and Kolmogorov-Smirnov (KS) test and its p-value. For more details about this criteria see,
Farooq et al. [31].

8.1 Data set (I)

The dataset labeled as (I) contains information on the survival times in months for 38 patients who succumbed to cervical
cancer. You can find the data at the following link: www.ssc.ca/documents/case studies/2002/cervical˜e.html. The specific
survival times are listed below: 5.26, 6.64, 8.38, 9.80, 11.08, 11.18, 12.56, 12.66, 13.45, 14.14, 17.46, 17.52, 20.91, 21.67,
23.18, 25.74, 25.78, 32.55, 34.13, 37.55, 38.07, 38.70, 39.85, 41.88, 50.83, 51.16, 53.98, 55.96, 57.11, 62.50, 66.08, 67.82,
67.86, 70.55, 78.05, 82.78, 96.13, 100.67. A variety of non-parametric plots depicting Data Set I are showcased in Figure
2. These results can be found in Table 4.
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Figure 2. Non-parametric plots for dataset I.
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Table 4. The MLE, -L, AIC, BIC, CAIC, HQIC and KS (P-Value) values.

Model
∧
q

∧
µ

∧
σ -L AIC BIC CAIC HQIC KS(P-Value)

E(q) 38.991 −− −− 177.21 356.41 358.05 356.52 356.99 0.112(0.154)
Log−N(µ ,σ) −− 3.390 0.630 176.26 356.53 359.80 356.87 357.69 0.124(0.132)
Log−SL(µ ,σ ,q) 10.934 3.393 0.697 174.11 354.22 359.13 354.93 355.97 0.082(0.263)

Figure 3. The estimated PDFs for data set I.

Figure 4. The profile of the log-likelihood for data set I.

Table 4 reveals that among the various tested distributions, the Log− SL(µ ,σ ,q) distribution stands out as the most
suitable choice for fitting this data. This is evident as the Log− SL(µ ,σ ,q) distribution exhibits the lowest values for -L,
AIC, CAIC, BIC, and HQIC. Additionally, Figures 3 and 4 provide insights into the estimated PDFs and the log-likelihood
profile for each estimator based on the actual dataset. Figure 4 corroborates that MLE provides a distinct and consistent
solution for all estimators.

8.2 Data set (II)

Data set (II) represents the annual flood discharge rates of the Floyd River, measured in cubic feet per second (ft3/s)
spanning from 1935 to 1973. This dataset was originally reported by Akinsete et al. [32]. It includes the following values:
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1460, 4050, 3570, 2060, 1300, 1390, 1720, 6280, 1360, 7440, 5320, 1400, 3240, 2710, 4520, 4840, 8320, 13900, 71500,
6250, 2260, 318, 1330, 970, 1920, 15100, 2870, 20600, 3810, 726, 7500, 7170, 2000, 829, 17300, 4740, 13400, 2940,
5660. Some non-parametric plots for Data Set II are shown in Figure 5.
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Figure 5. Non-parametric plots for data set II.

The results of the data fitting process can be found in Table 5.

Table 5. The MLE, -L, AIC, BIC, CAIC, HQIC and KS (P-Value) values.

Model
∧
q

∧
µ

∧
σ -L AIC BIC CAIC HQIC KS(P-Value)

E(q) 3.3× 10−4 −− −− 399.57 797.13 795.47 797.02 796.53 0.162(0.001)
Log−N(µ ,σ) −− 5.949 4.282 418.34 832.68 829.35 832.35 831.48 0.182(0.001)
Log−SL(µ ,σ ,q) 9.691 8.175 0.938 376.65 747.29 742.29 746.60 745.49 0.087(0.785)

Table 5 provides clear evidence that, among all the distributions tested, the Log− SL(µ ,σ ,q) distribution proves to be
the most suitable for fitting this data. This conclusion is supported by the fact that the Log− SL(µ ,σ ,q) distribution
exhibits the lowest values for -L, AIC, CAIC, BIC, and HQIC. Furthermore, Figures 6 and 7 offer valuable insights into
the estimated PDFs and the profile of log-likelihood for each estimator, based on the actual data set II.

Figure 6. The estimated PDFs for data set II.
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Figure 7. The profile of the log-likelihood for data set II.

Figure 7 demonstrates that MLE provides a singular and consistent solution for all estimators.

8.3 Data set (III)

Data set (III) consists of annual maximum flow values (measured in m3/s) recorded at Kinrara, Spey, spanning the years
1952 to 1982. There are a total of 31 records in this dataset, as reported by Ahmad et al. [33]. The recorded values are as
follows: 89.8, 109.1, 202.2, 146.3, 212.3, 116.7, 109.1, 80.7, 127.4, 138.8, 283.5, 85.6, 105.5, 118.0, 387.8, 80.7, 165.7,
111.6, 134.4, 131.5, 102.0, 104.3, 242.5, 214.8, 144.6, 114.2, 98.3, 102.8, 104.3, 196.2, 143.7. Figure 8 displays several
non-parametric plots representing Data Set III.
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Figure 8. Non-parametric plots for data set III.

The results of the data fitting process can be found in Table 6.
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Table 6.The MLE, -L, AIC, BIC, CAIC, HQIC and KS (P-Value) values.

Model
∧
q

∧
µ

∧
σ -L AIC BIC CAIC HQIC KS(P-Value)

E(q) 0.47× 10−2 −− −− 187.29 372.57 371.14 372.43 372.10 0.213(0.000)
Log−N(µ ,σ) −− 5.032 1.787 199.16 372.57 371.14 372.43 372.10 0.182(0.000)
Log−SL(µ ,σ ,q) 13.991 4.908 0.371 165.53 325.06 320.76 324.18 323.66 0.122(0.058)

Table 6 clearly indicates that, among the various distributions tested, the Log− SL(µ ,σ ,q) distribution stands out as the
most appropriate choice for fitting this data. This conclusion is supported by the fact that the Log−SL(µ ,σ ,q) distribution
exhibits the lowest values for -L, AIC, CAIC, BIC, and HQIC. Additionally, Figures 9 and 10 provide valuable insights
into the estimated Probability Density Functions (PDFs) and the profile of log-likelihood for each estimator, based on the
actual data set III.

Figure 9. The estimated PDFs for data set III.

Figure 10. The profile of the log-likelihood for data set III.

Figure 10 clearly demonstrates that MLE yields a distinct and singular solution for each estimator.
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8.4 Data set (IV)

Data set (IV) represents the maximum amount of rainfall in millimeters for the Pakistani city of Kalat. This dataset spans
a 30-year period from 1981 to 2010 and comprises 30 values of maximum rainfall. The data was originally reported by
Ahmad et al. [33]. The recorded values are as follows: 32.77, 58.65, 60.71, 64.01, 42.6, 75.8, 88.6, 90.1, 97.9, 105.6, 73.1,
76.6, 78.5, 58.3, 122.5, 57.8, 546, 125.8, 50.5, 45.9, 21.7, 45.5, 38, 75.4, 168.2, 72.9, 95.8, 133.4, 71.9, 28. Figure 11
exhibits a collection of non-parametric plots illustrating Data Set III.

0 100 200 300 400 500 600

0
.0

0
0

0
.0

0
6

0
.0

1
2

Kernel Density 

N = 30   Bandwidth = 14.3

D
e

n
s
it
y

100 200 300 400 500

Box Plot

w

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

i/n

T
(i
/n

)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

T T T Plot

 

−2 −1 0 1 2

1
0

0
3

0
0

5
0

0
Normal Q−Q Plot

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

Figure 11. Non-parametric plots for data set IV.

The results of the data fitting process can be found in Table 7.

Table 7. The MLE, -L, AIC, BIC, CAIC, HQIC and KS (P-Value) values.

Model
∧
q

∧
µ

∧
σ -L AIC BIC CAIC HQIC KS (P-Value)

E(q) 0.013 −− −− 165.42 328.83 327.43 328.69 328.39 0.138(0.221)
Log−N(µ ,σ) −− 4.129 1.074 162.86 321.71 318.91 321.27 320.81 0.129(0.352)
Log−SL(µ ,σ ,q) 4.931 4.198 0.407 153.88 301.76 297.55 300.83 300.41 0.117(0.834)

Table 7 clearly demonstrates that, among the various distributions examined, the Log−SL(µ ,σ ,q) distribution is the most
suitable choice for fitting this data. This conclusion is supported by the fact that the Log−SL(µ ,σ ,q) distribution displays
the lowest values for -L, AIC, CAIC, BIC, and HQIC. Furthermore, Figures 12 and 13 provide valuable insights into the
estimated PDFs and the profile of log-likelihood for each estimator, based on the actual data set IV.

Figure 12. The estimated PDFs for data set IV.
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Figure 13. The profile of the log-likelihood for data set VI.

Figure 13 makes it evident that MLE yields a distinct and singular solution for each estimator.

9 Conclusion

An innovative category of both univariate and multivariate log-slash distributions was introduced. This new class was
envisioned to offer significant advantages when dealing with datasets characterized by longer tails than those
accommodated by conventional distributions like the log-normal distribution and other well-established options in the
field of statistical literature. Within this newly introduced category, various distribution properties were thoroughly
examined, and comprehensive density calculations were provided, allowing the deduction of a multitude of statistical
characteristics. The maximum likelihood estimation method was employed for parameter estimation. Additionally, a
comprehensive simulation study was conducted to evaluate the performance of parameter estimation, considering both
bias and mean squared errors. Beyond the realm of simulations, a meticulous analysis of three real-world datasets was
carried out, showing strong alignment with the proposed model. In summary, the findings indicated that the log-slash
distribution outperformed existing heavy-tailed distributions, making it a more suitable choice for effectively modeling a
wide range of real-world data spanning various sectors and industries.
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