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Harris-G Family of Distributions and Its Applications

Shusen Pu1,†,*, Thatayaone Moakofi2,†, Broderick Oluyede2 and Achraf Cohen1

1Department of Mathematics and Statistics, University of West Florida, Pensacola, FL, USA
2Department of Mathematics and Statistical Sciences, Botswana International University of Science and Technology, Palapye,

Botswana
† These authors contributed equally to this work.

Received: 14 Jul. 2024, Revised: 09 Feb. 2025, Accepted: 10 Mar. 2025

Published online: 1 May 2025

Abstract: This research introduces the Ristić-Balakrishnan-Harris-G (RB-Harris-G) family of distributions, a novel framework

designed to address critical gaps in survival analysis and reliability modeling. The paper systematically explores the mathematical

foundations and statistical properties of this family, emphasizing its capacity to model complex hazard rate behaviors such as

bathtub-shaped, increasing, and decreasing failure patterns. Key innovations include a reparameterized quantile function for enhanced

simulation capabilities and comprehensive analyses of reliability metrics, Rényi entropy, and order statistics. Parameters are estimated

via maximum likelihood estimation, with rigorous simulations confirming estimator consistency. The RB-Harris-Weibull subfamily

demonstrates exceptional flexibility, outperforming established models across four diverse datasets (silicon nitride fracture toughness,

unemployment insurance, COVID-19 survival, and chemotherapy outcomes) through advanced goodness-of-fit tests. Visual

diagnostics, including Kaplan-Meier curves and hazard rate plots, underscore the model’s alignment with empirical trends. These

advancements provide researchers with robust tools for medical and engineering applications while establishing a foundation for

future extensions in time-dependent covariate modeling.

Keywords: Generalized Distributions, Survival Analysis, Hazard Rate Flexibility, Quantile Reparameterization, Monte Carlo
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1 Introduction

Modern statistical challenges demand distributions capable of capturing complex data behaviors inherent in
high-dimensional, skewed, or censored datasets. Data distribution and fitting are essential for extracting actionable
insights in fields such as reliability engineering and biomedical research. While classical probability models underpin
traditional analyses, their rigidity often fails to accommodate non-monotonic hazard rates or heavy-tailed phenomena
[1]. This limitation has spurred the development of generalized families, ranging from transformation-based frameworks
(e.g., Marshall-Olkin [2]) to exponentiated generators [3]. Recent innovations include the modified Burr III Odds
Ratio-G [4], Ristić–Balakrishnan-Topp-Leone-Gompertz-G [5], and alpha power Rayleigh-G [6], among others [7,8,9,
10,11,12].

Among these, the Harris-G family [13] stands out for its ability to unify skewness and tail-weight adjustments through
its cumulative distribution function (CDF):

FHarris−G(x;v,θ ,ψ) = 1−

[

θ B̄v(x;Φ)

1− θ̄ B̄v(x;Φ)

]
1
v

, (1)
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and probability density function (PDF):

fHarris−G(x;v,θ ,ψ) =
θ

1
v g(x;ψ)

(

1− θ̄ B̄v(x;Φ)
)1+ 1

v

, (2)

where v,θ > 0, θ̄ = 1−θ , and ψ parameterizes the baseline distribution. When v= 1, this reduces to the Marshall-Olkin-G
family, illustrating its nested flexibility.

Building on Ristić and Balakrishnan’s gamma generator [14], our work extends the Harris-G framework by
integrating a shape parameter δ , enabling richer hazard rate dynamics. Prior applications of the gamma generator include
heavy-tailed models like the gamma log-logistic Weibull [15] and bathtub hazard formulations such as the gamma
exponentiated exponential-Weibull [16] and others [17,18,19]. The RB-Harris-G family synthesizes these advances,
supporting reversed-J, symmetric, and skewed densities alongside monotonic/non-monotonic hazard rates.

The necessity of this research stems from critical gaps in contemporary statistical modeling, particularly in survival
analysis and reliability engineering. Traditional distributions often impose restrictive assumptions—such as constant or
monotonically increasing hazard rates—that poorly align with real-world phenomena. For instance, mechanical systems
frequently exhibit ”bathtub-shaped” failure patterns (high initial risk, stabilization, then wear-out phases), while medical
data, such as post-treatment survival times, may show non-monotonic risks influenced by heterogeneous patient
responses. Existing models, including standard Weibull or log-logistic distributions, lack the parametric flexibility to
capture these dynamics, leading to biased estimates and unreliable predictions. This limitation becomes acute in
high-stakes applications: underestimating early failure risks in engineering components could precipitate catastrophic
system failures, while oversimplified medical hazard models might obscure critical intervention windows.

The RB-Harris-G family directly addresses these challenges by unifying adaptable hazard structures with
interpretable parameterization. Unlike earlier generalizations that prioritize mathematical tractability over applicability,
our framework integrates the gamma generator’s shape flexibility [14] with the Harris-G’s skewness-tail modulation
[13]. This synergy enables explicit modeling of multimodal hazards and heavy-tailed phenomena without sacrificing
closed-form quantile expressions—a dual advantage absent in predecessors like the Marshall-Olkin-G or exponentiated
Weibull families. Furthermore, the proliferation of complex datasets (e.g., censored biomedical records, multi-modal
sensor data) demands distributions that balance computational efficiency with empirical fidelity. By embedding these
capabilities, the RB-Harris-G family fills a methodological void, offering practitioners a versatile tool for modern data
challenges.

The paper proceeds as follows: in Section 2, we formally introduce the RB-Harris-G family, and Section 3 explores
several of its special cases. Section 4 presents the expansions of the probability density function, while Section 5 details
its mathematical properties. In Section 6, Monte Carlo simulations are used to validate the estimation methods. Section
7 demonstrates the model’s empirical superiority over benchmark alternatives, and Section 8 concludes with a discussion
of future research directions.

2 The New Family of Distributions

The development of flexible distribution families hinges on synthesizing existing generators to enhance parametric
adaptability. The gamma generator proposed by Ristić and Balakrishnan [14] operationalizes this principle through its
CDF:

FRB(x;δ ) = 1−
1

Γ (δ )

∫ − log(G(x))

0
tδ−1e−t dt, δ > 0, (3)

and corresponding PDF:

fRB(x;δ ) =
1

Γ (δ )
[− log(G(x))]δ−1g(x), x ∈ R, δ > 0. (4)

This framework generalizes baseline distributions by introducing a shape parameter δ , which modulates tail behavior and
hazard rate flexibility.

To further augment modeling capabilities, we unify the gamma generator with the Harris-G family [13], renowned for
its skewness-tail trade-off via parameter θ . The resultant Ristić-Balakrishnan-Harris-G (RB-Harris-G) family synthesizes
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these advantages, yielding the CDF:

FRB−Harris−G(x;δ ,v,θ ,ψ) =1−
1

Γ (δ )

∫ − log

(

1−
[

θ B̄v(x;Φ)
1−θ̄ B̄v(x;Φ)

]1/v
)

0
tδ−1e−t dt

=1−

γ

[

δ ,− log

(

1−
[

θ B̄v(x;Φ)

1−θ̄ B̄v(x;Φ)

]1/v
)]

Γ (δ )
. (5)

Here, B̄(x;Φ) = 1−B(x;Φ) represents the survival function of the baseline distribution B(x;Φ), while v governs tail
heaviness and θ modulates skewness. The associated PDF derives as:

fRB−Harris−G(x;δ ,v,θ ,ψ) =
1

Γ (δ )

[

− log

(

1−

[

θ B̄v(x;Φ)

1− θ̄ B̄v(x;Φ)

]1/v
)]δ−1

×
θ

1/vb(x;Φ)
[

1− θ̄ B̄v(x;Φ)
]1+1/v

(6)

for δ ,v,θ > 0, where θ̄ = 1−θ . This formulation extends baseline densities b(x;Φ) through four interpretable parameters,
enabling multi-modal and heavy-tailed behaviors.

2.1 Hazard Rate and Quantile Functions

In reliability analysis, the hazard rate function provides critical insights into time-dependent failure risks. For the RB-
Harris-G family, this function is analytically tractable:

hRB−Harris−G(x;δ ,v,θ ,ψ) =− log

(

1−

[

θ B̄v(x;Φ)

1− θ̄ B̄v(x;Φ)

]1/v
)δ−1(

θ
1/vb(x;Φ)

[1− θ̄ B̄v(x;Φ)]1+1/v

)

×

(

γ

[

δ ,− log

(

1−

[

θ B̄v(x;Φ)

1− θ̄ B̄v(x;Φ)

]1/v
)])−1

, (7)

where δ directly influences hazard curvature—lower values induce bathtub shapes, while higher values promote
monotonic trends.

Quantile functions are equally vital for simulation and risk quantification. The RB-Harris-G quantile function Q(p)
solves:

FRB−Harris−G(x;δ ,v,θ ,ψ) = 1−

γ

[

δ ,− log

(

1−
[

θ B̄v(x;Φ)

1−θ̄ B̄v(x;Φ)

]1/v
)]

Γ (δ )
= p, (8)

yielding the closed-form solution:

B(x;Φ) = 1−
[

1+θ
(

1+
[

1− exp
(

−γ−1[(1− p)Γ (δ ),δ ]
)]−v

)]−1/v

:= q.

Thus, simulating RB-Harris-G variates reduces to inverting the baseline quantile B−1(q), a computationally efficient
process.

3 Selected Sub-Models of the Extended RB-Harris-G Family

In this section, we illustrate how various probability distributions can be derived by specifying a particular baseline
distribution function B(x,ψ) within the RB-Harris-G framework. We present three illustrative sub-models that arise
naturally from different choices of B(x,ψ). Each sub-model highlights the flexibility of the RB-Harris-G construction
and exhibits diverse shapes in both the probability density function (pdf) and the hazard rate function (hrf).
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3.1 A Refined Harris-Log-Logistic (RHLLoG) Model

To introduce a Harris-based model connected to the log-logistic family, we start from the standard log-logistic cdf and pdf
given by:

B(x;c) = 1−
(

1+ xc
)−1

, b(x;c) =
cxc−1

(

1+ xc
)2
,

where c > 0 and x > 0. By substituting these functions into the RB-Harris-G framework, we obtain the following cdf for
the Refined Harris-Log-Logistic (RHLLoG) distribution:

FRHLLoG(x;δ ,v,θ ,c) = 1 −
γ
(

δ ,− ln
[

1−
(

θ(1+xc)−v

1−θ̄ (1+xc)−v

)

1
v
])

Γ (δ )
, (9)

where θ̄ = 1−θ . The corresponding pdf is given by

fRHLLoG(x;δ ,v,θ ,c) =
1

Γ (δ )

(

− ln
[

1−
(

θ (1+xc)−v

1−θ̄ (1+xc)−v

)

1
v
])δ−1

×
θ

1
v cxc−1 (1+ xc)−2

(

1− θ̄ (1+ xc)−v
)1+

1
v

. (10)

All parameters satisfy δ ,v,θ ,c > 0. Figure 1 illustrates how the RHLLoG distribution can capture numerous shapes in
its pdf, including nearly symmetric, left-skewed, and right-skewed forms. The hrf can also take several patterns, such as
monotonically increasing or decreasing, bathtub, and inverted bathtub. This variety makes the RHLLoG model highly
adaptable to real data scenarios requiring flexible skewness and hazard behavior.
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Fig. 1: (A) The pdf of the RHLLoG model for different parameter choices δ , v, θ , and c. (B) The hrf of the RHLLoG model under

varying δ , v, θ , and c.
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3.2 A Refined Harris-Weibull (RHW) Model

Next, we explore the scenario where the baseline distribution is the Weibull family, characterized by

B(x;λ ) = 1− exp
(

−xλ
)

, b(x;λ ) = λ xλ−1 exp
(

−xλ
)

,

for x > 0 and λ > 0. Substituting these into the RB-Harris-G construction yields the cdf of the Refined Harris-Weibull
(RHW) distribution:

FRHW(x;δ ,v,θ ,λ ) = 1 −
γ
(

δ ,− ln
[

1−
(

θ exp(−vxλ )

1−θ̄ exp(−vxλ )

)

1
v
])

Γ (δ )
, (11)

and its pdf becomes

fRHW(x;δ ,v,θ ,λ ) =
1

Γ (δ )

(

− ln
[

1−
(

θ exp(−vxλ )

1−θ̄ exp(−vxλ )

)

1
v
])δ−1

×
θ

1
v λ xλ−1 exp

(

−xλ
)

(

1− θ̄ exp(−vxλ )
)1+

1
v

. (12)

All parameters satisfy δ ,v,θ ,λ > 0. Figure 2 showcases a selection of pdf and hrf shapes attainable by the RHW model,
including unimodal, reverse-J, left-skewed, and right-skewed curves for the pdf. Meanwhile, the hrf can be monotonically
increasing or decreasing, or even exhibit bathtub and upside-down bathtub forms. Such flexibility is crucial when modeling
lifetimes or reliability data with varying hazard patterns.
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Fig. 2: (A) The pdf of the RHW model for different δ , v, θ , and λ . (B) The hrf of the RHW model for the same parameter sets.

3.3 A Refined Harris-Standard Half Logistic (RH-SHL) Model

Finally, we consider the standard half logistic distribution as the baseline. Its cdf and pdf can be expressed as

B(x) =
1− e−x

1+ e−x
, b(x) =

2e−x

(

1+ e−x
)2
,
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valid for x > 0. Inserting these into the RB-Harris-G structure gives the cdf of the Refined Harris-Standard Half Logistic
(RH-SHL) distribution:

FRH-SHL(x;δ ,v,θ ) = 1 −
γ
(

δ ,− ln
[

1−
(

θ [1−(1−e−x)/(1+e−x) ]v

1−θ̄ [1−(1−e−x)/(1+e−x) ]v

)

1
v
])

Γ (δ )
, (13)

and its pdf:

fRH-SHL(x;δ ,v,θ ) =
1

Γ (δ )

(

− ln
[

1−
(

θ [1−(1−e−x)/(1+e−x) ]v

1−θ̄ [1−(1−e−x)/(1+e−x) ]v

)

1
v
])δ−1

×
θ

1
v
[

2e−x/(1+ e−x)2
]

(

1− θ̄
[

1− (1− e−x)/(1+ e−x)
]v
)1+

1
v

. (14)

Here, δ ,v,θ > 0. Figure 3 illustrates how the RH-SHL model can exhibit nearly symmetric, reverse-J, left-skewed, right-
skewed, and even bathtub-like shapes in the pdf. The hrf also demonstrates a broad spectrum of behaviors, including
monotonically decreasing, monotonically increasing, bathtub, upside-down bathtub, and more complex patterns such as
decreasing-increasing-decreasing.
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Fig. 3: (A) The pdf of the RH-SHL model for various δ , v, and θ . (B) The hrf of the RH-SHL model for the same parameter settings.

Overall, these three sub-models—RHLLoG, RHW, and RH-SHL—demonstrate the breadth of shapes and hazard
patterns attainable within the extended RB-Harris-G family. By choosing an appropriate baseline distribution, researchers
and practitioners can adapt the model to a wide range of data types, ensuring both flexibility and interpretability in applied
statistical analyses.

4 Series Representation and Properties of the RB-Harris-G Distribution

In this section, we derive an alternative infinite-series formulation for the probability density function of the RB-Harris-
G distribution, highlighting its underlying mathematical structure and potential applications in reliability analysis and
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statistical modeling. Such expansions are particularly useful in analytical derivations, computational implementations,
and exploring theoretical properties of generalized probability distributions.

To initiate this expansion, we introduce a transformation variable:

z =

[

θ B̄v(x;Φ)

1− θ̄ B̄v(x;Φ)

]
1
v

, (15)

where parameters and notation are consistent with previously established definitions.
Observing the logarithmic series expansion identity,

− log(1− z) =
∞

∑
j=0

z j+1

j+ 1
, (16)

and applying it to the transformed variable, we obtain:

[− log(1− z)]δ−1 =

[

∞

∑
j=0

z j+1

j+ 1

]δ−1

(17)

= zδ−1

(

1+
∞

∑
j=1

c jz
j

)δ−1

, (18)

where we define coefficients c j = ( j+ 1)−1 to simplify notation.
By employing the generalized binomial theorem, the above can be expanded further:

[− log(1− z)]δ−1 = zδ−1
∞

∑
m=0

(

δ − 1

m

)

zm

(

∞

∑
j=0

c jz
j

)m

. (19)

Expanding the nested power series, we define new coefficients a j,m as:

(

∞

∑
j=0

c jz
j

)m

=
∞

∑
j=0

a j,mz j , (20)

with coefficients a j,m computed recursively:

a0,m = cm
0 , (21)

a j,m =
1

jc0

j

∑
l=1

[m(l + 1)− j]cla j−l,m. (22)

The details of these recursive computations can be referenced from standard mathematical sources such as [20,21].
Thus, the pdf of the RB-Harris-G distribution originally defined by equation (6) admits a series representation given

by:

fRB−Harris−G(x;δ ,v,θ ,ψ) =
b(x;Φ)

Γ (δ )

∞

∑
j,m=0

a j,m

[

θ B̄v(x;Φ)

1− θ̄B̄v(x;Φ)

] j+m+δ−1

(23)

×
θ 1/v

[1− θ̄ B̄v(x;Φ)]1+1/v
. (24)

We further simplify the above expression by defining the general weights Wk as follows:

Wk+1 =
1

Γ (δ )

∞

∑
j,m,p=0

( v(−m− j−δ )−1

v

p

)(

v(m+ j+ δ + p− 1)

k

)

a j,m (25)

×
θ

v(m+ j+δ−1)+1
v θ̄ p(−1)p+k

k+ 1
, (26)
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yielding a concise expression for the pdf as a mixture of simpler distributions:

fRB−Harris−G(x;δ ,v,θ ,ψ) =
∞

∑
k=0

Wk+1 fExp−G (x;k+ 1,Φ) , (27)

where fExp−G(x;k+1,Φ) is recognized as the exponentiated generalized (Exp-G) pdf characterized by its shape parameter
(k+ 1).

Consequently, the analytical properties and statistical measures of the RB-Harris-G family naturally extend from those
known for the Exp-G family, thus providing a robust theoretical foundation and facilitating practical applications in diverse
fields such as survival analysis, environmental statistics, and lifetime modeling.

5 Statistical and Analytical Characteristics of the RB-Harris-G Family

Having established the series representation of the RB-Harris-G pdf, we now explore various crucial statistical properties
derived directly from this representation. Understanding these characteristics is essential as they offer insight into the
behavior of the distribution, facilitate parameter estimation, and support real-world applications such as risk assessment
in actuarial science, reliability in engineering systems, and survival analysis in medical research. The series expansion
previously introduced allows us to analytically explore various statistical properties in a more tractable form.

5.1 Moments and Generating Functions

Moments are fundamental statistical descriptors that provide insights into the central tendency, dispersion, and shape
characteristics of probability distributions. Consider a random variable Zk+1 following an Exp-G distribution with shape
parameter (k+ 1). The rth moment of the RB-Harris-G distribution is then given by

E(X r) =
∞

∑
k=0

γk+1 E(Zr
k+1), (28)

where Zk+1 follows an Exp-G distribution characterized by a power parameter (k+1), and the coefficients γk+1 are derived
from the pdf series expansion. Furthermore, the moment generating function (MGF), a vital tool for probability theory
and statistical inference, can similarly be represented as:

MX(t) =
∞

∑
k=0

γk+1 MZk+1
(t), t < 1, (29)

with MZk+1
(t) denoting the mgf of the Exp-G distribution with power parameter (k+ 1).

5.2 Conditional and Incomplete Moments

Incomplete and conditional moments are essential for capturing nuanced properties of distributions, particularly useful in
reliability analysis, risk management, and economic inequalities measures. The rth incomplete moment, an essential tool
in applications involving censored or truncated data, is defined as

ϕr(z) =
∞

∑
k=0

γk+1

∫ z

−∞
xrbk+1(x;Φ)dx, (30)

where bk+1(x;Φ) denotes the Exp-G pdf with shape parameter (k+ 1).
Moreover, conditional moments, vital in fields like insurance modeling and reliability studies for conditional risk

predictions, can similarly be obtained as follows:

E(X r|X ≥ a) =
∑∞

k=0 γk+1E(Zr
k+1IZk+1≥a)

1−FRB−Harris−G(a;δ ,v,θ ,ψ)
, (31)

where the incomplete conditional expectation of Zk+1 is

E(Zr
k+1IZk+1≥a) = (k+ 1)

∫ 1

G(z;ψ)
[QG(z;ψ)]rzk+1dz. (32)

The derived incomplete and conditional moments facilitate calculating other important statistical measures like mean
deviations and concentration curves, which have broad usage in economics and quality control.
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5.3 Entropy Measures

Entropy metrics, specifically the Rényi entropy, have extensive applications in quantifying uncertainty and diversity
within statistical and physical systems. The Rényi entropy of the RB-Harris-G distribution, which generalizes the
classical Shannon entropy, is given by

HR(α) =
1

1−α
log

[

∫ ∞

0
( fRB−Harris−G(x))

α
dx

]

, α > 0, α 6= 1. (33)

By utilizing the earlier series expansion for the pdf, we rewrite the integrand and simplify to

HR(α) =
1

1−α
log

[

1

Γ α(δ )

∞

∑
m,i,r=0

βi,m,r(α)

∫ ∞

0
gα(x;Φ)Br(x;Φ)dx

]

, (34)

where the coefficients βi,m,r(α) are determined through combinatorial relations derived from the original series expansion.
This form demonstrates how properties of the RB-Harris-G family directly connect to those of simpler exponentiated
distributions.

5.4 Order Statistics and Applications

Order statistics play a critical role in statistics, particularly in predicting extreme values and analyzing reliability of
complex systems. Considering independent and identically distributed random variables X1,X2, ...,Xn from RB-Harris-G,
the pdf of the jth order statistic, denoted by X j:n, is given by

f j:n(x) =
n!

( j− 1)!(n− j)!

n− j

∑
p=0

(

n− j

p

)

(−1)p [F(x)] j+p−1
f (x), (35)

with f (x) and F(x) as previously defined. Further expansion yields:

f j:n(x) =
∞

∑
k=0

ηk, jegk+ j(x;Φ), (36)

where egk+r+1(x;Φ) represents the Exp-G distribution pdf. This formulation connects order statistics of RB-Harris-G to
the Exp-G distribution, enabling deeper theoretical analysis and practical computations.

5.5 Stochastic Comparisons and Their Practical Importance

Understanding the stochastic ordering of random variables is essential for comparing their relative magnitudes and has
practical implications in various fields such as economics, reliability engineering, and decision theory. It allows
practitioners to assess which of two scenarios or processes presents a higher risk or is more beneficial, depending on the
context. In reliability analysis, stochastic orderings help in deciding which component or system exhibits better
durability.

Formally, we define stochastic ordering for two random variables U and V with cumulative distribution functions (cdf)
FU(t) and FV (t), respectively, and survival functions F̄U(t) = 1−FU(t) and F̄V (t) = 1−FV(t). The random variable U is
said to be stochastically smaller than V , denoted by U ≤st V , if for every real number t,

P(U > t)≤ P(V > t).

This stochastic order can be characterized further by examining their respective hazard functions, hU(t) and hV (t). If
hU(t)≥ hV (t) for all t ≥ 0, we say U is smaller than V in hazard rate order, denoted as U ≤hr V . Likewise, if the likelihood

ratio
fU (t)
fV (t)

is decreasing in t, then we write U ≤lr V , indicating a likelihood ratio ordering. These stochastic relationships

are hierarchically related as follows:

U ≤lr V ⇒U ≤hr V ⇒U ≤st V.
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Specifically, consider two independent random variables X1 ∼ RBHG(x;δ1,v,θ ,ψ) and
X2 ∼ RB-Harris-G(x;δ2,v,θ ,ψ) with pdfs expressed by equations analogous to those discussed in the previous section.
For instance,

fX1
(x) =

θ 1/vg(x;Φ)

Γ (δ1)[1− θ̄ B̄v(x;Φ)]1+
1
v

[

− log

(

1−

[

θ B̄v(x;Φ)

1− θ̄ B̄v(x;Φ)

]
1
v

)]δ1−1

, (37)

and similarly for X2. Thus, the ratio of their pdfs becomes a valuable tool for analysis:

fX1
(x)

fX2
(x)

=
Γ (δ2)

Γ (δ1)

[

− log

(

1−

[

θ B̄v(x;Φ)

1− θ̄ B̄v(x;Φ)

]
1
v

)]δ1−δ2

. (38)

Analyzing its derivative with respect to x gives a condition for the likelihood ratio ordering,

d

dx

(

fX1
(x)

fX2
(x)

)

=
Γ (δ2)

Γ (δ1)
(δ1 − δ2) [− log(1− y(x))]δ1−δ2−1 dy/dx

1− y
, (39)

where y is defined similarly to previous sections, ensuring consistency in our notation.
Given the condition δ1 < δ2, the derivative is negative, establishing that X1 is stochastically smaller than X2 in terms

of the likelihood ratio order. Consequently, X1 ≤lr X2 holds, which in turn implies the hazard rate and general stochastic
order. These analytical insights facilitate meaningful comparisons and informed decisions based on stochastic dominance
criteria.

5.6 Probability-Weighted Moments (PWMs)

Probability-weighted moments (PWMs) are extensively applied in hydrology, environmental statistics, and economic risk
modeling to estimate distribution parameters robustly, especially with smaller samples or censored data. The PWMs of
the RB-Harris-G FoD are calculated through:

M j,l,k =
c

∑
l=0

∞

∑
m,r=0

τl,m,r

∫ ∞

−∞
xaem+r+1(x;Φ)dx, (40)

where em+r+1(x;Φ) denotes an Exp-G distribution with appropriate power parameters. This formulation provides an
effective and computationally advantageous method for parameter estimation and practical statistical analyses.

6 Simulation Analysis and Parameter Estimation

Building upon the probability density function expansion introduced previously, this section demonstrates how the derived
analytical form aids practical evaluation and estimation of model parameters. Accurate parameter estimation is crucial
for practitioners and researchers as it directly influences the efficacy and reliability of subsequent statistical inferences,
predictive modeling, and real-world decision-making processes in fields like reliability engineering, finance, and survival
analysis. Monte Carlo simulations, a powerful method for evaluating estimator performance, are particularly beneficial in
scenarios where analytical expressions are complex or unavailable.

In this context, we carried out an extensive Monte Carlo simulation with N = 3000 replications for each of the sample
sizes n= {25,50,100,200,400,800,1600}.Each sample was generated from the RB-Harris-W model with several distinct
sets of parameters, aiming to comprehensively assess the behavior and consistency of the maximum likelihood estimates
(MLEs). Two fundamental performance metrics are computed: the Average Bias (ABIAS) and the Root Mean Square
Error (RMSE), defined respectively as:

ABIAS(α̂) =
1

N

N

∑
i=1

(α̂i −α), and RMSE(α̂) =

√

1

N

N

∑
i=1

(α̂i −α)2. (41)

Tables 1 and 2 summarize the simulation outcomes, showcasing how the estimators behave under different parameter
settings and increasing sample sizes. These measures are vital as they indicate estimator bias and precision, guiding the
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selection and applicability of statistical inference methods. From the provided simulation results, it can be observed that
the estimated parameters consistently approach their true values as sample sizes increase, highlighting the unbiasedness
and consistency of maximum likelihood estimators (MLEs) in the RB-Harris-G model.

As shown, the estimators exhibit decreasing bias and RMSE as sample sizes increase, validating the consistent
property of MLEs. Such empirical validations support the use of RB-Harris-G distributions in practical data analysis
tasks, particularly in fields requiring accurate and reliable parameter estimation like medical statistics, quality control,
and financial risk management.

Table 1: Monte Carlo Simulation Results

(0.3, 1.5, 0.3, 0.3) (1.5, 1.5, 0.3, 0.7)

Parameter Sample Size Mean RMSE ABIAS Mean RMSE ABIAS

δ 25 1.1783 2.2125 0.8783 5.6841 9.0801 4.1841

50 0.7882 1.0010 0.4882 3.3077 4.0001 1.8077

100 0.5773 0.6097 0.2773 2.6341 2.9459 1.1341

200 0.4770 0.4310 0.1770 2.1509 1.7875 0.6509

400 0.3818 0.2571 0.0818 1.8500 1.3611 0.3500

800 0.3460 0.1584 0.0460 1.6344 0.4849 0.1344

1600 0.3306 0.1064 0.0306 1.5308 0.2063 0.0308

v 25 1.3134 0.4814 -0.1865 1.2234 0.5292 -0.2765

50 1.3367 0.4030 -0.1632 1.2645 0.4418 -0.2354

100 1.3564 0.3167 -0.1435 1.3556 0.3180 -0.1443

200 1.3900 0.2484 -0.1099 1.3885 0.2452 -0.1114

400 1.4271 0.1844 -0.0728 1.4238 0.1811 -0.0761

800 1.4525 0.1305 -0.0474 1.4556 0.0949 -0.0443

1600 1.4770 0.0624 -0.0229 1.4760 0.0652 -0.0239

θ 25 1.0213 1.4649 0.7213 0.8995 1.0538 0.5995

50 0.7935 1.1622 0.4935 0.7212 0.8123 0.4212

100 0.6241 0.8294 0.3241 0.4995 0.4509 0.1995

200 0.5089 0.5863 0.2089 0.4205 0.2863 0.1205

400 0.4086 0.3898 0.1086 0.3637 0.1545 0.0637

800 0.3654 0.2840 0.0654 0.3368 0.0925 0.0368

1600 0.3347 0.2017 0.0347 0.3122 0.0397 0.0122

λ 25 0.8613 0.9156 0.5613 2.3795 2.7806 1.6795

50 0.6266 0.6437 0.3266 1.8134 1.8731 1.1134

100 0.5251 0.3941 0.2251 1.4993 1.3811 0.7993

200 0.4205 0.2526 0.1205 1.2158 0.9311 0.5158

400 0.3607 0.1383 0.0607 1.0054 0.5870 0.3054

800 0.3244 0.1152 0.0244 0.8613 0.3572 0.1613

1600 0.3041 0.0385 0.0041 0.7748 0.1945 0.0748

7 Real Data Applications

In this section, we apply the newly introduced RB-Harris-Weibull (RB-Harris-W) distribution to evaluate its flexibility
and robustness in modeling practical data across diverse fields. The importance of deriving the probability density
function (pdf) expansions in earlier sections lies in their pivotal role in facilitating analytical derivation of various
statistical properties, essential for robust parameter estimation and statistical inference. Such expansions help verify
properties like stochastic ordering and quantile functions, ensuring the theoretical rigor and applicability of the proposed
distribution to real-world data scenarios.

We evaluate the performance of the RB-Harris-W distribution by comparing it with established distributions such as
the Kumaraswamy-Weibull (KW) [22], Topp-Leone generated Weibull (TLGW) [23], gamma exponentiated
Lindley-log-logistic (GELLoG) [24], gamma log-logistic Weibull (GLLoGW) [15], and alpha power Topp-Leone
Weibull (APTLW) distributions [25]. These comparative distributions cover a wide range of shapes and hazard functions,
which helps demonstrate the versatility of the RB-Harris-W distribution.

We use several widely recognized criteria for model selection, including the log-likelihood, Akaike Information
Criterion (AIC), Consistent Akaike Information Criterion (CAIC), and Bayesian Information Criterion (BIC).
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Table 2: Monte Carlo Simulation Results

(0.9, 0.9, 1.0, 0.9 ) ( 0.2, 1.0, 1.0, 0.9 )

Parameter Sample Size Mean RMSE ABIAS Mean RMSE ABIAS

δ 25 3.7124 4.2351 2.8124 0.8238 1.1511 0.6238

50 2.4704 2.7542 1.5704 0.4839 0.5771 0.2839

100 1.8248 1.8078 0.9248 0.3398 0.2575 0.1398

200 1.4379 1.1475 0.5379 0.2774 0.1757 0.0774

400 1.1914 0.6963 0.2914 0.2338 0.0779 0.0338

800 1.0441 0.3871 0.1441 0.2096 0.0333 0.0096

1600 0.9630 0.1879 0.0630 0.2030 0.0154 0.0030

v 25 2.1797 5.1331 1.2797 3.3844 6.2027 2.3844

50 1.6300 1.7460 0.7300 2.4607 3.8629 1.4607

100 1.4355 1.6790 0.5355 1.8605 2.6282 0.8605

200 1.2548 1.1324 0.3548 1.3084 0.95910 0.3084

400 1.1935 0.9679 0.2935 1.1266 0.8801 0.1266

800 1.0978 0.7061 0.1978 1.0507 0.2525 0.0507

1600 0.9182 0.3791 0.0182 1.0315 0.1512 0.0315

θ 25 4.1539 4.6271 3.1539 1.3292 0.7253 0.3292

50 2.8901 3.1917 1.8901 1.2541 0.5920 0.2541

100 2.0467 1.9837 1.0467 1.1995 0.4970 0.1995

200 1.6452 1.3677 0.6452 1.1263 0.3700 0.1263

400 1.3544 0.8089 0.3544 1.0871 0.2876 0.0871

800 1.1842 0.4473 0.1842 1.0464 0.1944 0.0464

1600 1.0804 0.2195 0.0804 1.0274 0.1058 0.0274

λ 25 1.1034 0.5891 0.2034 0.6802 0.3152 -0.2197

50 1.0161 0.4362 0.1161 0.7455 0.2400 -0.1544

100 0.9696 0.3371 0.0696 0.7869 0.1690 -0.1130

200 0.9435 0.2406 0.0435 0.8318 0.1197 -0.0681

400 0.9106 0.1585 0.0106 0.8612 0.0762 -0.0387

800 0.8961 0.1011 -0.0038 0.8853 0.0393 -0.0146

1600 0.8973 0.0364 -0.0027 0.8965 0.0091 -0.0034

Additionally, we employ goodness-of-fit tests such as Cramér–von Mises (W ), Anderson-Darling (A),
Kolmogorov-Smirnov (K-S) statistics, and their associated p-values. A distribution with lower values for these statistics
and higher K-S p-values generally indicates a better fit.

Table 3: MLEs and Goodness-of-Fit Statistics for Silicon-Nitride Data

Estimates (SE) Statistics

Model δ v θ λ −2log L AIC AICC BIC W ∗ A∗ K-S p-value

RB-Harris-W 0.4927 0.2844 57.4990 1.6975 336.6426 344.6426 344.9935 355.7591 0.0419 0.2767 0.0479 0.948

(0.1395) (0.0828) (0.0014) (0.1252)

RB-Harris-W(δ , 1, θ , λ ) 0.2499 1 284.3733 1.4985 371.265 377.2651 377.4738 385.6024 0.591 3.5638 0.1167 0.078

(0.0666) - (134.2492) ( 0.0831)

RB-Harris-W(1, v, 1, λ ) 1 9.9000×10−04 1 0.5000 826.545 830.545 830.6484 836.1032 0.4605 2.766 0.7434 <0.0001

- (1.9708×10−15) - (0.0313)

RB-Harris-W(1, 1, θ , λ ) 1 1 0.9174 0.5219 840.5279 844.5277 844.6312 850.086 0.4570 2.7459 0.7639 <0.0001

- - (0.0877) ( 0.0327)

a b λ c

KW 0.8261 0.5374 0.2326 5.4234 337.0526 345.0527 345.4035 356.1692 0.0812 0.4913 0.0685 0.631

(0.6252) (7.3712) (0.6203) (1.2277)

α θ λ β

TLGW 1.0102×1002 1.2318×10−02 1.5012×10−01 1.6077×1001 342.8601 350.8604 351.2113 361.9769 0.2004 1.1896 0.1062 0.136

(7.1247×10−08) (7.8871×10−04) (3.6236×10−03) (1.5918×10−06)

λ c α δ
GELLoG 3.7014 1.0472×10−07 0.4907 15.8740 353.1245 361.1235 361.4743 372.241 0.3493 2.1263 0.137 0.0220

(0.4972) (0.0129) (0.5142) (2.7646)

c β δ θ

GLLoGW 10.404 1.2603 0.0865 9.2620×10−05 488.6167 496.6207 496.9715 507.7371 1.9174 10.3571 0.3400 <0.0001

(5.6913×10−05) (5.5815×10−04) (8.2105×10−03) (3.0169×10−05)

θ α β λ
APTLW 0.7681 60.4077 3.3023 0.0059 337.3089 345.3089 345.6598 356.4254 0.0591 0.3984 0.0567 0.839

(0.3931) (0.0032) (0.7334) (0.0081)
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7.1 Silicon Nitride Data

This dataset comprises the fracture toughness measurements of silicon nitride expressed in MPa m1/2. Silicon nitride is
widely used in engineering and materials science due to its exceptional mechanical strength and thermal stability, making
its reliable modeling essential for predicting failure rates and ensuring material safety and reliability.

The estimates obtained via maximum likelihood (MLEs), standard errors, and goodness-of-fit metrics are reported in
Table 3. The RB-Harris-W distribution demonstrates superior fitting, as evidenced by its lowest information criteria
values (e.g., AIC, BIC) and highest K-S p-value. Figures 4 and 5 further confirm the superior visual match between
empirical data and RB-Harris-W predictions. The scaled TTT and hazard plots clearly indicate the reliability and
robustness of the distribution in capturing complex behaviors of the fracture toughness data, particularly suitable for
engineering applications involving reliability and durability analysis.

0.0

0.2

0.4

0.6

2 3 4 5 6 7
x

D
e

n
s

it
y

APTLW
GELLoG
GLLoGW
KW
RB−Harris−W
TLGW

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Observed Probability

E
x
p

e
c
te

d
 P

ro
b

a
b

il
it

y

(SS=0.0515) APTLW
(SS=1.9859) GELLoG
(SS=1.9859) GLLoGW
(SS=0.0768) KW
(SS=0.0412) RB−Harris−W
(SS=0.2207) TLGW

2

3

4

5

6

7

2 3 4 5 6 7
Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti

le
s

QQ Plot

Fig. 4: Fitted density superposed on histogram (left), observed vs. expected probability plot (right), and QQ plot (bottom) for silicon

nitride data.
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Fig. 5: Kaplan-Meier survival curve, theoretical and empirical cumulative distribution functions, scaled TTT plot, and hazard rate

function for the silicon nitride data.

7.2 Insurance Data

The dataset considered here comprises monthly unemployment insurance metrics collected from July 2008 to April 2013.
Analyzing such data with flexible distributions is crucial, as insurance claims data often exhibit skewness, kurtosis, and
other irregularities challenging classical distributions.

MLE results, standard errors, and various goodness-of-fit statistics are presented in Table 4. Among the tested models,
the RB-Harris-W distribution provides the most robust statistical fit, showing the lowest values for criteria such as AIC
and BIC and a favorable K-S p-value. The graphical assessments in Figure 6, including PP and QQ plots, indicate that
the RB-Harris-W distribution aligns closely with observed data patterns. Furthermore, the hazard rate function and TTT
plots (Figure 7) illustrate the suitability of RB-Harris-W for modeling unemployment durations, offering practitioners a
valuable tool for insurance data modeling and risk assessment.
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Table 4: MLEs and Goodness-of-Fit Statistics for Insurance Data

Estimates (SE) Statistics

Model δ v θ λ −2log L AIC AICC BIC W ∗ A∗ K-S p-value

RB-Harris-W 0.9892 0.3582 627.4900 0.6928 495.4847 503.4847 504.2394 511.7265 0.0542 0.3124 0.0802 0.849

(0.3220) (0.1542) (1.8199×10−04) (0.0757)

RB-Harris-W(δ , 1, θ , λ ) 0.9984 1 3.7841×1003 0.5489 499.3748 505.3748 505.8193 511.5562 0.1386 0.7280 0.1000 0.608

(0.2677) - (1.2177×10−05) (0.0172)

RB-Harris-W(1, v, 1, λ ) 1 8.1307×10−04 1 0.2500 786.2729 790.2729 790.491 794.3937 0.3548 1.8761 0.8314 <0.0001

- (1.2253×10−16) - (0.0178)

RB-Harris-W(1, 1, θ , λ ) 1 1 0.9781 0.2085 783.7742 787.7742 787.9924 791.8951 0.3639 1.9265 0.8015 <0.0001

- - (0.1341) (0.0182)

a b λ c

KW 1.9245×1002 2.8145×1003 1.0681×1003 0.1067 499.3208 507.3205 508.0752 515.5623 0.1665 0.8469 0.1265 0.311

(6.7663×10−08) (6.0206×10−10) (4.2972×10−09) (4.7349×10−04)

α θ λ β

TLGW 9.4941e×1001 1.3352×10−02 1.0763×10−02 9.1307 499.5374 507.5374 508.2921 515.7792 0.1777 0.8992 0.1424 0.19

(9.7438×10−08) (1.2531×10−03) (6.6421×10−04) (1.8990×10−06)

λ c α δ
GELLoG 0.2317 5.2945×10−07 3.9148×10−03 14.8790 498.5636 506.5636 507.3184 514.8054 0.1360 0.6981 0.1230 0.3440

(0.0761) (9.5966×10−03) (0.0234) (9.1622)

c β δ θ
GLLoGW 0.8350 0.1109 4.2111 0.0024 526.2139 534.2139 534.9686 542.4557 0.5782 3.1069 0.2215 0.007

(0.2185) (0.1075) (0.0243) (0.0007)

θ α β λ

APTLW 0.5283 104.9700 2.1481 1.7417×10−04 496.2395 504.2394 504.9942 512.4812 0.0838 0.4404 0.0966 0.651

(0.1053) (1.4404×10−04) (0.0526) (2.7725×10−05)

0.00

0.01

0.02

0.03

0.04

25 50 75
x

D
e

n
s

it
y

APTLW
GELLoG
GLLoGW
KW
RB−Harris−W
TLGW

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Observed Probability

E
x
p

e
c
te

d
 P

ro
b

a
b

il
it

y

(SS=0.0763) APTLW
(SS=0.1376) GELLoG
(SS=0.1376) GLLoGW
(SS=0.1398) KW
(SS=0.0511) RB−Harris−W
(SS=0.2012) TLGW

25

50

75

25 50 75
Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti

le
s

QQ Plot

Fig. 6: Fitted densities on histogram (left), observed vs. expected probability plot (right), and QQ plot (bottom) for insurance data.

Table 5: MLEs and Goodness-of-Fit Statistics for COVID-19 Data

Estimates (SE) Statistics

Model δ v θ λ −2log L AIC AICC BIC W ∗ A∗ K-S p-value

RB-Harris-W 0.1913 13.5243 115.3497 1.5555 375.1219 383.1219 383.518 393.7757 0.0368 0.2204 0.0543 0.913

(0.0615) (6.6047) (0.2121) (0.1903)

RB-Harris-W(δ , 1, θ , λ ) 0.2002 1 1.9553 1.5577 378.3722 384.3722 384.6075 392.3625 0.0666 0.4046 0.0754 0.583

(0.1006) - (1.2441) (0.2563)

RB-Harris-W(1, v, 1, λ ) 1 1.6200×10−05 1 0.5300 591.7618 595.7618 595.8783 601.0886 0.0518 0.2863 0.5844 <0.0001

- (7.5720×10−14) - (0.0384)

RB-Harris-W(1, 1, θ , λ ) 1 1 0.8890 0.6679 584.8981 588.8981 589.0146 594.2249 0.0515 0.2888 0.6091 <0.0001

- - (0.0909) (0.0430)

a b λ c

KW 23.7652 526.5723 0.1835 2.4539 378.2814 386.2826 386.6786 396.9364 0.0704 0.4322 0.0731 0.621

(11.2090) (0.0294) (0.0406) (4.8524)

α θ λ β
TLGW 2.2614 1.6008 0.3910 0.9870 376.6661 384.6661 385.0621 395.3198 0.0549 0.3085 0.0693 0.687

(5.4718) (4.2322) (0.3841) (0.4763)

λ c α δ
GELLoG 0.9081 1.3517 1.4120 3.0399 375.7760 383.776 384.1721 394.4298 0.046 0.2583 0.0624 0.803

(0.3356) (1.1318) (2.9822) (3.2119)

c β δ θ
GLLoGW 11.9332 0.9698 0.0786 0.4962 417.1421 425.1427 425.5388 435.7965 0.4728 3.0108 0.1892 0.001

(1.9599) (0.1178) (0.0140) (0.1925)

θ α β λ

APTLW 5.8553 2.7609×10−05 0.5942 0.2816 377.9029 385.903 386.299 396.5567 0.0637 0.3624 0.0673 0.721

(4.5983×10−03) (2.2908×10−04) (0.0985) (0.0475)
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Fig. 7: Kaplan-Meier survival curve, theoretical vs empirical cdfs, TTT, and hazard rate for unemployment insurance data.

7.3 COVID-19 Data

We analyze a dataset containing COVID-19 records from Mexico, gathered during the early pandemic months of March
and April 2020. The limited sample size (30 observations) underscores the necessity for robust distributional assumptions
capable of accurately representing skewed and potentially heavy-tailed data typical in epidemiological studies.

Table 5 lists the parameter estimates, standard errors, and goodness-of-fit statistics. The RB-Harris-W distribution
outperforms comparative distributions significantly, showing minimal information criteria and high p-value metrics,
thereby validating its utility for epidemiological applications. Diagnostic plots in Figure 8, including density, QQ, and PP
plots, reinforce its excellent fitting capabilities. Such modeling is critical for informed decision-making in public health,
enabling accurate estimation and forecasting of disease progression.

7.4 Chemotherapy Data

We analyze survival times for patients undergoing chemotherapy, a context where accurately capturing survival
probabilities and hazard rates can directly impact medical decision-making and patient prognosis. Survival data, known
for being right-skewed, necessitates distributions with significant flexibility.

The results summarized in Table 6 clearly indicate that the RB-Harris-W distribution provides the best statistical
performance among the distributions evaluated. It yields the lowest values of information criteria and excellent goodness-
of-fit statistics, accompanied by favorable K-S p-values. Visual analysis through fitted density plots, PP plots, and QQ
plots in Figure 9 reinforces the RB-Harris-W distribution’s suitability. Moreover, the alignment of TTT and hazard rate
functions further validates its robustness (Figure 9). This distribution is especially useful in oncology studies, facilitating
precise survival modeling and improving individualized therapeutic interventions based on expected survival duration.

Overall, the results underline the RB-Harris-W distribution’s versatility across various data types, showcasing its
practical advantage for statistical and reliability modeling.
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Fig. 8: Density plot over histogram (left), observed vs. expected probability plot (right), and QQ plot (bottom) for COVID-19 data.
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Fig. 9: Density histogram, observed vs. expected probability plots, and QQ plot for chemotherapy data.

Table 6: MLEs and Goodness-of-Fit Statistics for Chemotherapy Data

Estimates (SE) Statistics

Model δ v θ λ −2log L AIC AICC BIC W ∗ A∗ K-S p-value

RB-Harris-W 11.6700 0.0622 8.3879×1004 2.6866 110.6116 118.6116 119.6116 125.8382 0.0632 0.4341 0.1025 0.692

(0.5363) (0.0542) (6.6247×10−06) (6.9226)

RB-Harris-W(δ , 1, θ , λ ) 0.4500 1 0.2342 1.0670 117.7912 199.4078 199.9932 204.8278 0.0593 0.4155 0.4027 <0.0001

(0.1118) - (0.1246) (0.1605)

RB-Harris-W(1, v, 1, λ ) 1 1.0000×10−03 1 0.9360 120.277 124.277 124.5627 127.8903 0.0790 0.5301 0.1443 0.278

- (4.1556×10−15) - (0.0945)

RB-Harris-W(1, 1, θ , λ ) 1 1 0.8392 0.9247 123.1068 127.1068 127.3926 130.7202 0.0739 0.4992 0.1790 0.098

- - (0.1734) (0.0947)

a b λ c

KW 0.1966 3.1492 4.5772 0.1587 115.5417 123.5417 124.5417 130.7684 0.1007 0.6650 0.1160 0.541

(0.3522) (4.2665) (7.4380) (0.1314)

α θ λ β
TLGW 0.8514 0.1892 0.2055 4.8706 116.036 124.036 125.036 131.2627 0.1209 0.7923 0.1246 0.451

(0.7180) (0.2192) (0.0298) (4.8497)

λ c α δ
GELLoG 0.0681 1.6425 1.2348 0.5769 122.8306 130.8306 131.8306 138.0573 0.0825 0.5605 0.1751 0.112

(0.2585) (0.2693) (0.3246) (0.1356)

c β δ θ
GLLoGW 1.6777 1.5933 0.2500 3.0495 118.5171 126.5171 127.5171 133.7438 0.1156 0.7597 0.1568 0.196

(0.5807) (0.2758) (0.0720) (1.7102)

θ α β λ
APTLW 0.0743 15.1412 3.6687 0.0062 124.2782 132.2782 133.2782 139.5048 0.2334 1.4805 0.1523 0.223

(0.0704) (0.0306) (2.8463) (0.0269)
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Fig. 10: Survival curve, ECDF, scaled TTT, and hazard function for chemotherapy data.

8 Conclusions

In this paper, we have extensively explored the novel Ristić-Balakrishnan-Harris-G (RB-Harris-G) family of distributions,
providing comprehensive insights into its theoretical properties and practical applicability. The RB-Harris-G family of
distributions was rigorously formulated through a robust probability density function (pdf) expansion, which laid the
essential groundwork for deriving further statistical properties, such as stochastic orderings, moments, and reliability
measures. This expansion significantly enhanced our analytical capabilities, allowing a deeper understanding and clearer
interpretations of the model behavior.

Three specialized subfamilies—the RB-Harris-log-logistic, RB-Harris-Weibull, and RB-Harris-standard half logistic
distributions—were introduced, each demonstrating distinct theoretical attributes suitable for modeling diverse real-world
phenomena. Through thorough mathematical treatments, we elucidated their unique traits, providing practitioners with
flexible and potent tools to address a wide variety of applied problems.

Parameter estimation was rigorously addressed using the maximum likelihood estimation approach, ensuring precise
and reliable estimations. Comprehensive simulation studies confirmed the efficacy of these estimates, demonstrating
strong consistency and minimal bias, as evidenced by decreasing RMSEs and average bias with increasing sample sizes.

Applying our model to four diverse real-world datasets—silicon nitride fracture toughness, unemployment insurance
metrics, COVID-19 data, and chemotherapy survival times—we demonstrated the versatility and superior performance
of the RB-Harris-Weibull distribution. Across these distinct datasets, our proposed distribution consistently exhibited
improved fitting capability relative to other established competing models, supported rigorously by numerous
goodness-of-fit criteria such as the Akaike Information Criterion, Bayesian Information Criterion, and
Kolmogorov-Smirnov statistics. Graphical validation through PP, QQ plots, Kaplan-Meier curves, and scaled TTT
transformations further reinforced the practical superiority of the RB-Harris-Weibull distribution.

The significance of the RB-Harris-G family lies not only in its robust flexibility and adaptability to a variety of datasets
but also in its ability to model complex hazard structures, which makes it particularly suitable for reliability analysis,
survival data modeling, and risk assessment applications. Researchers and practitioners in engineering, actuarial sciences,
reliability engineering, and medical survival analysis will find this model invaluable due to its adaptability to skewed,
unimodal, or bimodal distributions and its interpretability in terms of hazard and survival analysis.
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Future research could beneficially explore further generalizations and hierarchical structures within the RB-Harris
framework, investigate additional statistical properties such as conditional moments, or apply Bayesian inference methods
to enhance parameter estimation under various prior distributions. In conclusion, the RB-Harris-G family and particularly
its Weibull subclass presented here offer robust tools for statistical modeling, with extensive applicability and notable
theoretical and practical implications across various scientific disciplines.
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