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Abstract: The deficiency of the ability for preserving global geometric structure information of data is the main problem of existing
semi-supervised dimensionality reduction with pairwise constraints. A dimensionality reduction algorithm called Semi-supervised
Sparsity Pairwise Constraint Preserving Projections based on Genetic Algorithm (SSPCPPGA) is proposed. On the one hand, the
algorithm fuses unsupervised sparse reconstruction feature information and supervised pairwise constraint feature information in the
process of dimensionality reduction, preserving geometric structure in samples and constraint relation of samples simultaneously.
On the other hand , the algorithm introduces the genetic algorithm to set automatically the weighted trade-off parameter for full
fusion. Experiments operated on real world datasets show, in contrast to the existing typical semi-supervised dimensionality reduction
algorithms with pairwise constraints and other semi-supervised dimensionality reduction algorithms on sparse representation, the
proposed algorithm is more efficient.

Keywords: Semi-supervised Dimensionality Reduction, Pairwise Constraints, Sparsity Preserving Projections, Information Fusion,
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1. Introduction graph and make use of the constraints to modify the
neighborhood relations and weight matrix to reflect this
weak form of supervision. Although CLPP is fit for

The past few years have witnessed more and more h > A = .
nonlinear data, the algorithm is still sensitive to noise and

research results on dimensionality reduction algorithms

with pairwise constraints owing to great convenient in
obtaining them and more supervised discriminant
information in them [1,2]. Bar-Hillel et al. [3] proposed
Constraints Fish Discriminant Analysis (CFDA), which is
the pre-treatment step before relevant component
analysis. CFDA only deal with the must-link constraints
and ignore cannot-link constraints. Tang et al. [4]
proposed Pairwise Constraints-guided Feature Projection
(PCFP) for dimensionality reduction, which exploits both
must-link constraints and cannot-link constraints but
ignores unlabeled data. Zhang et al. [5] proposed
Semi-Supervised Dimensionality Reduction (SSDR),
which exploits both cannot-link and must-link constraints
together with variance information in unlabeled data.
However SSDR only deals with linear data. On the basic
of LPP, Cevikalp et al. [6] proposed Constrained Locality
Preserving  Projections ~ (CLPP),  which  finds
neighborhood points to create a weighted neighborhood

parameters. YU et al. [7] proposed Robust LPP (RLPP)
with pairwise constraints based on robust path based
similarity for overcoming these problems. Wei et al. [8]
proposed Neighborhood Preserving based
Semi-supervised Dimensionality Reduction (NPSSDR).
The algorithm not only preserves the must-link and
cannot-link constraints but also preserves the local
structure of input data in the low dimensional embedding
subspace by the regularization way, which makes
NPSSDR easy to get into collapse in local structure. Chen
et al. [9] proposed Semi-supervised Non-negative Matrix
Factorization (SS-NMF) based on pairwise constraints on

a few of documents. Peng et al. [10] proposed
Semi-supervised  Canonical Correlation  Analysis
Algorithm  (Semi-CCA) which uses supervision

information in the form of pairwise constraints in
canonical correlation analysis. Davidson et al. [11]
proposed  Graph-driven = Constrained  Dimension
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Reduction via Linear Projection (GCDR-LP) that given a
weighted graph attempts to find series of dimensions that
are linear combinations of the old dimensions.

Recently, sparse representations attain more and more
attention and are successfully applied in object detection
and classification [12, 13, 14, 15,16]. Researches show,
classification based on sparse representations has good
robustness on face datasets with deformities, dressings
and shelters. At present sparse learning has extended to
dimensionality reduction, including Sparse Principal
Component Analysis (SPCA) [17] Principal Component
Analysis with Weighted Sparsity Constraint (PCAWSC)
[18] and Sparsity Preserving Projections (SPP) [19]. SPP
is a new unsupervised dimensionality reduction
algorithm, which preserves sparse reconstruction relations
of high-dimension data to low-dimension data. In contrast
to other unsupervised dimensionality reduction
algorithms, SPP preserves global geometry structure
information contained in sparse reconstructions and is
available of power discriminant analysis. However, SPP is
sensitive to variations in whole pattern of data owing to
deficiencies of supervised information. Gu et al.[20]
proposed Discriminative Sparsity Preserving
Projections(DSPP). DSPP provides an explicit feature
mapping by fitting the prior low-dimensional
representations which are generated randomly by using
the labels of the labeled data points and, meanwhile,
setting the smoothness regularization term to measure the
loss of the mapping in preserving the sparse structure of
data, so DSPP has highly discriminative ability.

Motivated by above analyses, a Semi-supervised
Sparse Pairwise Constraint Preserving Projections based
on Genetic Algorithm (SSPCPPGA) is proposed in the
paper. The algorithm firstly exact respectively
unsupervised information of sparse reconstruction and
supervised information of pairwise constraint, then fuse
two kinds of information by the linear weighted way and
seek the optimized weighted trade-off parameter through
the genetic algorithm. Finally projections are gotten to
preserve fused information. The projected
low-dimensional data not only preserve global geometric
structure feature information contained in sparse
reconstructions but also preserve pairwise constraint
feature information. Experimental results on AR, Yale
and UMIST show that our proposed algorithm improves
the accuracy and stability of classification rate based on
the shortest Euclidean distance, in contrast to other
typical  semi-supervised dimensionality  reduction
algorithm with pairwise constraints and other
semi-supervised dimensionality reduction algorithms on
sparse representation.

Several characteristics of our presented algorithm are
listed as follows:

(1) PCFP and SPP have their own advantages and

(2)Sparse reconstruction information and pairwise
constraint information vary greatly in different datasets,
which is the reason that concrete weighted trade-off
parameter is different in the process of linear fusion. The
algorithm introduces the genetic algorithm to set
automatically the weighted trade-off parameter value in
order to get more performance.

The rest of the paper is organized as follows: Section
2 reviews PCFP and SPP. SSPCPGA is introduced in
Section 3. In Section 4, we compare proposed SSPCPGA
with PCFP, SPP, RLPP, SSDR, NPSSDR and DSPP. The
experimental results are presented. Finally, we provide
some concluding remarks and future work in Section 5.

2. Related works

In this section, we review related works, including PCFP
in 2.1 and SPP in 2.2.

2.1. PCFP

Given training samples X = {xj,x2,x3, -, X, } , must-link
set ML = {(x;,x;)|x; and x; are the same class} and
cannot-link set

CL = {(x;,xj)|x; and x; are not the same class} . PCFP
aims to find an optimal projection matrix 7 that
maximizes the following function[4]:

m]ng Z

()C,’,Xj)ECL

I T —T7x; ||* -

Y 71T | M
(x,n,xj-)EML

st. TIT=1I

Where || - ||? denotes the 1, norm.

Eq.(1) may be understood in such a sentence that two
samples of must-link set in high-dimensional data space
should be more near in low-dimensional data space and
two samples of cannot-link set in high-dimensional data
space should be more further in low-dimensional data
space.

2.2. SPP

Given training samples X = {xj,x2,x3,--,x,} € RIxn |
the goal of sparse representation is to reconstruct each
sample with else samples. A sparse reconstructive weight
vector s; for x; is described as follows:

disadvantages. The fused algorithm inherits special min || S; |1

character PCFP and SPP and overcomes their Si )
disadvantages. s.t. xi=XS;
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Figure 1 projected one-dimensional subspace

where §;; denotes the contribution of each x; to
reconstructing x; . || - || denotes the /; norm .

Sparse reconstruction is to seek a sparse reconstructive
weight vector s; for each x; ,which is described as follows:

Hyn IISi [l
s.t. xi =XS; (3
1=1"5;

where ||S;||; denotes the /; normal of S; ,
Si = 1S, ,Si-1,0,8ii41, - ,Sin]T € R4 is a vector in
which §;; denotes the contribution of each x; to
reconstructing x;, and 1 € R" is a vector of all ones.

Xp = Sixt + -+ Siim1Xi—1 + Siis 141

4
+ o+ SinXy X

The sparse reconstruction matrix S = [S1,S2,--+,S,]”
is attained through computing S;. Sparse reconstructive
wei- ghts have intrinsic geometric properties of the data.

The goal of SPP is to preserve sparse reconstruction
relation of high-dimensional data space into
low-dimensional data space. Given the projection matrix
T, the objective function of SPP is gotten as follows [19]:

n
i T x, —TTXS;|?
mTln;H X; Sill

(5)
st. TTXXTT =1
Eq.(5) can be further transformed to
max([T7X(S+ S —s78)X"T)
r (6)

st. TTXXTT =1

3. Semi-supervised Sparse Pairwise
Constraint Preserving Projections based on
GA (SSPCPPGA)

In this section, we first introduce the basic idea of our
algorithm and then the objective function is gotten; finally
we give steps of the algorithm.

3.1. Basic idea

In order to describe disadvantages of PCFP and SPP, we
create a two-dimensional dataset that contains two classes
represented by dot points and triangle points. The number
of two kinds of samples is same.Two kinds of
one-dimensional subspaces on the dataset and the
changed dataset are gotten through SPP and PCFP.
Concrete results are shown in Figure 1.

In Figure 1, solid dot points denote labeled data of the
first class and solid triangle points denote labeled data of
the second class. The number of two kinds of labeled
samples is same. pairwise constraint sets are composed by
these labeled samples. Figure 1(a) shows projection
results of SPP and PCFP. When labeled samples happen
to change in Figure 1(b),the projection result of SPP does
not change while that of PCFP becomes poor. In contrast
to data in Figure 1(a), data in Figure 1(c) are enlarged to
twice as much in the vertical scalar to change global
distribution patterns of the structure of data, which weak
the projection result of SPP and don’t affect that of PCFP.
Figure 1 demonstrates that the performance of supervised
PCFP is sensitive to pairwise constraint sets instead of
global distribution patterns of the structure of training
samples and SPP is contrary. Therefore fusing feature
information of PCFP and SPP in the process of
dimensionality reduction is a feasible way for overcoming
disadvantages of them.

3.2. Objective function

According to the information level, information fusions
are divided into the data level, the feature level and the
decision-making level. Information fusion based on the
feature level may make sure relations among different
feature information [21]. Fusion of supervised feature
information and unsupervised feature information based
on the linear weighted way has proved to be an efficient
fusion way of semi-supervised dimensionality reduction
[22, 23].
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Figure 2 The framework of setting the linear weighted parameter f based on GA

SPCPPGA aims to find a projection T to preserve
simultaneously pairwise constraint feature information
and sparse reconstruction feature information by making
use of the linear weighted way to fuse two kinds of
information.

Eq.(1) and Eq.(6) can respectively further be
transformed to an equivalent maximization problem as
follows:

Y (T x—T"x)|?
(X,',X_/)ECL
max
T TTT o
Y [ (TTx—T"x)) |
(X,',Xj)EML
B 7T
TTX(S+ST —STS)XTT] @®)

max
T TTXXTT
We infuse Eq.(7) and Eq.(8) to get the objective
function of SPCPPGA through the linear weighted way as
follows:

TT[BXSoX” 4+ (1—B)Pa]T

TT[BXXT + (1 - B)IT ©
where
Sa:S+ST—STS (10
Py = (i —x;) (xi —x;)"
(X,‘,x_]')ECL
(1)

Y i—x)xi—x)"
(X,',X_,‘)EML

The weighted trade-off parameter [ denotes the
contribution of sparse reconstruction feature information
to SPCPPGA and 1 — 3 denotes the contribution of
pairwise constraint feature information to SPCPPGA.

3.3. Optimize the weighted trade-off parameter
based on Genetic Algorithm

According to above analyses, the weighted trade-off
parameter 3 plays an important role in SPCPPGA. The
necessities of the optimization for the weighted trade-off
parameter 3 are embodied as follows:

(1) Sparse reconstruction feature information is the
model of information decomposition and information
reconstruction that are based on over-complete dictionary
while pairwise constraint feature information is side
information. Their natures are great different owing to
their basic math ideas and representations.

(2) Two kinds of feature information from different
training samples and different dimensions of projected
subspaces are very different , determining different
weighted trade-off parameters in the process of fusing
them.

Genetic Algorithm (GA) is the optimal solution by
simulating the natural evolutionary process search [24].
GA has power of inherent implicated parallel and better
ability of global optimization, obtaining automatically
and guiding to optimize the searching space through
adjusting adaptively searching directions [25, 26].
Therefore, GA is introduced to guide to set the linear
weighted trade-off parameter . Figure2 gives us the
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framework of setting the linear weighted trade-off
parameter based on GA.

The main processes of optimizing the weighted trade-
off parameter  in Figure 2 are as follows:

(1) Create randomly a certain number of populations
represented by the binary chromosome and initialize their
values between 0 and 1.

(2) Achieve basic operation on these populations,
including selecting, crossing and mutating. Selecting
operation is achieved by eliminating the first half of
individuals in ascending order about the fitness value and
creating randomly some individuals for supplement.

(3) Get most optimized value in the generation and the
global optimized value in the total generation.

(4) If the number of GA generation g < 4, then jump
to (1), otherwise output the global optimized value in all
the generation.

3.4. Algorithm steps

Input: training samples X = {xj,x3,x3, -+ ,x,} and
X; c Rw><h ,
ML = {(x;,x;)|x; and x; are in the same class} ,

CL = {(xi,xj)|x; and x; are not in the same class}, The
size of the populations p , the length of the chromosome
¢, the crossover probability pc and mutation probability
pm.

Output:the project matrix 79" (r < d).

Steps:

(1) construct S using to Eq.(3).

(2) construct Sq, using Eq.(10).

(3) construct Py using Eq.(11).

(4)The simplest Nearest Neighbor Classifier is adopted
in the fitness function. According to the model of Figure2,
calculate the optimized weighted parameters with different
datasets and different dimensions.

(5)Transform Eq.(9) to

(BXSaX" + (1~ B)Pa)p = A(BXX" +(1-P))o

and calculate the projections matrix 7% (r < d).

4. Experiments and analyses

In this section, we firstly introduce experimental datasets,
which is followed by experimental settings. Finally, we
give experimental results and detail analyses on the
classification performance of SPCPPGA and the
adaptivity of the weighted trade-off parameter f3 .

4.1. Experimental datasets

(1) Yale contains 165 face images of 15 individuals.
There are 11 images per subject, and these 11 images are

respectively, under the following different facial
expression or configuration: center-light, wearing glasses,
happy, left-light, wearing no glasses, normal, right-light,
sad, sleepy, surprised and wink. In our experiment, we
resize theses face images of Yale to 30 x 30 pixels.

(2) AR consists of over 4000 face images of 126
individuals. For each individual, 26 pictures were taken in
two sessions that separated by two weeks and each
section contains 13 images, which include front view of
faces with different expressions, illuminations and
occlusions. In our experiment, we resize theses face
images of AR to 30 x 30 pixels.

(3) UMIST is composed of 564 face images of 20
individuals. UMIST face images cover the front face of
different side. In our experiment, we resize theses face
images of UMIST to 34 x 28 pixels.

A group of face samples on Yale, AR and UMIST are
shown in Figure3.

(a) A group of face samples on Yale

PeeReE9°8eE988a
PeRRPI°EPRLES

(b) A group of face samples on AR

(c) A group of face samples on UMIST

Figure 3 A group of face samples on various datasets

4.2. Experimental settings

SSDR[5], RLPP[7],NPSSDR[8] and DSPP [20] are three
typical  semi-supervised dimensionality  reduction
algorithms with pairwise constraints and are compared
with our proposed algorithm for testing classification
performances. In addition, SPP and PCFP are also added
compared algorithms in order to verify the integration
performance. Table 1 shows specific parameter settings in
various algorithms.

In Table 1,p denotes the population size, ¢ denotes the
individual chromosome length, pc denotes the crossover
probability and pm denotes the mutation probability in
SSP CPPGA. Usually the crossover probability parameter
pc and the mutation probability parameter pm of GA are
set respectively to 0.6 and 0.1. For expression
convenience, SSPCPPGA with the different population
size and the different individual chromosome length is
denoted by SSPC PPGA (p,c).

© 2013 NSP
Natural Sciences Publishing Cor.



1070 %N = =) M. Qi, Y. Xiang: Semi-supervised Sparsity Pairwise Constraint...

100 ——mm————————————————— 0
90t 90
% Y.,v. o R P TF E
R e
80 pEE
_70F _ e 1
2 e 5 |
& > o
£ wl - B -~+-- Baseline H £ ---+-- Baseline .
R Xl B -p>-- SPP g --B>-- SPP
g aof D"P-{) ---&-- PCFP H g --&-- PCFP i
& o -~ SSPCPPGA(S, 10) & ---%-- SSPCPPGA(5,10)
30F ---#-- RLPP - 30+ ---#-- RLPP H
e ---©-- SSDR ---©&-- SSDR
20 ---¢--- NPSSDR H 20 ---&--- NPSSDR H
% DSPP ---%--- DSPP
10— s . . . r 10l \ . . . : ; ;
20 40 60 80 100 120 10 160 180 200 20 40 60 80 100 120 140 160 180 200
Dimension Dimension
(a) L=5 and D=10 (b) L=10 and D=10
Figure 4 Experimental results of the classification performance with L and D on AR
100 T T T T T T T 100 T T T T T T T T
90} T T p T 0F L TTTy- RS - R R v“v -
5 v . : :3"3‘3"3' T e O BB g g g
I O SRR A 80t S A %
80 ,,V_g_m__s,& &: g— B e E o EE - i:él;'_'_ﬁ o '-’-§_’~_'—§_'—.'—W"
70----+-§-;§°-’1 i e + SR LT A & 0L B o2 b |
C > ] _ ; o8 e
g Wl ’*’o oo g ;@;/ e D_‘D'B’ B
T g0 47 0 peP 2 eof o X b 1
4 Wl e e ~ B -
= o xS okt g o P
S s0fi e ---+-- Baseline - £ 50, P ---+-- Baseline H
EBRITE pepsr Y] B SPP A ---p--- SPP
g 40y e ---&-- PCFP H g 40 B ---&-- PCFP H
2 'f,_:- B ----- SSPCPPGA(5,10) ~ ---%-- SSPCPPGA(5,10)
30% - <-4 -- RLPP - 0F B ---4-- RLPP H
B ---@-- SSDR ---@-- SSDR
0F ---¢-- NPSSDR H 20/ ---€-- NPSSDR H
P ---%--- DSPP ---%--- DSPP
10— . . . ; : : 10l . . . . : . :
5 10 15 20 25 30 35 40 10 20 30 40 50 60 70 80
Dimension Dimension
(a) L=3 and D=2 (b) L=6 and D=5
Figure 5 Experimental results of the classification performance with L and D on Yale
100 — . : .
90t
G T
B0t g B e ﬁ“g,%
Ry Pt Sl
o T0p T e - =
S # &
< 2
= - <
g LB ~
o z = B .
2 ---+-- Baseline - ;g 50F ¥ ,J> ---+-- Baseline H
) ---p-- SPP 5 |7 P ---p-- SPP
S ---&-- PCFP H 3 40 B ---&-- PCFP H
& ¥ --5-- SSPCPPGA(5,10) = ¥ --<%-- SSPCPPGA(5,10)
---4-- RLPP . 30t b ---4-- RLPP H
---©-- SSDR R ---@-- SSDR
---¢--- NPSSDR . 201 B ---¢--- NPSSDR i
---%--- DSPP L ---%--- DSPP
r T . 1o . . . . . T
25 30 35 40 5 10 15 20 25 30 35 40
Dimension Dimension
(a) L=3 and D=2 (b) L=6 and D=5
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Table 2 The most recognition rates of various algorithms on different face datasets under different L

Face datasets

Algorithm name AR Yale UMIST
5 10 3 6 3 6

SPP 72.55%  85.53% 63.33% 81.00% 57.03% 79.81%

PCFP 71.71%  80.04%  78.75%  78.33%  80.79%  88.08%
SSPCPPGA(5,10)  82.15% 88.39% 89.38% 91.04% 87.34% 91.83%
RLPP 71.73%  80.02%  78.75%  78.33% 81.20%  85.38%
SSDR 7071%  77.97% 7171%  7833%  79.77%  81.62%
NPSSDR 79.73%  87.34% 81.96% 85.67% 81.77%  87.92%
DSPP 77.01%  8553% 82.96% 86.67% 83.94%  86.90%

Table 1 Specific settings of parameters on algorithms
Algorithm name Parameters settings

SPP no
PCFP no
SSPCPPGA(p,c) pc=0.6,pm=0.1
RLPP k=7t=1
SSDR a=1,=20
NPSSDR a=01k=5
DSPP no
The simplest Nearest Neighbor classification

algorithm is adopted. We select randomly L images from
each group face for training samples and remains for
testing. Retained feature dimensions are increased with
the increment D and corresponding classification
accuracies are calculated. All experiments are repeated 20
times and average recognition rates are gotten.

Besides,the matrix XX probably is singular since the
number of training samples is much smaller than the
feature dimension. To deal with the problem, training data
firstly projected into the PCA subspace X = Th-4X . The
ratio of PCA is set to 1.

4.3. Experimental results and analyses

4.3.1. Results and analyses on the classification
performance of SSPCPPGA

In the experiment, we select SSPCPPGA(5,10) where the
parameter p is set to 5 and the parameter c is set to 10.
Fig.4-Fig.6 show experimental results of the classification
performance with L training samples of each group and D
increment of retained dimensions.

Moreover, in order to verify more accurately the
classification performance of SSPCPPGA, the most
recognition rates of various algorithms on different face
datasets under different L are given and shown in Table2.
Bold items represent maximum recognition rates.

From above Fig.7-Fig.9 and Table 2, we draw
following conclusions:

(1) SSPCPPGA is obviously superior to SPP. Besides,
SSPCPPGA outperforms PCFP and also can get top
recognition rate under lower dimensions. This illuminates

that the linear weighted fusion way in Eq(10) is efficient
and SSPCPPGA inherits advantages of SPP and PCFP.

(2) In contrast to SSDR, the advantages of
SSPCPPGA is obvious. The reason is that SSDR
preserves structure information based on linear scatter
matrices while SSPCPPGA adopts to preserve structure
information with sparse representation that has more
power for describing geometric structures in data.

(3) Although RLPP and SSPCPPGA share nonlinear
advantages, SSPCPPGA outperforms RLPP owing much
to different description ways for manifold structure in
data. RLPP only capture local manifold structures with
the nonlinear approximation, which ignore natural
intrinsic geometric structure information in data while
Sparse reconstruction of SSPCPPGA is available of
intrinsic geometric properties.

(4) NPSSDR preserves local structure information by
adding a regularization item instead of constructing the
adjacency matrix of data. However, NPSSDR does not
change the way of preserving structure information with
the nonlinear approximation. Therefore the performance
of NPSSDR is not so good as that of SSPCPPGA.

(5) DSPP has a high discriminative ability which is
inherited from the sparse representation of data that is
shared by DSPP and SSPCPPGA. But DSPP attempts to
maintain the prior low-dimensional representation
constructed by the data points and the known class labels,
which is the main reason for that SSPCPPGA is
obviously superior to DSPP.

4.3.2. Analyses on the effect of parameters of GA on the
algorithm

To evaluate the effect of the parameter p and the parameter
c on the algorithm, we set different p and ¢ in experiments.
Experimental results on the effect of parameters are shown
in Fig.7-Fig.9.

From experimental results of Fig.7-Fig.9, we draw the
conclusion that the performance of SSPCPPGA is not
sensitive to the parameter p and the parameter ¢ when
they exceed the threshold value.
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Figure 8 Experimental results of the effect of parameters with L and D on Yale
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Figure 9 Experimental results of the effect of parameters with L and D on UMIST

dimension and increase gradually § from O to 1 with the
increment of 0.05 and calculate corresponding
recognition rate. Moreover, the optimized weighted

4.3.3. Analyses on the optimization performance of the
weighted trade-off parameter 8

In order to evaluate the adaptivity of the weighted
trade-off parameter B , we firstly select some retain
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Figure 10 Experimental results of the optimization of the weighted trade-off parameter  with L on AR
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Figure 11 Experimental results of the optimization of the weighted trade-off parameter 8 with L on Yale
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Figure 12 Experimental results of the optimization of the weighted trade-off parameter 8 with L on UMIST

trade-off parameter § of different retained dimension are Fig.10-Fig.12 show experimental results on AR,Yale and
listed, which are obtained by SSPCPPGA(S,10). UMIST.
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From experimental results of Fig.10-Fig.12, we draw
following conclusions:

(1) When retained dimension number exceeds the
threshold of dimension, the role of the weighted trade-off
parameter 3 on the classification performance is nearly
identical, which illuminates the stability of the adaptivity
of the weighted trade-off parameter [ in
SSPCPPGA(S,10).

(2) The way of interval of 0.05 increments need to
calculate 20 individual value to obtain the optimized
value while SSPCPPGA(5,10) only to calculate 15
individual value, which demonstrates less time cost of
SPCPPGA in searching the optimized value.

(3) The optimized trade-off parameter 3 calculated by
SSPCPPGA(S,10) is almost near to the optimal value in
experimental results, which confirm its effectiveness of the
adaptivity of the weighted trade-off parameter 3 in
SSPCPPGA(S,10).

(4) The optimized trade-off parameter § is different
on different datasets, which demonstrates the necessity of
the adaptivity of the weighted trade-off parameter B in
SSPCPPGA(S,10).

4.4. Computational complexity analyses

For samples X = {x1,x,X3, -+, X, } € R¥*" SSPCPPGA
contains main steps for solving S,,P, ,the trade-off f3
based on GA and the eigen-decomposition using Eq.(10).
The computational complexity of sparse learning is nearly
that of solution of /;{ norm minimization problems which
is O(d?) [27]. Therefore the computational complexity of
solving S, is O(d?). The computational complexity of
solving P, is O(d?).The eigen-problem on a symmetric
matrix can be efficiently computed by the singular value
decomposition  (SVD) which is O(d?). Main
computational time in GA algorithm is caused by
calculating the adaptability that contains steps for solving
Sss P;, and the eigen-decomposition. So the
computational complexity of solving the trade-off J
based on GA is O(d*). To sum up, the computational
complexity of SSPCPPGA is O(d?). Computational
complexity analyses on various algorithms are shown in
Table 3.

Table 3 Computational complexity analyses
Algorithm name  Computational complexity

SPP o(d®)
PCFP o(d?)
SSPCPPGA o(d?)
DSPP o(d?)
RLPP o(d?)
SSDR o(d?)
NPSSDR o(d® +n?)

Conclusion

In the paper, a dimensionality reduction algorithm called
Semi-supervised Sparsity Pairwise Constraint Preserving
Projections based on Genetic Algorithm (SSPCPPGA) is
proposed to solve the problem of deficiency of the ability
for preserving global geometric structure of data in
existing semi-supervised dimensionality reduction with
pairwise constraints. On one hand, the algorithm fuses
sparse reconstruction feature information and pairwise
constraint feature information through the linear weighted
way. Projected data preserve geometrical structure in
samples and constraints relation of samples. On the other
hand, the algorithm adopts GA to get the optimized
weighted trade-off parameter. Experiments operated on
AR, Yale and UMIST demonstrate the effectiveness of
our proposed algorithm.

However, to optimize weighted trade-off parameter
based on GA still costs us some time, the fusion way
without selecting parameters is more convenience, which
is the future work.
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