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Abstract: Bivariate Marshall Olkin distribution methods are very useful for modelling failure of paired organs, such as 
the eyes, kidneys, and lungs. Although there are inevitable relations between the components of such organs, these 
organs may possibly fail one after the other or at the same time. In this paper, a new model using Bivariate Marshall-
Olkin distribution methods, namely Bivariate Omega Model (BOM) is introduced and applied for modeling time of two 
eyes blindness in diabetic retinopathy patients. Some probabilistic properties of the bivariate Omega distribution are 
derived and studied. The dependence properties for bivariate Omega distribution are proposed using the Marshall-Olkin 
copula. Parameters estimators are investigated using the maximum likelihood method. Two data sets are illustrated to 
show the usefulness of the new model for fitting such data. 

Keywords: Bivariate distribution; Diabetic Retinopathy Study; Failure rate; Marshall-Olkin copula; Maximum-
likelihood estimators; Omega distribution. 

 
1 Introduction 

The Omega probability (OM) distribution created by [1] and established based on the omega function. The behaviors of 
the hazard rate function for OM distribution make it more fitting for modeling bathtub-shaped failure rate curves. The 
probability density function (pdf), cumulative distribution function (cdf), survival function, and hazard rate function of 
OM distribution are expressed as follows, 
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where 𝛼, 𝛽, 𝑑 > 0 are the parameters and a random variable 0 < 𝑥 < 𝑑. 

Omega probability distribution is famous for its versatility and ease of usage. The fact that the cdf and the hazard rate 
function of OM distribution are power functions rather than exponential functions helps to the distribution apparent ease 
of use. While the exponential function tends to infinity over an unbounded domain, the omega function does so over a 
bounded domain (0, d). This allows the omega hazard rate function to be more appropriately follow sudden changes (d 
> 0). The properties of OM distribution investigated by [2]. They also showing that the OM is better suited to the data 
than the other distributions (Exponentiated Weibull, generalized power Weibull, generalized Weibull, modified 
Weibull, modified Weibull extension, odd Weibull, and reduced modified Weibull distributions) examined by [1] for 
analysis the number of operating hours between successive failure times of air conditioning systems in Boeing 
airplanes.  
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In numerous applications, multivariate survival analysis is necessary. It is essential to consider the multivariate 
distributions for modeling the multivariate data. Various methods have been offered for multivariate survival data, 
see [3]. This paper aims to introduce the Bivariate Omega distribution (BOM), whose marginal probability density 
functions are OM distribution using Marshall-Olkin formulation [4]. This new bivariate model is constructed from three 
independent OM distributions using a minimization process. Various articles have introduced Marshall-Olkin type of 
bivariate distributions, which are widely utilized for applications in the field of failure time, for instance, [5, 6, 7, 8, 9, 
10]. 

This paper is organized as follows: in Section 2, we formulate and describe a new bivariate model established Marshall-
Olkin method, called Bivariate Omega (BOM) distribution. Also, some properties of this new bivariate model are 
studied. The dependence properties for bivariate Omega distribution are proposed using Marshall-Olkin copula are 
discussed in Section 3. The bivariate hazard rate function of BOM distribution is provided in Section 4. Section 5 is 
dedicated to studying the reliability stress-strength model. The maximum likelihood estimators of the parameters are 
provided in Section 6. In Section 7, two real data are analyzed for illustrative purposes. Finally, conclusions are 
proposed in Section 8. 

2. Model Formulation 

2.1. Marshall-Olkin Type Distribution in Shock Model and Competing Risks Model 
The bivariate Marshall-Olkin type model is used in the shock model or the competing risks model. In these models, the 
system consists of two components which are exposed to shocks or risk arriving from three sources of events. 

Suppose 𝑈B, 𝑈C	𝑎𝑛𝑑	𝑈F are three independent random variables such that 𝑈G~𝑂𝑀(𝛼G, 𝛽, 𝑑) for 𝑖 = 1, 2, 3, and let 𝑋B =
min	(𝑈B,	𝑈F), 𝑋C = min	(𝑈C,	𝑈F). Hence the bivariate vector (𝑋B, 𝑋C) has a BOM distribution with parameters 
(𝛼B, 𝛼C, 𝛼F, 𝛽, 𝑑), denoted by (𝑋B, 𝑋C)~𝐵𝑂𝑀(𝛼B, 𝛼C, 𝛼F, 𝛽, 𝑑). The shock and competing risks models for bivariate 
omega distribution can be described as follows, 

Shock model: Suppose two components labelled 1 and 2 according to three types of shocks in a system. If the shock of 
the first type happens, then component 1 fails. If the shock of the second type happens, then component 2 fails. But 
when the third type of shock happens, the two components 1 and 2 are failed. Consider that the occurrences of these 
shocks are controlled by three independent processes with the related inter-arrival times denoted by 𝑈B, 𝑈C	𝑎𝑛𝑑	𝑈F. The 
lifetime of component 1 is the random variable 𝑋B = min	(𝑈B,	𝑈F) and that of the component 2 is  𝑋C = min	(𝑈C,	𝑈F).  
Then, the survival time of (𝑋B, 𝑋C) follows the BOM distribution. 

Competing risks model: Suppose a system with two components labelled 1 and 2 subjects to three independent causes 
of failures, which may affect the system. Let 𝑈B, 𝑈C	𝑎𝑛𝑑	𝑈F are the lifetimes of failure causes. The lifetime of 
component 1 is the random variable 𝑋B = min	(𝑈B,	𝑈F) can fail due to cause 1, the lifetime of component 2 is 𝑋C =
min	(𝑈C,	𝑈F) can fail due to cause 2, while both the components 1 and 2 fail at the same time as a result of cause 3. Let 
𝑈B, 𝑈C	𝑎𝑛𝑑	𝑈F  are the lifetimes of failure follow Omega distribution, then (𝑋B, 𝑋C) follows the BOM distribution. 

2.2. Bivariate Omega Distribution 
For the independent random variables 𝑈G~𝑂𝑀(𝛼G, 𝛽, 𝑑), 𝑖 = 1, 2, 3, the random variables 𝑋B = min	(𝑈B,	𝑈F) and 𝑋C =
min	(𝑈C,	𝑈F) are dependent due to the common random (latent) variable 𝑈F. Hence the vector (𝑋B, 𝑋C) has BOM 
distribution, with parameters (𝛼B, 𝛼C, 𝛼F, 𝛽, 𝑑). The following result presents the joint survival function of  (𝑋B, 𝑋C). 

Theorem 1. If (𝑋B, 𝑋C)~𝐵𝑂𝑀(𝛼B, 𝛼C, 𝛼F, 𝛽, 𝑑), then the joint survival function of two variables 𝑋B and 𝑋C is given by  
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where 𝑧 = max(𝑥B, 𝑥C). 

Proof. Since the survival function of  (𝑋B, 𝑋C) is as follows 

𝑆T-,T)(𝑥B, 𝑥C) = 𝑃{𝑋B > 𝑥B, 𝑋C > 𝑥C	} , 

Then, we get 

𝑆T-,T)(𝑥B, 𝑥C) = 𝑃{min	(𝑈B, 𝑈F) 	> 𝑥B,min	(𝑈C, 𝑈F) > 𝑥C	} 

                  = 𝑃{𝑈B > 𝑥B, 𝑈F > 𝑥B, 𝑈C > 𝑥C, 𝑈F > 𝑥C	} 
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                    = 𝑃{𝑈B > 𝑥B, 𝑈C > 𝑥C, 𝑈F > max	(𝑥B, 𝑥C)} 

   = 𝑃{𝑈B > 𝑥B, 𝑈C > 𝑥C, 𝑈F > z}, 

where, 𝑧 = max(𝑥B, 𝑥C). 

 Since 𝑈G, 𝑖 = 1, 2, 3 are independent random variables, then 

                                  𝑆T-,T)(𝑥B, 𝑥C) = 𝑃(𝑈B > 𝑥B)𝑃(𝑈C > 𝑥C)𝑃(𝑈F > 𝑧) 
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Corollary 1. The joint survival function of the 𝐵𝑂𝑀(𝛼B, 𝛼C, 𝛼F, 𝛽, 𝑑) can be also written as: 

𝑆T-,T)(𝑥B, 𝑥C) = c
𝑆`a(𝑥B; 𝛼B, 𝛽, 𝑑)	𝑆`a(𝑥C; 𝛼C + 𝛼F, 𝛽, 𝑑),											𝑖𝑓								𝑥B < 𝑥C
𝑆`a(𝑥B; 𝛼B + 𝛼F, 𝛽, 𝑑)	𝑆`a(𝑥C; 𝛼C, 𝛽, 𝑑),										𝑖𝑓										𝑥C < 𝑥B
𝑆`a(𝑥; 𝛼B + 𝛼C + 𝛼F, 𝛽, 𝑑),																																𝑖𝑓		𝑥B = 𝑥C = 𝑥

                   (6) 

If (𝑋B, 𝑋C)~𝐵𝑂𝑀(𝛼B, 𝛼C, 𝛼F, 𝛽, 𝑑), then the marginal distributions of 𝑋B and 	𝑋C and the distribution of the random 
variable min(𝑋B, 𝑋C) are introduced and proved in the following proposition. 

Proposition 1. Let (𝑋B, 𝑋C)~𝐵𝑂𝑀(𝛼B, 𝛼C, 𝛼F, 𝛽, 𝑑). Then it follows that 

(i) The marginal distribution function of 𝑋B and 𝑋C are as follows 

       𝑋B~𝑂𝑀(𝛼B +	𝛼F, 𝛽, 𝑑)  and 	𝑋C~𝑂𝑀(	𝛼C +	𝛼F, 𝛽, 𝑑). 

(ii) 𝑚𝑖𝑛	(𝑋B, 𝑋C)~𝑂𝑀(𝛼B + 𝛼C +	𝛼F, 𝛽, 𝑑) 

Proof. (i) If  𝑋B < 𝑋C, then Z = 𝑚𝑎𝑥(𝑋B, 𝑋C) =𝑋C. By taking  

                                 lim
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                                                               = 𝑆`a(𝑥C; 𝛼C + 𝛼F, 𝛽, 𝑑). 

Analogously, if  𝑋C < 𝑋B, we have 𝑍 = 𝑋B. Therefore, 

                                       lim
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                                                                        = 𝑃(𝑈B > 𝑦)	𝑃(𝑈C > 𝑦)	𝑃(𝑈F > 𝑦)	  

                                                                        = 0(
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Thus, result (ii) holds. 

The following Theorems will provide the joint cdf and pdf of the BOM distribution.                  

Theorem 2. If (𝑋B, 𝑋C)~𝐵𝑂𝑀(𝛼B, 𝛼C, 𝛼F, 𝛽, 𝑑), then the joint cumulative distribution function of (𝑋B, 𝑋C) is given by 

𝐹T-,T)(𝑥B, 𝑥C) = c
𝐹 a(𝑥B; 𝛼B + 𝛼F, 𝛽, 𝑑) − 𝐹 a(𝑥B; 𝛼B, 𝛽, 𝑑)[1 − 𝐹 a(𝑥C; 𝛼C + 𝛼F, 𝛽, 𝑑)],					𝑖𝑓					𝑥B < 𝑥C
𝐹 a(𝑥C; 𝛼C + 𝛼F, 𝛽, 𝑑) − 𝐹 a(𝑥C; 𝛼C, 𝛽, 𝑑)[1 − 𝐹 a(𝑥B; 𝛼B + 𝛼F, 𝛽, 𝑑)],				𝑖𝑓						𝑥C < 𝑥B
1 − 𝐹 a(𝑥; 𝛼B + 𝛼C + 𝛼F, 𝛽, 𝑑),																																																																								𝑖𝑓		𝑥B = 𝑥C = 𝑥

  (7) 

Proof. The joint cdf of 𝑋B and 𝑋C can be directly obtained from the relationship  

𝐹T-,T)(𝑥B, 𝑥C) = 𝑃(𝑋B > 𝑥B, 𝑋C > 𝑥C) + 𝑃(𝑋B < 𝑥B) + 𝑃(𝑋C < 𝑥C) − 1 

                                                             = 𝑆T-,T)(𝑥B, 𝑥C) + [1 − 𝑆T-(𝑥B)] + [1 − 𝑆	T)(𝑥C)] − 1                                     (8) 
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In the case 𝑥B < 𝑥C: From Theorem1, the joint survival function of the 𝐵𝑂𝑀(𝛼B, 𝛼C, 𝛼F, 𝛽, 𝑑) can be also written as, 

𝑆T-,T)(𝑥B, 𝑥C) = 𝑆`a(𝑥B; 𝛼B, 𝛽, 𝑑)	𝑆`a(𝑥C; 𝛼C + 𝛼F, 𝛽, 𝑑) 

                                                                         = [1 − 𝐹 a(𝑥B; 𝛼B, 𝛽, 𝑑)][1 − 𝐹 a(𝑥C; 𝛼C + 𝛼F, 𝛽, 𝑑)]               (9) 

From proposition 1, the marginal distributions of 𝑋B and 	𝑋C	are 𝑂𝑀(𝛼B + 𝛼F, 𝛽, 𝑑) and 𝑂𝑀(𝛼C + 𝛼F, 𝛽, 𝑑), 
respectively. Thus, we have 

                        𝑆T-(𝑥B) = 𝑆`a(𝑥B; 𝛼B + 𝛼F, 𝛽, 𝑑)  and     𝑆T)(𝑥C) = 𝑆`a(𝑥C; 𝛼C + 𝛼F, 𝛽, 𝑑)                                        (10) 

Substituting from (9) and (10) into (8), we obtained 

𝐹T-,T)(𝑥B, 𝑥C) = 𝑆T-,T)(𝑥B, 𝑥C) + [1 − 𝑆T-(𝑥B)] + [1 − 𝑆	T)(𝑥C)] − 1 

                     =[1 − 𝐹 a(𝑥B; 𝛼B, 𝛽, 𝑑)][1 − 𝐹 a(𝑥C; 𝛼C + 𝛼F, 𝛽, 𝑑)] 

                         +𝐹 a(𝑥B; 𝛼B + 𝛼F, 𝛽, 𝑑) + 	𝐹 a(𝑥C; 𝛼C + 𝛼F, 𝛽, 𝑑) − 1 

                                                      = 𝐹 a(𝑥B; 𝛼B + 𝛼F, 𝛽, 𝑑) − 𝐹 a(𝑥B; 𝛼B, 𝛽, 𝑑)[1 − 	𝐹 a(𝑥C; 𝛼C + 𝛼F, 𝛽, 𝑑)] 

Analogously follows the case 𝑥B > 𝑥C, but for the case of 𝑥B = 𝑥C = 𝑥 is obvious. 

Theorem 3. If (𝑋B, 𝑋C)~𝐵𝑂𝑀(𝛼B, 𝛼C, 𝛼F, 𝛽, 𝑑), then the joint probability density function of (𝑋B, 𝑋C) is given by 

                                              𝑓T-,T)(𝑥B, 𝑥C) = c
𝑓B(𝑥B, 𝑥C),													𝑖𝑓														0 < 𝑥B < 𝑥C < 𝑑
𝑓C(𝑥B, 𝑥C),											𝑖𝑓														0 < 𝑥C < 𝑥B < 𝑑
𝑓i(𝑥),																		𝑖𝑓						0 < 𝑥 = 𝑥B = 𝑥C 	< 𝑑	

                                       (11) 

where, 
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𝑓C(𝑥B, 𝑥C) = 𝑓 a(𝑥B; 𝛼B + 𝛼F, 𝛽, 𝑑)𝑓 a(𝑥C; 𝛼C, 𝛽, 𝑑) 

𝑓i(𝑥) =
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p)qr-,r)(+-,+))
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                                              =	 &)
(&-1&)1&X)

 

Thus, 

𝛼B
(𝛼B + 𝛼C + 𝛼F)

+
𝛼C

(𝛼B + 𝛼C + 𝛼F)
+ s𝑓i(𝑥)𝑑𝑥

(

i

= 1 

Hence, we obtain ∫ 𝑓i(𝑥)𝑑𝑥
(
i = &X

(&-1&)1&X)
. 

On the other hand,  

sU
𝛼F

𝛼B + 𝛼C + 𝛼F
V y
(𝛼B + 𝛼C + 𝛼F)𝑑C'𝛽𝑥'.B

𝑑C' − 𝑥C' |
𝑑' + 𝑥'

𝑑' − 𝑥'}

,(3-j3)j3X)4*
)

z 𝑑𝑥 =
𝛼F

(𝛼B + 𝛼C + 𝛼F)

(

i

 

Therefore, 

𝑓i(𝑥) =
𝛼F

𝛼B + 𝛼C + 𝛼F
𝑓 a(𝑥; 𝛼B + 𝛼C+𝛼F, 𝛽, 𝑑) 

The proof of the theorem is completed. 

The conditional probability function of 𝑋G is introduced in the following theorem, 

Theorem 4. The conditional probability functions of 𝑋G, given 𝑋G = 𝑥G denoted by 

                                                       𝑓T-|T)(𝑥B|𝑥C) = �
𝑓T-|T)
(B) (𝑥B|𝑥C),					𝑥B < 𝑥C
𝑓T-|T)
(C) (𝑥B|𝑥C),					𝑥B > 𝑥C

				                                 

where, 

                                    𝑓T-|T)
(B) (𝑥B|𝑥C) =

&-'()*+-
*,-

()*.+-
)* 	U(

*1+-
*

(*.+-
*V

,3-4*
)

= 𝑓T-(𝑥B)	 

                                 𝑓T-|T)
(C) (𝑥B|𝑥C) =

&)(&-1&X)'()*+-
*,-

(&)1&X)(()*.+-
)*)

	U(
*1+-

*

(*.+-
*V

,(3-j3X)4*
)

U(
*1+)

*

(*.+)
*V

3X4*
)

 

Proof. By using the joint pdf and the marginal of (𝑋B, 𝑋C) in Theorem 4 and substituting by it in the following 
expression, the theorem follows immediately, 

𝑓T-|T)(𝑥B|𝑥C) =
𝑓T-,T)(𝑥B, 𝑥C)
𝑓T)(𝑥C)

	. 

3. Copula and Dependence Properties 

One of the popular methods for constructing bivariate distribution is the copula type. The importance of copula models 
is converged by [11] who explained in his theorem “Sklar theorem” the relation between bivariate distribution functions 
and its related univariate marginals with a variety of dependence structures. For every bivariate distribution function 
𝐹T-,T)(𝑥B, 𝑥C) with continuous marginals 𝐹T-(𝑥B) and 𝐹T)(𝑥C) there exists a copula with uniform margins 𝐶: [0,1] ×
[0,1] → [0,1], such that:  𝐶(𝐹B(𝑥B), 𝐹C(𝑥C)) = 𝐹T-,T)(𝑥B, 𝑥C). In this section, the dependence properties for bivariate 
Omega distribution are proposed using Marshall-Olkin copula type [4], which can be written by:  

                                                    𝐶(𝑢, 𝑣) = 𝑢B.�-𝑣B.�) minu𝑢�-, 𝑣�)v                                  (12) 

or 

                                                 𝐶(𝑢, 𝑣) = �𝑢
B.�-𝑣,							𝑢�- ≥ 𝑣�)										
𝑢𝑣B.�),									𝑢�- ≤ 𝑣�)						

 

For all 0 < 𝜃G < 1, 𝑖 = 1, 2. For 𝑢 = 𝐹T-(𝑥B) and 𝑣 = 𝐹T)(𝑥C) where 𝑋G~𝐵𝑂𝑀(𝛼G + 𝛼F, 𝛽, 𝑑) and 𝜃G =
&X

&�1&X
 , 𝑖 =
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1, 2, then the function 𝐶(𝑢, 𝑣) gives the same bivariate distribution function 𝐹T-,T)(𝑥B, 𝑥C) in (7). The Marshall -Olkin 
survival copula is as follows 

                                          𝐶�(𝑢, 𝑣) = 𝑢𝑣minu𝑢.�-, 𝑣.�)v = minu𝑢B.�-𝑣, 𝑢𝑣B.�)v                      

The density function associated with copula 𝐶(𝑢, 𝑣) is defined by 𝑐(𝑢, 𝑣) = p)

p�p�
𝐶(𝑢, 𝑣), so the density function for 

Marshall-Olkin copula (12) is denoted by 

                                                         𝑐(𝑢, 𝑣) = �(1 − 𝜃B)	𝑢
.�-, 𝑢�- > 𝑣�)

(1 − 𝜃C)	𝑣.�), 𝑢�- < 𝑣�)
                                  

One of the most concepts in statistics is the dependency or association between variables using copula. Now several 
properties for 𝐹T-,T)(𝑥B, 𝑥C) in terms of 𝐶(𝑢, 𝑣) related to dependence measures are presented. 

3.1. Measures of Association 
There are several measures of association between a continuous pair (𝑋B, 𝑋C) will be proposed as Kendall's tau (𝜏), 
Spearman's rho (𝜌), Blomqvist medial correlation coefficient (𝛽) and Spearman's footrule coefficient (φ�) which 
depends only on the copula 𝐶(𝑢, 𝑣), see [12]. 

• Kendall's tau (𝜏): 
Kendall’s tau has several expressions the following is more tractable 

                                                       𝜏 = 1 − 4∫ ∫ p�(�,�)
p�

B
i

B
i

p�(�,�)
p�

𝑑𝑢	𝑑𝑣                                              

Marshall-Olkin copula has Kendall's tau as  �-�)
�-1�).�-�)

, if (𝑋B, 𝑋C)	~𝐵𝑂𝑀(𝛼B + 𝛼C + 𝛼F, 𝛽, 𝑑) then Kendall's tau is 
given by                                               
                                                                              𝜏 = &X

&-1&)1&X
                                                             

for 𝜃G =
&X

&�1&X
 , 𝑖 = 1, 2, and 𝛼B, 𝛼C, 𝛼F various from 0 to ∞. 

• Spearman’s rho (𝜌): 

Spearman’s rho can be expressed by copula as: 

𝜌 = 12s s 𝐶(𝑢, 𝑣)
B

i

B

i
𝑑𝑢	𝑑𝑣 − 3 

Marshall-Olkin copula has Spearman’s rho as F�-�)
C�-1C�).�-�)

, if (𝑋B, 𝑋C)	~𝐵𝑂𝑀(𝛼B + 𝛼C + 𝛼F, 𝛽, 𝑑) then the Spearman’s 
rho is given by 

𝜌 =
3𝛼F

2𝛼B + 2𝛼C+3𝛼F
 

• Blomqvist medial correlation coefficient (𝛽): 

The medial correlation coefficient introduced by [13] for a random pair (𝑋B, 𝑋C) by using the medians of 𝑋B and 𝑋C. 
Also, used the copula function to propose Blomqvist medial correlation coefficient (𝛽) which is defined by: 

𝛽 = 4𝐶 0B
C
, B
C
2 − 1                                            

Therefore, if (𝑋B, 𝑋C)	~𝐵𝑂𝐷(𝛼B + 𝛼C + 𝛼F, 𝛽, 𝑑), the copula 𝐶 0B
C
, B
C
2 = (B

C
)C.���	(�-,�)), then 

                                                                         𝛽 = c
40B

C
2
C.�-

− 1,							𝜃B < 𝜃C		

4(B
C
)C.�) − 1								𝜃B > 𝜃C

                                      

where  𝜃G =
&X

&�1&X
 , 𝑖 = 1, 2. The minimum value of 𝛽=0 at min(𝜃B, 𝜃C) = 0 and the maximum value of 𝛽=1 at 

min(𝜃B, 𝜃C) = 1. 

• Spearman’s footrule coefficient (𝜑�): 
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Another measure of association can be calculated using copula function is Spearman’s footrule coefficient, see [12], as 
follows 

		𝜑� = 6s 𝐶(𝑢, 𝑢)𝑑𝑢 − 2
B

i
 

Hence, 

		𝜑� = �
F.���	(�-,�))

− 2 

Therefore, if (𝑋B, 𝑋C)	~𝐵𝑂𝐷(𝛼B + 𝛼C + 𝛼F, 𝛽, 𝑑),  then 

		𝜑� =

⎩
⎨

⎧
2𝛼F

3𝛼B + 2𝛼F
,						𝜃B < 𝜃C

2𝛼F
3𝛼C + 2𝛼F

,						𝜃B > 𝜃C
 

3.2. Dependence Structure 
Several dependence structures of random variables discussed by [14, 12] using the copula theory.   

• Tail Dependence: 

The idea of tail dependence in a copula type measure is the dependence between the variables in the upper or lower 
quadrant tail of [0.1]C. [14] introduced the following definition of the upper and lower tail dependence which depend, 
respectively, on the copula of 𝑋B and 𝑋C 

𝜆¡ = 2 − lim
¢→B,

B.�(¢,¢)
B.¢

   and 𝜆£ = lim
¢→ij

�(¢,¢)
¢

 

If (𝑋B, 𝑋C)	~𝐵𝑂𝐷(𝛼B + 𝛼C + 𝛼F, 𝛽, 𝑑), then   

𝜆¡ = ¤

𝛼F
𝛼B + 𝛼F

,									𝜃B < 𝜃C
𝛼F

𝛼C + 𝛼F
,									𝜃B > 𝜃C

 

Thus, there is no lower tail dependence 𝜆£ = 0. 

• Quadrant Dependence: 

The two random variables 𝑋B and 𝑋C are the positive quadrant dependent (PQD) if  

                                                    𝑃(𝑋B ≤ 𝑥B, 𝑋C ≤ 𝑥C) ≥ 𝑃(𝑋B ≤ 𝑥B)𝑃(𝑋C ≤ 𝑥C)                                              

PQD can be written by copula type, see [12], equivalently as  

                                                               𝐶(𝑢, 𝑣) ≥ 𝑢𝑣, for 𝑢, 𝑣	 ∈ [0,1]C                                       (13) 

Marshall-Olkin copula is PQD which verified (13). Therefore, if (𝑋B, 𝑋C)	~𝐵𝑂𝑀(𝛼B + 𝛼C + 𝛼F, 𝛽, 𝑑), then they are 
PQD. 

4. The Hazard Rate Function 

For BOM, the bivariate hazard rate function, hazard gradients and shape of hazard rate function are provided and 
discussed in this section. 

4.1. Bivariate Hazard Rate 
If (𝑋B, 𝑋C) has joint probability density function 𝑓T-,T)(𝑥B, 𝑥C), [15] defined the bivariate failure rate function as follows 

ℎT-,T)(𝑥B, 𝑥C) =
𝑓T-,T)(𝑥B, 𝑥C)
𝑆T-,T)(𝑥B, 𝑥C)

 

Theorem 5. If (𝑋B, 𝑋C)~𝐵𝑂𝑀(𝛼B + 𝛼C+𝛼F, 𝛽, 𝑑), then the bivariate hazard rate function is defined by  
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ℎT-,T)(𝑥B, 𝑥C) = c
ℎB(𝑥B, 𝑥C),																𝑖𝑓	𝑥B < 𝑥C
ℎC(𝑥B, 𝑥C),																𝑖𝑓	𝑥C < 𝑥B
ℎi(𝑥),				𝑖𝑓	0 < 𝑥B = 𝑥C = 𝑥 < 𝑑

 

where, 

ℎB(𝑥B, 𝑥C) =
𝑓B(𝑥B, 𝑥C)
𝑆B(𝑥B, 𝑥C)

=
𝛼B(𝛼C + 𝛼F)	𝛽C𝑑t'𝑥B

'.B𝑥C
'.B

u𝑑C' − 𝑥B
C'vu𝑑C' − 𝑥C

C'v
 

ℎC(𝑥B, 𝑥C) =
𝑓C(𝑥B, 𝑥C)
𝑆C(𝑥B, 𝑥C)

=
𝛼C(𝛼B + 𝛼F)	𝛽C𝑑t'𝑥B

'.B𝑥C
'.B

u𝑑C' − 𝑥B
C'vu𝑑C' − 𝑥C

C'v
 

ℎi(𝑥) =
𝑓i(𝑥)
𝑆i(𝑥)

=
𝑑C'𝛽𝛼F𝑥'.B

𝑑C' − 𝑥C'  

Proof. By using (6) and (11), it is easy to prove the theorem. 

4.2. Hazard Gradients 
The hazard rate function measures the failure rate in the univariate state, whereas in the multivariate cases, the failure 
rate depends on the variable that is changed. Therefore, [16, 17] are defined as the hazard gradients for modeling 
bivariate and multivariate lifetime data. 

The bivariate hazard gradient for continuous random variables 𝑋B and 𝑋C is given by 

ℎT-,T)(𝑥B, 𝑥C) = 0ℎT-(𝑥B, 𝑥C), ℎT)(𝑥B, 𝑥C)2 

                                                              = 0− p
p+-

𝑙𝑜𝑔 𝑆T-,T)(𝑥B, 𝑥C), −
p
p+)

𝑙𝑜𝑔 𝑆T-,T)(𝑥B, 𝑥C)2 

For (𝑋B, 𝑋C)~𝐵𝑂𝑀(𝛼B, 𝛼C, 𝛼F, 𝛽, 𝑑), the hazard gradients are given by 

                                                           ℎT-(𝑥B, 𝑥C) =

⎩
⎪⎪
⎨

⎪⎪
⎧&-'()*+-

*,-

()*.+-
)* ,																									𝑖𝑓			𝑥B < 𝑥C

(&-1&X)'()*+-
*,-

()*.+-
)* ,																	𝑖𝑓			𝑥C < 𝑥B

(&-1&)1&X)'()*+-
*,-

()*.+-
)* ,										𝑖𝑓				𝑥B = 𝑥C

                                        (14) 

and  

                                                          ℎT)(𝑥B, 𝑥C) =

⎩
⎪⎪
⎨

⎪⎪
⎧ (&)1&X)	'()*+)

*,-

()*.+)
)* ,										𝑖𝑓						𝑥B < 𝑥C

&)'()*+)
*,-

()*.+)
)* ,																								𝑖𝑓			𝑥C < 𝑥B

(&-1&)1&X)'()*+)
*,-

()*.+)
)* ,								𝑖𝑓			𝑥B = 𝑥C

                              (15) 

4.3. Shape of Hazard Rate Function 
Hazard rate function of the omega distribution with parameters 𝛼, 𝛽 and 𝑑 is given by 

                                                                             ℎ(𝑥) = &'()*+*,-

()*.+)*
                                                                  (16) 

Since ℎ(𝑥) is bathtub shaped for 0 < 𝛽 < 1 and a monotonic increasing for 𝛽 ≥ 1. From (14), (15) and (16), we can 
conclude that for fixed 𝑥C, ℎT-(𝑥B, 𝑥C) has a bathtub shape for 𝛽 ≥ 1 and monotonic increasing for 𝛽 ≥ 1. Similarly, 
the hazard function ℎT)(𝑥B, 𝑥C) hold the same shapes for a fixed 𝑥B. 

5. Stress-Strength Reliability Analysis 

The stress–strength measure explains the life of a component that has a strength 𝑋C and random stress 𝑋B. The 
component fails at the time that the stress exceeds the strength. In this section, the stress- strength reliability measure, 
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𝑅 = P	(𝑋B < 𝑋C) is derived for BOM distribution when 𝑋B and 𝑋C are dependent random. The stress-strength reliability 
measure R for BOM distribution is derived as follows, 

Theorem 6. If (𝑋B, 𝑋C) has a BOM distribution defined in (8), then the stress-strength measure is  

                                                                              𝑅 = P(𝑋B < 𝑋C) =
&-

&-1&)1&X
                   

Proof. The stress-strength reliability measure can be derived as follows 

𝑅 = P(𝑋B < 𝑋C) = s s 𝑓B(𝑥B, 𝑥C)
(

+-
𝑑𝑥C𝑑𝑥B

(

i
 

      = ∫ ∫
&-(&)1&X)(¬*')+-

*,-+)
*,-

0()*.+-
)*20()*.+)

)*2

(
+-

(
i U(

*1+-
*

(*.+-
*V

,3-4*
)

U(
*1+)

*

(*.+)
*V

,(3)j3X)4*
)

𝑑𝑥C𝑑𝑥B 

      = ∫
&-()*'+-

*,-w
4*,­-

*

4*j­-
*x

-
)4
*(3-j3)j3X)

()*.+-
)*

(
i 𝑑𝑥B =

&-
&-1&)1&X

. 

6. Maximum Likelihood Estimation 

The estimation of the unknown parameters for BOM distribution are derived in this section using the maximum 
likelihood estimation (MLE) method. Let (𝑥BB, 𝑥CB), (𝑥BC, 𝑥CC), … , (𝑥B¯, 𝑥C¯) are random variables from the 
𝐵𝑂𝑀(𝛼B, 𝛼C, 𝛼F, 𝛽, 𝑑) distribution and take into consideration the following notations: 

𝐼B = {(𝑥BG, 𝑥CG):	𝑥BG > 𝑥CG, 𝑖 = 1,… , 𝑛}, 	𝐼C = {(𝑥BG, 𝑥CG):	𝑥BG < 𝑥CG, 𝑖 = 1,… , 𝑛},	 

𝐼F = {(𝑥BG, 𝑥CG):	𝑥BG = 𝑥CG, 𝑖 = 1,… , 𝑛}, 𝐼 = 𝐼B ∪ 	𝐼C ∪ 𝐼F, 𝑛B = |𝐼B|, 𝑛C = |𝐼C|, 𝑛F = |𝐼F| and 𝑛B + 𝑛C + 𝑛F = 𝑛. 

 The likelihood function for the parameter vector 𝜃 =(𝛼B, 𝛼C, 𝛼F, 𝛽, 𝑑) is given as 

                          𝐿(𝜃|𝑥B, 𝑥C) = ∏ 𝑓B(𝑥BG, 𝑥CG)∏ 𝑓C(𝑥BG, 𝑥CG)∏ 𝑓F(𝑥G)G∈´XG∈´)G∈´-                         

where, 

 ∏ 𝑓B(𝑥BG, 𝑥CG)G∈´- = 𝛼B
¯-(𝛼C + 𝛼F)¯-𝛽C¯-𝑑t¯-' ∏ y|

+-�
*,-

()*.+-�
)*}|

(*1+-�
*

(*.+-�
*}

,3-4*
)

|
+)�
*,-

()*.+)�
)*} |

(*1+)�
*

(*.+)�
*}

,(3)j3X)4*
)

zG∈´-  

 ∏ 𝑓C(𝑥BG, 𝑥CG)G∈´) = 𝛼C
¯)(𝛼B + 𝛼F)¯)𝛽C¯)𝑑t¯)' ∏ y|

+-�
*,-

()*.+-�
)*}|

(*1+-�
*

(*.+-�
*}

,(3-j3X)4*
)

|
+)�
*,-

()*.+)�
)*} |

(*1+)�
*

(*.+)�
*}

,3)4*
)

zG∈´)  

 ∏ 𝑓F(𝑥G)G∈´X = 𝛼F
¯X𝛽¯X 

The log-likelihood function is given by 

𝐿 = (2𝑛B + 2𝑛C + 𝑛F) 𝑙𝑛 𝛽 + 𝑛B 𝑙𝑛 𝛼B + 𝑛C 𝑙𝑛 𝛼C + 𝑛F 𝑙𝑛 𝛼F +𝑛B 𝑙𝑛(𝛼C + 𝛼F) 

          +𝑛C𝑙𝑛(𝛼B + 𝛼F) + (4𝑛B𝛽 + 4𝑛C𝛽 + 2𝑛F𝛽) 𝑙𝑛 𝑑 + ∑ 𝑙𝑛 |
+-�
*,-

()*.+-�
)*}G∈´-  

           −&-(*

C
∑ 𝑙𝑛 |

(*1+-�
*

(*.+-�
*}G∈´- + ∑ 𝑙𝑛 |

+)�
*,-

()*.+)�
)*} −G∈´-

(&)1&X)(*

C
∑ 𝑙𝑛 |

(*1+)�
*

(*.+)�
*}G∈´-  

            +∑ 𝑙𝑛 |
+-�
*,-

()*.+-�
)*} −G∈´)

(&-1&X)(*

C
∑ 𝑙𝑛 |

(*1+-�
*

(*.+-�
*}G∈´) + ∑ 𝑙𝑛 |

+)�
*,-

()*.+)�
)*}G∈´)  

              −&)(*

C
∑ 𝑙𝑛 |

(*1+)�
*

(*.+)�
*} + ∑ 𝑙𝑛 |

+�
*,-

()*.+�
)*} −

(&-1&)1&X)(*

C
∑ 𝑙𝑛 |

(*1+�
*

(*.+�
*}G∈´XG∈´XG∈´)  

The MLEs for the parameters 𝛼B , 𝛼C, 𝛼F, 𝛽 and 𝑑 are obtained by computing the first partial derivatives of the log-
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likelihood function with respect to  𝛼B , 𝛼C, 𝛼F, 𝛽, 𝑑 and equating these first partial derivatives by zero. The likelihood 
equations are in the following form 
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Since the above system of non-linear equations cannot be solved analytically, a numerical technique is needed to get the 
MLEs. 

7. Data Analysis 

In this section, two real-life data set are used to explain the proposed procedure and show that the importance of BOM 
distribution. Unfortunately, there is no proper goodness of fit test for bivariate distributions as the univariate case. So, 
before analyzing the data using BOM distribution, we firstly examined goodness of fit for the marginal 𝑋B, 𝑋C and 
min	(𝑋B, 𝑋C) using Kolmogorov-Smirnov (K-S) statistics and its p-value. This gives some indication about fitting of the 
BOM distribution to the data and it will support to predict the initial values of the parameters. The MLEs, log-likelihood 
function and goodness of fit criteria are computed for each data set.  

First data set: 

Bivariate Marshall Olkin distribution methods are very useful for modelling failure of paired organs, such as the eyes, 
kidneys, and lungs. Although there are inevitable relations between the components of such organs, these organs may 
possibly fail one after the other or at the same time.  

The study has been performed by the National Eye Institute to evaluate the result of laser photocoagulation in delaying 
the onset of severe vision loss such as blindness in the Diabetic Retinopathy Study (DRS). The study involved 197 high 
risk patients to investigate the usage of the proposed method. In Table 1, A subset of 38 patients is selected from DRS 
to explore the usefulness of the proposed BOM distribution. One eye is randomly assigned to each patient to receive 
treatment using laser and the other eye did not receive any type of treatment. The time from the beginning of treatment 
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to the time when visual acuity dropped below 5/200 is evaluated for each eye. As shown in Table 1, the data is the time 
of vision loss in months. Let 𝑋B is the time (in months) to the blindness of the untreated eye and 𝑋C be the time to the 
blindness of the eye that received laser treatment. For computational stability with the fitting of the distribution, all the 
data are divided by 100.  

 
Table 1: Time of Vision Loss for Diabetic Retinopathy Patients 

i X1i X2i i X1i X2i 
1 30.83 38.57 20 13.33 9.60 
2 20.17 6.90 21 14.27 7.60 
3 10.27 1.63 22 34.57 1.80 
4 5.67 13.83 23 4.10 12.20 
5 5.77 1.33 24 21.57 9.90 
6 5.90 35.53 25 13.77 13.77 
 7 25.63 21.90 26 33.63 33.63 
8 33.90 14.80 27 63.33 27.60 
9 1.73 6.20 28 38.47 1.63 
10 30.20 22.00 29 10.33 0.83 
11 25.80 13.87 30 13.83 1.57 
12 5.73 48.30 31 11.07 1.97 
13 9.90 9.90 32 2.10 11.30 
14 1.70 1.70 33 12.93 4.97 
15 1.77 43.03 34 24.43 9.87 
16 8.30 8.30 35 13.97 30.40 
17 18.70 6.53 36 13.80 19.00 
18 42.17 42.17 37 13.57 5.43 
19 14.30 48.43 38 42.43 46.63 

Second data set: 

The data includes 32 claims for compensation from motorcycle accident insurance. In Table 2,  𝑋B and 𝑋C represent the 
cost of property damage and medical expenses, respectively.  Before analysing the data, all the data points are divided 
by 1000. 

For Marshall Olkin bivariate distribution, (𝑋B, 𝑋C) represents the bivariate data with all possibilities as follows (i) 𝑋B <
𝑋C, (ii) 𝑋B > 𝑋C and (iii) 𝑋B = 𝑋C. First, we fit the Omega distribution for 𝑋B, 𝑋C and 𝑚𝑖𝑛	(𝑋B, 𝑋C). It will support to 
prediction the initial values of the BOM distribution. The maximum likelihood estimators, the (K-S) distances and p-
values are shown in Table 3 for two data sets. Based on the p-values, its shown that the Omega model is fitted for the 
marginals and for the minimum also. 

 

Table 2: The Cost of Property Damage and The Medical Expenses. 
i X1i X2i i X1i X2i 
1 144 793 17 298 271 
2 134 945 18 114 489 
3 500 500 19 335 807 
4 720 400 20 449 499 
5 230 784 21 160 542 
6 374 881 22 224 349 
7 175 175 23 323 103 
8 252 252 24 704 522 
9 300 417 25 470 470 
10 665 456 26 368 368 
11 199 243 27 171 999 
12 412 198 28 106 974 
13 720 183 29 529 202 
14 591 784 30 423 375 
15 305 222 31 500 198 
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16 292 214 32 350 707 

 

 

 

 

Table 3: The MLEs, K-S and the p-values 
Data Set Variable 𝜶 𝜷 d K-S p-value 

Diabetic Retinopathy Data 
𝑋B 8.6399 1.3354 1209.42 0.1307 0.5347 
𝑋C 6.3883 1.0462 4411.35 0.1109 0.7383 

𝑚𝑖𝑛	(𝑋B, 𝑋C) 10.7406 1.0360 1.0444 0.1343 0.6110 

Motorcycle Accident Insurance Data 
𝑋B 6.7951 2.1418 154.408 0.0687 0.9981 
𝑋C 3.2524 1.9283 311.185 0.1192 0.7532 

𝑚𝑖𝑛	(𝑋B, 𝑋C) 6.1947 2.0453 221.049 0.0802 0.9950 

Now, we will fit the BOM distribution. Then, the MLEs and their related log-likelihood for the bivariate data set are 
presented in Table 4. For model selection, AIC, BIC, CAIC and HQIC are also provided in Table 4. The results show 
that the BOM distribution is fitted for the two bivariate data sets (diabetic retinopathy data and motorcycle accident 
insurance Data). 

Table 4: The MLEs and Goodness of Fit Criteria for Bivariate Omega Distribution 
Data Set 𝑴𝑳𝑬𝒔 - Log(l) AIC BIC CAIC HQIC 

Diabetic Retinopathy Data 

𝛼B = 0.6899 
𝛼C = 0.8444 
𝛼F = 0.5381 
 𝛽 = 0.3431 
 𝑑 = 77.197 

46.566 103.132 111.32 105.007 106.045 

Motorcycle Accident Insurance Data 

𝛼B = 0.6165 
𝛼C = 0.5339 
𝛼F = 0.3975 
 𝛽 = 0.4269 
 𝑑 = 72.637 

94.043 198.086 206.274 199.961 200.999 

8. Conclusion  

In this paper, we introduced a new model for bivariate distribution using Marshall Olkin methods called Bivariate 
Omega Model (BOM). Some probabilistic properties and dependence properties of the bivariate Omega distribution are 
considered. By using the maximum likelihood method parameters estimators are explored. Finally, we proposed the 
applicability of Bivariate Omega Model (BOM) using two real data for modelling failure of paired organs, such as the 
eyes, kidneys, and lungs. 
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