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Abstract: The main point is to define the structure of a Tri-Concept lattice to deal with data given by different sources 

and represent it by less complex structures without loosing knowledge. We suggest the algorithm TRI-NEST to form the 

nested diagrams corresponding to the Tri-Concept lattices. Adding the ICE-T algorithm enables us to generate all 

frequently closed concepts, which leads to simplifying the Tri-Concept lattices and using the Iceberg Concept lattices as 

a reduction method to the big data while preserving all information. 
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1 Introduction 

R. Wille [1] established Formal Concept Analysis (FCA) as a combination of the theory of lattices and conceptual 

thinking. It has been evolved into a robust approach for data analysis, information retrieval, data mining, software 

engineering, and knowledge discovery (refer to [2, 3]). Moreover, FCA is a knowledge-processing task model. It deals 

with data organized into three groups: objects (𝐺), attributes (𝑀), and the relation (𝐼) between them. Such data is 

represented by a dyadic context 𝒦 ≔ (𝐺, 𝑀, 𝐼). 

The main structure represented by that context is the concept lattice ℬ(𝐺, 𝑀, 𝐼), which arose from the collection of all 

concepts (𝑁, 𝐿);  𝑁 ⊆ 𝐺, 𝐿 ⊆ 𝑀 and the partial ordering (𝑁, 𝐿) ≤ (𝑁∗, 𝐿∗) iff 𝑁 ⊆ 𝑁∗ (𝐿 ⊇ 𝐿∗). That concept lattice is 

complete. Actually, any complete lattice can be represented by a concept lattice of a dyadic context (see [2]). Several 

algorithms have been suggested for creating the concept lattices (see [4]). 

Iceberg concept lattices have been recommended to deal with big data as an appealing approach for data reduction and 

representation (see [5, 6]). The authors in [5, 6] display the uppermost part of a concept lattice. In addition, they can be 

utilized as a conceptual clustering approach to figure out the frequent item sets in large datasets. 

Choosing an upper part of the lattice does not address that issue since it includes similar nodes. So, nesting is another 

method for improving the readability of finite diagrams. 

 Nested diagrams offer no actual reduction and so involve no information loss. They represent the overall structure of 

concept lattices and may also be used to create a different visualization of the iceberg concept lattices. Nested diagrams 

split the attribute set into two "or more" subsections, build a concept lattice, and put a diagram of one lattice within each 

other's node (see [2]). Iceberg concept lattices and Nested diagrams can be merged to form a more reduced diagram 

without loss of any information. 

An approach to the triadic case has been proposed depending on the experience gained from applying concept lattices 

(see [8, 9]). The foundation of this approach is rooted in the basic notion of a triadic context, which is illustrated by a 

quadruple (𝐺, 𝑀, 𝐵, 𝑌). In this context, 𝐺, 𝑀, and 𝐵 are sets while 𝑌 is a ternary relation among them, with 𝑌 ⊆ 𝐺 × 𝑀 ×
𝐵. The components of 𝐺, 𝑀, and 𝐵 are referred to as objects, attributes, and conditions, respectively. When (𝑔, 𝑚, 𝑏) ∈ 𝑌, 

it implies that under condition 𝑏, the object 𝑔 possesses the attribute 𝑚. A triplet (𝐴1, 𝐴2, 𝐴3) with 𝐴1 × 𝐴2 × 𝐴3 ⊆ 𝑌 

represents the triadic concept in the context (𝐺, 𝑀, 𝐵, 𝑌) and is the maximal set based on component-wise inclusion. The 

three quazi-orders that shape the triadic concepts are based on the inclusion order within each component. As in the case 

of a dyadic context, R. Wille has analyzed and graphically represented the ordinal structure of the triadic concepts (see 

[8]).  

This work aims to define Tri-Concept lattices that handle data from various sources. The data is represented in the form 

of iceberg concept lattices and nested diagrams to present it more succinctly. A more readable diagram of the Tri-Concept 
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lattice can be obtained using the direct product of bi-concept lattices and the representation by nested diagrams, which 

facilitates knowledge extraction. The TRI-NEST algorithm is suggested to construct the nested diagram of Tri-Concept 

lattices. Additionally, Iceberg concept lattices are formed corresponding to subcontexts, and a more reduced diagram of 

the Tri-Concept lattices is obtained using the TRI-NEST algorithm.  

To compute all frequent concepts, the ICE-T Algorithm is introduced. It enables us to get a reduced form of the Tri-

Concept lattice. Also, to get frequent item sets and generators, the Snow Algorithm [6] is applied. Therefore, the iceberg 

concept lattice is obtained for each subcontext, and then the corresponding Tri-Concept lattice is built using the TRI-

NEST algorithm.  

In the following, Section 2 provides the basic definitions and terminologies required in the subsequent sections. We define 

in Subsection 3.1 the structure of Tri-Concept lattices and give a representation of bi-concept lattices. Adding the 

algorithm TRI-NEST, the corresponding nested diagram can be described. Applying the results on a real data explains 

the ideas. The Subsections 3.2, 3.3, and 3.4 show how the splitting of a context leads us to construct iceberg concept 

lattices using different ways and contain the suggested ICE-T algorithm. 

2 Preliminaries: 

The basic definitions, terminologies, and notions are reviewed to be used in the following subsections. 

Bilattices  

A lattice 𝔉 is defined by a pair 〈𝔉 ; ≤〉, where 𝔉 is a non-empty set and ≤ denotes a partial order, ensures that both the 

supremum (Supp{𝑜, 𝑝}) and infimum (Inf{𝑜, 𝑝}) exist for all 𝑜, 𝑝 ∈ 𝔉 . 

Using 𝑜 ∨ 𝑝 and 𝑜 ∧ 𝑝 to represent (Supp{𝑜, 𝑝}) and (Inf{𝑜, 𝑝}), respectively, the lattice 𝔉  can be defined as the algebraic 

structure 〈𝔉 ; ∨, ∧〉, where the binary operations ∨ and ∧ satisfy the associative, commutative, idempotent, and absorption 

laws. 

A lattice is complete if each subset 𝒲, (non-empty) of it, has both supremum and infimum, that is, ⋁ 𝒲 and ⋀ 𝒲 exist 

for all 𝒲 ⊆ 𝔉 . A lattice's upper and lower elements are denoted by 1 and 0, respectively. 

A Boolean lattice is defined as a special kind of distributive lattices. The simplest non-trivial Boolean lattice is represented 

by 2. It consists of {0, 1} (a two-element chain). It arises frequently in logic and computer science as the algebra of truth-

values 𝑉 = {𝐹, 𝑇}. The symbols 𝐹 and 𝑇 are used instead of 0 and 1 (for more details, see [10]). 

Many-valued logics (MVL) extend this condition by permitting 𝑉 to be the set of degrees of truth, which can be more or 

less arbitrary. 

Generalizing the logic of two valued systems as given in [11–13], bilattices have been found. They fall in the category of 

multi-valued logics and possess an algebraic structure that makes them useful (for extra details, see [14]). Belnap's four-

valued logic [15] extends the classical two-valued logic set {𝐹, 𝑇} to the power set 𝑉 = 𝑃({𝐹, 𝑇}) with cardinality |𝑉| =
22 = 4.  

A pre-bilattice 〈𝔊; ≤𝑡 , ≤𝑘〉 is essentially a space of extended truth-values, in which 𝔊 is a set (which is not empty) with 

two lattice orderings, both of which establish the lattice's structure. The first ordering ≤𝑡 represents the degree of truth, 

whereas the second ordering ≤𝑘 represents the degree of information or knowledge.  

Bilattices are more than just a space with two lattice orderings; the proposed connectors make them an intriguing structure. 

The symbols 𝐵 and 𝑁 will denote the case of having true and false concepts simultaneously and the case of being neither 

true nor false, respectively. Bilattices are pre-bilattices equipped with a negation operation. 

Definition 2.1 [11] A bilattice is constituted by a non-empty set 𝔊, two partial orders, ≤𝑡  𝑎𝑛𝑑 ≤𝑘 defined on it, and a 

self-mapping operation, ~, it can be represented as 〈𝔊; ≤𝑡 , ≤𝑘, ~〉. The following conditions hold 

1) Both ≤𝑡 and ≤𝑘 result in 𝔊 being a complete lattice, 

2) If 𝑜 ≤𝑡 𝑝 then ~𝑝 ≤𝑡 ~𝑜, 

3) If 𝑜 ≤𝑘 𝑝 then ~𝑜 ≤𝑘 ~𝑝,  

4) ~~ 𝑜 = 𝑜. 

The symbols ∘ and + represent meet and join corresponding to the relation ≤t. While ⊗ and ⊕ denote the operation of 

meet and join related to the knowledge order ≤𝑘 (see [16]).  

If all meet and join operators related to the orders ≤𝑡 and ≤𝑘 exist, then the pre-bilattice 〈𝔊; ≤𝑡 , ≤𝑘〉 is complete. The 
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infinitary meet and join concerning ≤𝑡 and ≤𝑘 are denoted by ⋀, ⋁, ∏ and ∑, respectively. 

An algebra 𝔊 = 〈𝔊; ∘, +,⊗,⊕〉 is referred to as a pre-bilattice if 〈𝔊; ∘, +〉 and 〈𝔊; ⊗,⊕〉 are lattices. 

Definition 2.2 [17] A pre-bilattice is regarded as interlaced when all the four operations {∘, +,⊗,⊕} are monotonic in 

both orders ≤t and ≤k. It implies that the following quasi-equations hold: 

1) If 𝑜 ≤𝑡 𝑜∗ then 𝑜 ⊗ 𝑛 ≤𝑘 𝑜∗ ⊗ 𝑛, 

2) If 𝑜 ≤𝑡 𝑜∗ then 𝑜 ⊕ 𝑛 ≤𝑘 𝑜∗ ⊕ 𝑛,  

3) If 𝑜 ≤𝑘 𝑜∗ then 𝑜 ∘ 𝑛 ≤𝑡 𝑜∗ ∘ 𝑛, 

4) If 𝑜 ≤𝑘 𝑜∗ then 𝑜 + 𝑛 ≤𝑡 𝑜∗ + 𝑛.  

Definition 2.3 [14] Let 𝔉 = 〈𝔉 ; ∧,∨〉 and 𝔉∗ = 〈𝔉∗; ∧∗,∨∗〉 be the lattices associated with ≤𝑡 and ≤𝑘. The structure 𝔉 ⊙
𝔉∗ = 〈𝔉 × 𝔉∗; ∘, +,⊗,⊕〉 is an interlaced pre-bilattice, where;  

〈𝑜, 𝑝〉 ∘ 〈𝑜∗, 𝑝∗〉 = 〈𝑜 ∧ 𝑜∗, 𝑝 ∨∗ 𝑝∗〉, 

〈𝑜, 𝑝〉 + 〈𝑜∗, 𝑝∗〉 = 〈𝑜 ∨ 𝑜∗, 𝑝 ∧∗ 𝑝∗〉, 

〈𝑜, 𝑝〉 ⊗ 〈𝑜∗, 𝑝∗〉 = 〈𝑜 ∧ 𝑜∗, 𝑝 ∧∗ 𝑝∗〉, 

〈𝑜, 𝑝〉 ⊕ 〈𝑜∗, 𝑝∗〉 = 〈𝑜 ∨ 𝑜∗, 𝑝 ∨∗ 𝑝∗〉,  

∀ 〈𝑜, 𝑝〉, 〈𝑜∗, 𝑝∗〉 ∈ 𝔉 × 𝔉∗. 

If 𝔉  is isomorphic to 𝔉∗ (𝔉 ≅ 𝔉∗), then it is possible to define the negation operation ~ in 𝔉 ⊙ 𝔉. Thus, we speak of the 

product bilattices rather than the product pre-bilattices (see [14]). Negation is defined as ~〈𝑜, 𝑝〉 = 〈𝑝, 𝑜〉. 

(Pre-)bilattices are represented as a product of lattices (see [14]). 

Theorem 2.1 [14]  

 Let 𝔊 be a bounded pre-bilattice. The following are equivalent 

1) 𝔊 is an interlaced pre-bilattice.  

2) There are two bounded lattices 𝔉 and 𝔉∗, such that the bilattice 𝔊 is isomorphic to 𝔉 ⊙ 𝔉∗. 

Theorem 2.2 [14]  

Let us have a bilattice 𝔊, which is bounded. The following are equivalent 

1) 𝔊 is an interlaced bilattice.  

2) There is a bounded lattice 𝔉, such that the bilattice 𝔊 is isomorphic to 𝔉 ⊙ 𝔉 . 

Trilattices 

In [18], Y. Shramko introduced trilattices and defined it on a generalized space of the sixteen-valued logic "Constructive 

Logic", which represents all possible combinations of truth-values. 

As noted in [15], The sixteen-valued truth-degree structure is the base of the multi-valued logic (MVL) systems. The 

power set 𝑉 ≔ 𝑃(𝑃({𝐹, 𝑇})) yields the underlying set of truth-degrees, such that, |𝑉| =  222
= 16. Recently, the structure 

of trilattices has been utilized to present a variety of many valued systems that generalize the logic of Belnap. 

Trilattices have been proposed as the logic of how a network of several computers should operate effectively while dealing 

with incomplete and contradictory information (refer to [19]). The trilattice structure can be considered an algebra, 

incorporating three sets of lattice orders, modeling constructive orders, truth, and information (refer to [18, 20]). 

The relational structure 〈𝔎; ≤𝑡 , ≤𝑘, ≤𝑐〉 defines a trilattice, where the orders can be understood differently (see [20]). As 

an algebra, the trilattice can be alternatively represented by the system 〈𝔎; ∘, +,⊗,⊕, †, ‡ 〉, which comprises the three 

reducts 𝔎1 = 〈𝔎; ∘, +〉, 𝔎2 = 〈𝔎; ⊗,⊕〉 and 𝔎3 = 〈𝔎; †, ‡〉 are lattices. These reducts correspond to the orders 

≤𝑡 , ≤𝑘, and ≤𝑐 that represent truth, knowledge and constructive data, respectively. All the reducts inherit the property of 

being interlaced  (for further information, see [19]). As bilattices, a trilattice is deemed interlaced if all six-lattice 

operations maintain monotonicity concerning all orders.  

Trilattices can be treated in a more powerful natural form due to the six operations ∘, +,⊗,⊕ ,†, and ‡. There are 30 
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potential distributive laws. A trilattice 𝔎 = 〈𝔎; ∘, +,⊗,⊕, †, ‡〉 is called distributive if, for all elements in 𝔎, the 

distributive laws hold (as noted in [19]). Any distributive trilattice is obviously interlaced. The converse is not true since 

non-distributive interlaced trilattices exist. 

Trilattices have been constructed and represented by a pair of pre-bilattices (see [19]). It has been proven that any 

interlaced pre-bilattice has the form 𝔉 ⊙ 𝔉∗, where 𝔉 and 𝔉∗ are lattices.  Thus, any interlaced trilattice, nevertheless, 

has the form 𝔊 ⊙ 𝔊∗, where 𝔊 and 𝔊∗ are interlaced pre-bilattices. Combining these results, every interlaced trilattice 

𝔎 = 〈𝔎; ≤𝑡 , ≤𝑘  , ≤𝑐〉 can be understood as the product (𝔉 ⊙ 𝔉∗) ⊙ (𝔉∗∗ ⊙ 𝔉∗∗∗), such that 𝔉 ⊙ 𝔉∗ represents the 

bilattice 𝔊 and 𝔉∗∗ ⊙ 𝔉∗∗∗ represents the bilattice 𝔊∗. Thus, the trilattice 𝔎 can be described by 𝔎 = 𝔊 ⊙ 𝔊∗ or 𝔎 =
(𝔉 ⊙ 𝔉∗) ⊙ (𝔉∗∗ ⊙ 𝔉∗∗∗). 

Theorem 2.3 [21] (Representation) The trilattice 𝔎 is interlaced if and only if 𝔎 is isomorphic to a product 𝔊 ⊙ 𝔊∗, 

where 𝔊 and 𝔊∗ are pre-bilattices.  

Formal Concept Analysis  

Concept Lattices 

In 1980, R. Wille introduced the mathematical theory of Formal Concept Analysis (FCA) (see [1]). The formalization 

and hierarchy of concepts are the primary focus of FCA, and it has found applications in various fields, such as software 

engineering, knowledge discovery, and information retrieval. 

Classifying a given data in the form of objects 𝐺, attributes 𝑀, and a relation 𝐼 between them, we get the context 𝒦 ≔
(𝐺, 𝑀, 𝐼); where 𝐼 ⊆ 𝐺 × 𝑀 and (𝑔, 𝑚) ∈ 𝐼 means 𝑔𝐼𝑚, where the object 𝑔 has the attribute 𝑚.  

Two derivation operators were defined for arbitrary 𝑁 ⊆ 𝐺 and 𝐿 ⊆ 𝑀 as  

𝑁# ≔ {𝑚 ∈ 𝑀 | 𝑔𝐼𝑚 ∀𝑔 ∈ 𝑁}, 
𝐿# ≔ {𝑔 ∈ 𝐺 | 𝑔𝐼𝑚 ∀𝑚 ∈ 𝐿} (see [3]). 

The two derivation operators fulfill the subsequent conditions; 

1) 𝐹1 ⊆ 𝐹2 ⟹ 𝐹1
# ⊇  𝐹2

#, 2) 𝐹 ⊆ 𝐹##, 

3) 𝐹### = 𝐹#.  

The pair (𝑁, 𝐿) describes a concept with  N ⊆ 𝐺, 𝐿 ⊆ 𝑀, 𝑁 = 𝐿#, and 𝐿 = 𝑁#; where 𝑁 and 𝐿 denote the formal 

concept's extent and intent, respectively. The subconcept-superconcept-relation is mathematically represented as (𝑁, 𝐿) ≤
(𝑁∗, 𝐿∗) 𝑖𝑓𝑓 𝑁 ⊆ 𝑁∗ (or 𝐿 ⊇ 𝐿∗) (see [3]). The notation ℬ(𝒦) indicates the set of all formal concepts of the context 𝒦 ≔
(𝐺, 𝑀, 𝐼) with the corresponding order relation. 

As mentioned by R. Wille in [2], concept lattices product can be illustrated as follows: let 𝒦𝑖 ≔ (𝐺, 𝑀𝑖 , 𝐼 ∩ 𝐺 × 𝑀𝑖), 𝑖 =
{1, 2} be two subcontexts, and ℬ(𝒦𝑖) = ℬ(𝐺, 𝑀𝑖 , 𝐼 ∩ 𝐺 × 𝑀𝑖) be the corresponding sets of all concepts and 

((𝐿 ∩ 𝑀𝑖)
#, 𝐿 ∩ 𝑀𝑖) be a concept in the context 𝒦𝑖 . The direct product of the two concept lattices ℬ(𝐺, 𝑀1, 𝐼 ∩ 𝐺 × 𝑀1) 

and ℬ(𝐺, 𝑀2, 𝐼 ∩ 𝐺 × 𝑀2),  is denoted by 𝔜(ℬ(𝒦1), ℬ(𝒦2)) such that, 𝔜(ℬ(𝒦1), ℬ(𝒦2)) = 

{

 
(((𝐿 ∩ 𝑀1)#, 𝐿 ∩ 𝑀1), ((𝐿 ∩ 𝑀2)#, 𝐿 ∩ 𝑀2)): (((𝐿 ∩ 𝑀1)#, 𝐿 ∩ 𝑀1), ((𝐿 ∩ 𝑀2)#, 𝐿 ∩ 𝑀2))

∈ ℬ(𝐺, 𝑀1, 𝐼 ∩ 𝐺 × 𝑀1) × ℬ(𝐺, 𝑀2, 𝐼 ∩ 𝐺 × 𝑀2)
}, it is isomorphic to 

ℬ(𝐺, 𝑀1 ∪̇ 𝑀2, 𝐼1 ∪̇ 𝐼2 ∪̇ (𝐺1 × 𝑀2) ∪̇ (𝐺2 × 𝑀1)), where ∪̇ be the disjoint union operation.  

A main theorem of concept lattices is stated in the following  

Theorem 2.4 [1] Considering the context 𝒦 ≔ (𝐺, 𝑀, 𝐼); the collection ℬ(𝒦) of all of its concepts forms a complete 

lattice in which: 

⋀ (𝑁𝑡 ,  𝐿𝑡)𝑡∈𝑇 = (⋂ 𝑁𝑡𝑡∈𝑇 ,  (⋃ 𝐿𝑡𝑡∈𝑇 )##), 

⋁ (𝑁𝑡 ,  𝐿𝑡)𝑡∈𝑇 = ( (⋃ 𝑁𝑡𝑡∈𝑇 )##,  ⋂ 𝐿𝑡𝑡∈𝑇 ). 

Generally, any complete lattice can be represented as a concept lattice (see [1]). 

Iceberg Concept Lattices 

Iceberg concept lattice is a conceptual clustering technique with a suitable visualization method for analyzing large 

databases. It shows the top-most elements in the diagram (see [5]). 

First, we recall some definitions.  
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Definition 2.4 [5] Let 𝒦 ≔ (𝐺, 𝑀, 𝐼) be a context, and let 𝐿 ⊆ 𝑀. The value 
|𝐿#|

|𝐺|
 is the support count of 𝐿 (supp(𝐿)). If 

that value is at least a minsupp, then 𝐿 is a frequent itemset, where the minsupp is a threshold belonging to [0, 1].  

A concept is frequent if it has a frequent intent, where the collection of all frequent concepts is referred to as the iceberg 

concept lattice (sometimes, it is only a semilattice). 

Iceberg concept lattices can also be constructed from frequent closures using generators.  

Definition 2.5 [6] If an itemset 𝑁 has no proper superset (subset) with identical support, it is considered a closed 

(generator) itemset.  

The maximal superset 𝑋 of an itemset 𝑁 is called the closure operator of it. 

A set 𝑋 ⊂ 𝑀 is classified as a minimal generator (mingen) of a closed set 𝐿 ⊆ 𝑀 only if 𝑋 is the smallest subset of 𝐿 

satisfying the condition 𝑋### = 𝐿 (see [22]). 

The precedence relation ≺ between frequent closed itemsets (FCIs) is defined as follows: 

 𝑁 ≺ 𝑋 iff (𝑖) 𝑁 is a subset of 𝑋 (𝑁 ⊂ 𝑋), and (𝑖𝑖) there exists no 𝑂 that is a subset of 𝑋 and a superset of 𝑁 (𝑁 ⊂ 𝑂 ⊂
𝑋). Then, 𝑁 is called the predecessor of 𝑋 (see [6]). 

The FCI family of a dataset in combination with the relation ≺ produces the iceberg concept lattice. In the context of a 

ground set N (where 𝑁 ⊆ ℘(𝑁)), a blocker of 𝑁 is a set 𝑋 ⊆ 𝑁 that has a non-empty intersection with every member of 

𝑁 (∀ 𝑂 ∈ 𝑁, 𝑋 ∩ 𝑂 ≠ ∅). A minimal blocker cannot be expressed as a subset of any other blocker. The closure lattice 

employs blockers through related faces, which correspond to the disparities between two adjacent closures present in the 

lattice. More specifically, given two CIs 𝑁 𝑎𝑛𝑑 𝑁∗ such that 𝑁 ≺ 𝑁∗, its associated face is 𝐹 = 𝑁∗/𝑁 (see [6]).  

Definition 2.6 [6] A hypergraph is composed of a finite set 𝑉 = {𝜐1, 𝜐2, … , 𝜐𝑛} and a group of subsets of 𝑉, denoted as 

𝜉. The vertices constitute the elements of 𝑉, while the edges refer to the elements of 𝜉.  

Definition 2.7 [6] For a hypergraph ℋ = (𝑉, 𝜉), a set 𝑂 ⊆ 𝑉 is called a transversal of ℋ if it intersects with all edges of 

ℋ, meaning ∀ 𝐸 ∈ 𝜉: 𝑂 ∩ 𝐸 ≠ ∅. If no smaller subset 𝑂∗ of 𝑂 can also serve as a transversal, then the transversal 𝑂 is 

deemed minimal. 

By taking the difference between a closed itemset (CI) 𝑁  and a face, a predecessor of N can be obtained within the closure 

lattice.  

The Snow Algorithm, initially presented by L. Szathmary et al. [6], is a technique used for determining consequence links 

of the frequent closed itemsets (FCIs) by generating faces from frequent generators (FGs). Therefore, the algorithm 

accepts frequent closed itemsets (FCIs) and their corresponding frequent generators (FGs) as input. 

Nested Diagrams 

Nested diagrams have been proposed as an effective technique for determining and illustrating large concept lattices. This 

method utilizes the correspondence of direct products to create a diagram (we refer to [2]).  

The Basic Theorem of nested diagrams states that:  

Theorem 2.5 [2] Considering the context (𝐺, 𝑀, 𝐼). Let 𝑀 = 𝑀1 ∪ 𝑀2. The correspondence  

(𝑁,  𝐿) ⟼ (((𝐿 ∩ 𝑀1)#,  𝐿 ∩ 𝑀1),  ((𝐿 ∩ 𝑀2)#,  𝐿 ∩ 𝑀2)) 

gives a ⋁-preserving order embedding of ℬ(𝐺,  𝑀,  𝐼) into the product of ℬ(𝐺,  𝑀1, 𝐼 ∩ 𝐺 × 𝑀1) 𝑎𝑛𝑑 ℬ(𝐺,  𝑀2, 𝐼 ∩ 𝐺 ×
𝑀2). The component maps (𝑁,  𝐿) ⟼ ((𝐿 ∩ 𝑀𝑖)

#,  𝐿 ∩ 𝑀𝑖) are surjective on ℬ(𝐺,  𝑀𝑖 ,  𝐼 ∩ 𝐺 × 𝑀𝑖). 

To construct nested diagrams, the attribute set of the context is partitioned into parts. The concept lattices of the 

corresponding subcontexts are created. Each subcontext 𝒦𝑖 = 〈𝐺, 𝑀𝑖 , 𝐼 ∩ 𝐺 × 𝑀𝑖〉, 𝑖 ∈ {1, 2} is represented in the diagram 

with the standard object and attribute labels. Finally, a nested diagram is sketched to describe the product of the concept 

lattices ℬ(𝒦𝑖) (see [2]).   

3 Main Results 

In this part, we introduce the notion of a Tri-Concept lattice and represent it by simpler structures. Application using real 

data shows the benefits of constructing such a structure. 

Construction of Tri-Concept Lattices and TRI-NEST Algorithm   

In [23], S. El-Assar et al. introduced the notion of bi-concept lattices as algebras corresponding to the data given by two 
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contexts. According to the work of U. Riviecco [19], trilattice can also be represented as a direct product of two bilattices. 

It leads us to define the structure, corresponding to the data described by different contexts using that representation. 

Suppose 𝒦1 = (𝐺, 𝑀1, 𝐼1) and 𝒦2 = (𝐺, 𝑀2, 𝐼2) be two contexts and ℬ(𝒦1) and ℬ(𝒦2) be their concept lattices, denoted 

as ℬ(𝒦𝑖) = 〈ℬ(𝒦𝑖),∧𝑖 ,∨𝑖 , 0𝑖 , 1𝑖〉 for  𝑖 = {1, 2}. Then, the structure 𝔜(ℬ(𝒦1), ℬ(𝒦2)) = 〈ℬ(𝒦1) × ℬ(𝒦2); ∘, +, ⊥, ⊤,⊗

,⊕, ⊥′, ⊤′〉 forms a bi-concept lattice, where the operations are defined as follows: 

((𝑁, 𝐿), (𝑁∗, 𝐿∗)) ∘ ((𝑂, 𝑃), (𝑂∗, 𝑃∗)) = ((𝑁, 𝐿) ∧1 (𝑂, 𝑃), (𝑁∗, 𝐿∗) ∨2 (𝑂∗, 𝑃∗)), 

((𝑁, 𝐿), (𝑁∗, 𝐿∗)) + ((𝑂, 𝑃), (𝑂∗, 𝑃∗)) = ((𝑁, 𝐿) ∨1 (𝑂, 𝑃), (𝑁∗, 𝐿∗) ∧2 (𝑂∗, 𝑃∗)), 

((𝑁, 𝐿), (𝑁∗, 𝐿∗)) ⊗ ((𝑂, 𝑃), (𝑂∗, 𝑃∗)) = ((𝑁, 𝐿) ∧1 (𝑂, 𝑃), (𝑁∗, 𝐿∗) ∧2 (𝑂∗, 𝑃∗)), 

((𝑁, 𝐿), (𝑁∗, 𝐿∗)) ⊕ ((𝑂, 𝑃), (𝑂∗, 𝑃∗)) = ((𝑁, 𝐿) ∨1 (𝑂, 𝑃), (𝑁∗, 𝐿∗) ∨2 (𝑂∗, 𝑃∗)). 

⊥= (0, 1∗),                 ⊤ = (1, 0∗) ,                  ⊥′= (0, 0∗),               ⊤′ = (1, 1∗). 

∀ ((𝑁, 𝐿), (𝑁∗, 𝐿∗)) 𝑎𝑛𝑑 ((𝑂, 𝑃), (𝑂∗, 𝑃∗)) ∈ 𝔜(ℬ(𝒦1), ℬ(𝒦2)) (see [23]). 

According to the Representation Theorem of trilattices (Theorem 2.3), as a product of bilattices, we can describe Tri-

Concept lattices as follows. 

Let 𝒦𝑖 = (𝐺, 𝑀𝑖 , 𝐼𝑖), 𝑖 = {1, 2, 3, 4} be four contexts, the bi-concept lattices 𝔜(ℬ(𝒦1), ℬ(𝒦2)) and 𝔜(ℬ(𝒦3), ℬ(𝒦4)) 

are the corresponding bi-concept lattices. Then the structure  ℨ (𝔜(ℬ(𝒦1), ℬ(𝒦2)), 𝔜(ℬ(𝒦3), ℬ(𝒦4))) forms a Tri-

Concept lattice concerning the operations ∘, +, ⊥, ⊤,⊗,⊕, ⊥′, ⊤′, †, ‡, ⊥′′ and ⊤′′, where  

(((𝑁, 𝐿), (𝑁∗, 𝐿∗)), ((𝑁∗∗, 𝐿∗∗), (𝑁∗∗∗, 𝐿∗∗∗))) ∘ (((𝑂, 𝑃 ), (𝑂∗, 𝑃∗)), ((𝑂∗∗, 𝑃∗∗), (𝑂∗∗∗, 𝑃∗∗∗))) =

(((𝑁, 𝐿) ⊓1 (𝑂, 𝑃 ), (𝑁∗, 𝐿∗) ⊔2 (𝑂∗, 𝑃∗)), ((𝑁∗∗, 𝐿∗∗) ⊓3 (𝑂∗∗, 𝑃∗∗), (𝑁∗∗∗, 𝐿∗∗∗) ⊔4 (𝑂∗∗∗, 𝑃∗∗∗))), 

(((𝑁, 𝐿), (𝑁∗, 𝐿∗)), ((𝑁∗∗, 𝐿∗∗), (𝑁∗∗∗, 𝐿∗∗∗))) + (((𝑂, 𝑃 ), (𝑂∗, 𝑃∗)), ((𝑂∗∗, 𝑃∗∗), (𝑂∗∗∗, 𝑃∗∗∗))) =

(((𝑁, 𝐿) ⊔1 (𝑂, 𝑃 ), (𝑁∗, 𝐿∗) ⊓2 (𝑂∗, 𝑃∗)), ((𝑁∗∗, 𝐿∗∗) ⊔3 (𝑂∗∗, 𝑃∗∗), (𝑁∗∗∗, 𝐿∗∗∗) ⊓4 (𝑂∗∗∗, 𝑃∗∗∗))), 

(((𝑁, 𝐿), (𝑁∗, 𝐿∗)), ((𝑁∗∗, 𝐿∗∗), (𝑁∗∗∗, 𝐿∗∗∗))) ⊗ (((𝑂, 𝑃 ), (𝑂∗, 𝑃∗)), ((𝑂∗∗, 𝑃∗∗), (𝑂∗∗∗, 𝑃∗∗∗))) =

(((𝑁, 𝐿) ⊓1 (𝑂, 𝑃 ), (𝑁∗, 𝐿∗) ⊓2 (𝑂∗, 𝑃∗)), ((𝑁∗∗, 𝐿∗∗) ⊓3 (𝑂∗∗, 𝑃∗∗), (𝑁∗∗∗, 𝐿∗∗∗) ⊓4 (𝑂∗∗∗, 𝑃∗∗∗))), 

(((𝑁, 𝐿), (𝑁∗, 𝐿∗)), ((𝑁∗∗, 𝐿∗∗), (𝑁∗∗∗, 𝐿∗∗∗))) ⊕ (((𝑂, 𝑃 ), (𝑂∗, 𝑃∗)), ((𝑂∗∗, 𝑃∗∗), (𝑂∗∗∗, 𝑃∗∗∗))) =

(((𝑁, 𝐿) ⊔1 (𝑂, 𝑃 ), (𝑁∗, 𝐿∗) ⊔2 (𝑂∗, 𝑃∗)), ((𝑁∗∗, 𝐿∗∗) ⊔3 (𝑂∗∗, 𝑃∗∗), (𝑁∗∗∗, 𝐿∗∗∗) ⊔4 (𝑂∗∗∗, 𝑃∗∗∗))), 

(((𝑁, 𝐿), (𝑁∗, 𝐿∗)), ((𝑁∗∗, 𝐿∗∗), (𝑁∗∗∗, 𝐿∗∗∗))) † (((𝑂, 𝑃 ), (𝑂∗, 𝑃∗)), ((𝑂∗∗, 𝑃∗∗), (𝑂∗∗∗, 𝑃∗∗∗))) =

(((𝑁, 𝐿) ⊓1 (𝑂, 𝑃 ), (𝑁∗, 𝐿∗) ⊓2 (𝑂∗, 𝑃∗)), ((𝑁∗∗, 𝐿∗∗) ⊔3 (𝑂∗∗, 𝑃∗∗), (𝑁∗∗∗, 𝐿∗∗∗) ⊔4 (𝑂∗∗∗, 𝑃∗∗∗))), 

(((𝑁, 𝐿), (𝑁∗, 𝐿∗)), ((𝑁∗∗, 𝐿∗∗), (𝑁∗∗∗, 𝐿∗∗∗))) ‡ (((𝑂, 𝑃 ), (𝑂∗, 𝑃∗)), ((𝑂∗∗, 𝑃∗∗), (𝑂∗∗∗, 𝑃∗∗∗))) =

(((𝑁, 𝐿) ⊔1 (𝑂, 𝑃 ), (𝑁∗, 𝐿∗) ⊔2 (𝑂∗, 𝑃∗)), ((𝑁∗∗, 𝐿∗∗) ⊓3 (𝑂∗∗, 𝑃∗∗), (𝑁∗∗∗, 𝐿∗∗∗) ⊓4 (𝑂∗∗∗, 𝑃∗∗∗))). 

⊥= ((0, 1∗), (0∗∗, 1∗∗∗)),    ⊥′= ((0, 0∗), (0∗∗, 0∗∗∗)),       ⊥′′= ((0,0∗), (1∗∗, 1∗∗∗)), 

⊤ = ((1, 0∗), (1∗∗, 0∗∗∗)),    ⊤′ = ((1, 1∗), (1∗∗, 1∗∗∗)),       ⊤′′ = ((1, 1∗), (0∗∗, 0∗∗∗)). 

∀ (((𝑁, 𝐿), (𝑁∗, 𝐿∗)), ((𝑁∗∗, 𝐿∗∗), (𝑁∗∗∗, 𝐿∗∗∗))) & (((𝑂, 𝑃 ), (𝑂∗, 𝑃∗)), ((𝑂∗∗, 𝑃∗∗), (𝑂∗∗∗, 𝑃∗∗∗))) are concepts from 

ℨ (𝔜(ℬ(𝒦1), ℬ(𝒦2)), 𝔜(ℬ(𝒦3), ℬ(𝒦4))). 

Considering the Fundamental Theorem of Concept Lattices (see [2]), we can formulate 

Theorem 3.1 Any Tri-Concept lattice is complete.  

Using the Representation by nested diagrams (see [2]), we can formulate the Representation Theorem of Tri-Concept 

Lattices as a nested diagram. The outer lattice of the diagram represents the bi-concept lattice 𝔜(ℬ(𝒦1), ℬ(𝒦2)) =

ℬ(𝒦1) × ℬ(𝒦2) and describes the first component of the Tri-Concept lattice. While the inner lattice represents the bi-
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concept lattice 𝔜(ℬ(𝒦3), ℬ(𝒦4)) = ℬ(𝒦3) × ℬ(𝒦4) and shows the second component of the Tri-Concept. 

Theorem 3.2 Consider the context 𝒦 = (𝐺, 𝑀, 𝐼) and the subcontexts 𝒦𝑖 ′𝑠, 𝑖 = {1, 2, 3, 4}. Let ℬ(𝒦) denote the set of 

all concepts in 𝒦, and define a mapping from ℬ(𝒦) to the direct product of the bi-concept lattices 𝔜(ℬ(𝒦1), ℬ(𝒦2)), 

and 𝔜(ℬ(𝒦3), ℬ(𝒦4)) as follows: (𝑁, 𝐿) ⟶ ((((𝐿 ∩ 𝑀1)#, 𝐿 ∩ 𝑀1), ((𝐿 ∩ 𝑀2)#, 𝐿 ∩ 𝑀2)), (((𝐿 ∩ 𝑀3)#, 𝐿 ∩

𝑀3), ((𝐿 ∩ 𝑀4)#, 𝐿 ∩ 𝑀4))) 

The map is a join-preserving order embedding. That correspondence maps (𝑁, 𝐿) ⟶ (((𝐿 ∩ 𝑀𝑖)
#, 𝐿 ∩ 𝑀𝑖), ((𝐿 ∩

𝑀𝑗)
#

, 𝐿 ∩ 𝑀𝑗)) which is surjective, 𝑖 ∈ {1, 2} and 𝑗 ∈ {3, 4}. Also, (𝑁, 𝐿) ⟶ ((𝐿 ∩ 𝑀𝑘)#, 𝐿 ∩ 𝑀𝑘) is surjective on 

ℬ(𝐺, 𝑀𝑘, 𝐼 ∩ 𝐺 × 𝑀𝑘). 

Proof: Applying the Basic Theorem of nested diagrams (Theorem 2.5), considering the pair (𝑁, 𝐿) to be a concept in 

𝒦 = (𝐺, 𝑀, 𝐼), then 𝐿 ∩ 𝑀𝑘 is an intent in ℬ(𝐺, 𝑀𝑘, 𝐼 ∩ 𝐺 × 𝑀𝑘), and let 𝐿 ∩ 𝑀𝑖 and 𝐿 ∩ 𝑀𝑗 be intents in 

ℬ(𝐺, 𝑀𝑖 , 𝐼 ∩ 𝐺 × 𝑀𝑖), and ℬ(𝐺, 𝑀𝑗 , 𝐼 ∩ 𝐺 × 𝑀𝑗), respectively. Therefore, ((𝐿 ∩ 𝑀𝑗)
#

, 𝐿 ∩ 𝑀𝑗) is the intent of the concept 

(((𝐿 ∩ 𝑀𝑖)
#, 𝐿 ∩ 𝑀𝑖), ((𝐿 ∩ 𝑀𝑗)

#
, 𝐿 ∩ 𝑀𝑗)) in the tri-concept lattice ℨ (𝔜(ℬ(𝐺, 𝑀𝑖 , 𝐼 ∩ 𝐺 × 𝑀𝑖)), 𝔜 (ℬ(𝐺, 𝑀𝑗 , 𝐼 ∩ 𝐺 ×

𝑀𝑗))). The union of the objects and attributes in each part of the concept (((𝐿 ∩ 𝑀𝑖)
#, 𝐿 ∩ 𝑀𝑖), ((𝐿 ∩ 𝑀𝑗)

#
, 𝐿 ∩ 𝑀𝑗)) 

yields L in the concept (𝑁, 𝐿), i.e., the map is injective.  

Let 𝑜 be an intent of ℬ(𝐺, 𝑀𝑘, 𝐼 ∩ 𝐺 × 𝑀𝑘), then 𝐿 = 𝑜## is an intent of (𝐺, 𝑀, 𝐼) with 𝐿 ∩ 𝑀𝑘 = 𝑜, i.e., the image of the 

concept (𝐿#, 𝐿) of (𝐺, 𝑀, 𝐼) under the 𝑘𝑡ℎ component map is the concept with the intent o; then the map is surjective on 

ℬ(𝐺, 𝑀𝑘, 𝐼 ∩ 𝐺 × 𝑀𝑘). Also, let ((𝑝𝑖 , 𝑜𝑖), (𝑝𝑗 , 𝑜𝑗)) be a concept in the tri-concept lattice ℨ (𝔜(ℬ(𝐺, 𝑀𝑖 , 𝐼 ∩ 𝐺 ×

𝑀𝑖)), 𝔜 (ℬ(𝐺, 𝑀𝑗 , 𝐼 ∩ 𝐺 × 𝑀𝑗))). Then (𝑝𝑗 , 𝑜𝑗) is an intent of the concept ((𝑝𝑖 , 𝑜𝑖), (𝑝𝑗 , 𝑜𝑗)), then 𝐿 = (𝑝𝑗 , 𝑜𝑗)
##

 is the 

intent of (𝐺, 𝑀, 𝐼) with ((𝐿 ∩ 𝑀𝑗)
#

, 𝐿 ∩ 𝑀𝑗) = (𝑝𝑗 , 𝑜𝑗), i.e., the image of the concept (𝐿#, 𝐿) of (𝐺, 𝑀, 𝐼) under the 

𝑖𝑡ℎ 𝑎𝑛𝑑 𝑗𝑡ℎ component map is the concept with the intent (𝑝𝑗 , 𝑜𝑗), then the map is surjective on the tri-concept lattice 

ℨ (𝔜(ℬ(𝐺, 𝑀𝑖 , 𝐼 ∩ 𝐺 × 𝑀𝑖)), 𝔜 (ℬ(𝐺, 𝑀𝑗 , 𝐼 ∩ 𝐺 × 𝑀𝑗))).  

We suggest the algorithm TRI-NEST to construct Tri-Concept lattices using the representations by nested diagrams. 

Algorithm 1:  TRI-NEST 𝐺′ = [𝐺𝑚, 𝐺𝑛] = [[𝐺, 𝐺∗], [𝐺∗∗, 𝐺∗∗∗]] 

Input: Graphs 𝐺𝑚, 𝐺𝑛 , 𝐺, 𝐺∗, 𝐺∗∗ 𝑎𝑛𝑑 𝐺∗∗∗  

Output: A nested  diagram 𝐺′ 

𝑖 = 1: #nodes of G 

for node 𝑛𝑖 in 𝐺 

      add node 𝑛𝑖 to 𝐺𝑚 as 𝑛𝑖𝑚 

      add G∗ in 𝑛𝑖𝑚 

end for 

𝑗 = 1: #nodes of 𝐺∗∗ 

for node 𝑛𝑗 in 𝐺∗∗ 

      add node 𝑛𝑗 to 𝐺𝑛 as 𝑛𝑗𝑛 

      add 𝐺∗∗∗ in 𝑛𝑗𝑛 

end for 

𝑘 = 1: #nodes of 𝐺𝑚 

for node 𝑛𝑘 in 𝐺𝑚 
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      add node 𝑛𝑘 to 𝐺′ as 𝑛𝑘𝑙 

      add 𝐺𝑛 in 𝑛𝑘𝑙 

end for 

return 

 

Illustrative Example 3.1 Let us have a sample of five patients with COVID from a dataset of 5434 patients, as given in 

Table 3.1, which includes various types of symptoms, signs (ordinary symptoms), and dangerous symptoms, diseases that 

make COVID worse and some causes of COVID infection. 

Table 3.1: A Formal Context of COVID Dataset 

 Some Causes of COVID 

Infection 

A disease that makes COVID 

worse 

Signs of 

COVID 

Dangerous Symptoms 

 
GT BC JD VI FI HD Di CL As HT Fe DC Fa BP ST RN He Ga 

I  ×   ×  ×   × × × × × × ×  × 

II  × × ×   × × ×  × × × × × × × × 

III ×    × ×    × × ×   ×  × × 

IV  ×  × ×  ×  × × × × × ×     

V   × × ×   × × × × ×  × ×   × 

Tables 3.2, 3.3, 3.4, and 3.5 describe four subcontexts of the context in Table 3.1. 

 
Some Causes of COVID Infection 

GT BC JD VI FI 

I  ×   × 

II  × × ×  

III ×    × 

IV  ×  × × 

V   × × × 
  

 
A disease that makes COVID worse 

HD Di CL As HT 

I  ×   × 

II  × × ×  

III ×    × 

IV  ×  × × 

V   × × × 

Table 3.2: 𝓚𝟏 Table 3.3: 𝓚𝟐 

 
Signs of COVID 

Fe DC Fa 

I × × × 

II × × × 

III × ×  

IV × × × 

V × ×  
 

 
Dangerous Symptoms 

BP ST RN He Ga 

I × × ×  × 

II × × × × × 

III  ×  × × 

IV ×     

V × ×   × 
 

Table 3.4: 𝓚𝟑 Table 3.5: 𝓚𝟒 

For abbreviation, let 

GT: Going on a Travel Di: Diabetes Fa: Fatigue 

BC: Being with COVID Patients CL: Chronic Lung Disease BP: Breathing Problems 

JD: Joining Different Gathering As: Asthma ST: Sore Throat 

VI: Visiting Infected Places HT: Hyper Tension RN: Running Nose 

FI: Families attending Infected Places Fe: Fever He: Headache 

HD: Heart Disease DC:  Dry Cough Ga: Gastrointestinal 

The following represent objects 𝐺 and the attributes 𝑀𝑖 , 𝑖 = {1,2,3,4}, in the four contexts, 

𝐺 ={Patient I, Patient II, Patient III, Patient IV, Patient V}, 
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𝑀1 = {
Going on a Travel, Being with COVID Patients, Joining Different Gathering,

Visit Infected Places, Families attending Infected Places
}, 

𝑀2 = {Heart Disease, Diabetes, Chronic Lung Disease, Asthma, Hyper Tension}, 

𝑀3 = {Fever, Dry Cough, Fatigue}, 𝑎𝑛𝑑 

𝑀4 = {Breathing Problems, Sore Throat, Running Nose, Headache, Gastrointestinal}. 

The concept lattices depicted in Fig. 3.1 provide a representation of the contexts 𝒦𝑖 , where  𝑖 = {1, 2, 3, 4}, as presented 

in Tables 3.2, 3.3, 3.4, and 3.5. 

 
 

𝓑(𝓚𝟏) 𝓑(𝓚𝟐) 

  

𝓑(𝓚𝟑) 𝓑(𝓚𝟒) 

Fig. 3.1: The Concept Lattices of the Four Contexts 𝓚𝒊, 𝒊 = {𝟏, 𝟐, 𝟑, 𝟒} 

Fig 3.2 and 3.3 represent the nested diagrams of the concept lattices 𝔜(ℬ(𝒦1), ℬ(𝒦2)), and 𝔜(ℬ(𝒦3), ℬ(𝒦4)), 

respectively.  

As we notice, the parallel lines are reduced, so we get a more straightforward diagram. 

 

 

Fig. 3.2: The Bi-Concept Lattice 𝖄(𝓑(𝓚𝟏), 𝓑(𝓚𝟐)) Fig. 3.3: The Bi-Concept Lattice 𝖄(𝓑(𝓚𝟑), 𝓑(𝓚𝟒)) 

 Following the Representation Theorem of Tri-Concept lattices (Theorem 3.2), we can construct the Tri-Concept lattice, 

corresponding to the data given in Tables 3.2, 3.3, 3.4, and 3.5. Also, form the Tri-Concept lattice by the bi-concept 

lattices 𝔜(ℬ(𝒦1), ℬ(𝒦2)), and 𝔜(ℬ(𝒦3), ℬ(𝒦4)) as shown in Fig 3.2 and 3.3, respectively. The Tri-Concept lattice 

represented by ℨ (𝔜(ℬ(𝒦1), ℬ(𝒦2)), 𝔜(ℬ(𝒦3), ℬ(𝒦4))) is shown in Fig. 3.4.  

Considering the concept; (
(({II}, {𝐵𝐶, 𝐽𝐷, 𝑉𝐼}), ({II, V}, {𝐶𝐿, 𝐴𝑠})),

(({I, II, III, IV, V}, {𝐹𝑎, 𝐷𝐶}), ({II}, {𝐵𝑃, 𝑆𝑇, 𝑅𝑁, 𝐻𝑒, 𝐺𝑎}))
) in  Fig. 3.4, we notice that patient 

II had a fever and dry cough. In a few days, some symptoms appear, like breathing problems, sore throat, running nose, 
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headache, and gastrointestinal. He tested positive for COVID. The patient became infected by being with COVID patients, 

joining different gatherings, or visiting infected places. Doctors informed him that the disease might cause some 

complications in the future because he has chronic lung disease and asthma. 
 

Fig. 3.4: The Tri-Concept Lattice 𝖅 (𝖄(𝓑(𝓚𝟏), 𝓑(𝓚𝟐)), 𝖄(𝓑(𝓚𝟑), 𝓑(𝓚𝟒))) 

Construction using Iceberg Concept Lattice of Subcontexts 

In the following, the iceberg concept lattice is created for each subcontext of the main context 𝒦 = (𝐺, 𝑀, 𝐼). Two bi-

concept lattices, 𝔜(ℬ(𝒦1), ℬ(𝒦2)) and 𝔜(ℬ(𝒦3), ℬ(𝒦4)), can be constructed, corresponding to 𝒦i′𝑠 from the concept 

lattices ℬ(𝒦𝑖), 𝑖 = {1, 2, 3, 4}, respectively. Utilizing the Representation Theorem of Tri-Concept lattices (Theorem 3.2), 

a more concise diagram is obtained by representing the Tri-Concept lattice as a nested diagram incorporating the two 

reduced bi-concept lattices. 

Example 3.2 Using a Python Code to extract the concepts corresponding to the Tri-Concept lattices arose from the data 

given in Tables 3.2, 3.3, 3.4, and 3.5, we get 128 Tri-Concept s out of 2366 concepts after reduction.  

Now, we construct the iceberg concept lattice for each concept lattice of the four contexts. Using a minsupp = 0.45, as 

explained in Fig. 3.5, we get four iceberg concept lattices. 
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Iceberg concept lattice for ℬ(𝒦1) Iceberg concept lattice for ℬ(𝒦2) 

 

 

Iceberg concept lattice for ℬ(𝒦3) Iceberg concept lattice for ℬ(𝒦4) 

Fig. 3.5: Iceberg Concept Lattices of the Four Contexts 𝓚𝒊, 𝒊 = {𝟏, 𝟐, 𝟑, 𝟒} 

Using the TRI-NEST algorithm and the Representation Theorem of Tri-Concept lattices (Theorem 3.2), we get the nested 

diagram of the Tri-Concept lattice as shown in Fig. 3.7. It consists of the bi-concept lattices 𝔜(ℬ(𝒦1), ℬ(𝒦2)) and 

𝔜(ℬ(𝒦3), ℬ(𝒦4)), which are displayed in Fig. 3.6. 

 

 

The reduced bi − concept lattice  

𝔜(ℬ(𝒦1), ℬ(𝒦2)) 

The reduced bi − concept  

lattice 𝔜(ℬ(𝒦3), ℬ(𝒦4)) 

Fig. 3.6: Iceberg Diagrams of the Bi-Concept Lattices 𝖄(𝓑(𝓚𝟏), 𝓑(𝓚𝟐)) and 𝖄(𝓑(𝓚𝟑), 𝓑(𝓚𝟒)) 

 

 

Fig. 3.7: The Reduced Tri-Concept Lattice  𝖅 (𝖄(𝓑(𝓚𝟏), 𝓑(𝓚𝟐)), 𝖄(𝓑(𝓚𝟑), 𝓑(𝓚𝟒))) 
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The ICE-T Algorithm for Mining All Frequent Concepts 

Introducing the ICE-T Algorithm enables us to compute all frequent concepts from any Tri-Concept lattice, which helps 

construct the iceberg concept lattice. 

The tri-support, "tri-supp" of the concept (((𝑁, 𝐿), (𝑁∗, 𝐿∗)), ((𝑁∗∗, 𝐿∗∗), (𝑁∗∗∗, 𝐿∗∗∗))), is the average of the supports of 

its intents.  

Definition 3.1 Given a context 𝒦 = (𝐺, 𝑀, 𝐼) and four subcontexts from 𝒦, 𝒦1, 𝒦2, 𝒦3, and 𝒦4. Let 

ℨ (𝔜(ℬ(𝒦1), ℬ(𝒦2)), 𝔜(ℬ(𝒦3), ℬ(𝒦4))) be a Tri-Concept lattice corresponding to the context 𝒦. Define the tri-

support “𝑡𝑟𝑖𝑠𝑢𝑝𝑝” of the concept (((𝑁, 𝐿), (𝑁∗, 𝐿∗)), ((𝑁∗∗, 𝐿∗∗), (𝑁∗∗∗, 𝐿∗∗∗))) as: 

𝑡𝑟𝑖𝑠𝑢𝑝𝑝 (((𝑁, 𝐿), (𝑁∗, 𝐿∗)), ((𝑁∗∗, 𝐿∗∗), (𝑁∗∗∗, 𝐿∗∗∗))) =
[

[𝑠𝑢𝑝𝑝(L)+𝑠𝑢𝑝𝑝(L∗)]

2
+

[𝑠𝑢𝑝𝑝(𝐿∗∗)+𝑠𝑢𝑝𝑝(𝐿∗∗∗)]

2
]

2
 

=
[𝑠𝑢𝑝𝑝(L) + 𝑠𝑢𝑝𝑝(L∗) + 𝑠𝑢𝑝𝑝(𝐿∗∗) + 𝑠𝑢𝑝𝑝(𝐿∗∗∗)]

4
 

where 𝑠𝑢𝑝𝑝(𝐿) =
|𝐿#|

|G|
, 𝑠𝑢𝑝𝑝(𝐿∗) =

|(𝐿∗)#|

|G|
, 𝑠𝑢𝑝𝑝(𝐿∗∗) =

|(𝐿∗∗)#|

|G|
   𝑎𝑛𝑑    𝑠𝑢𝑝𝑝(𝐿∗∗∗) =

|(𝐿∗∗∗)#|

|G|
 are the supports of 

(𝑁, 𝐿), (𝑁∗, 𝐿∗), (𝑁∗∗, 𝐿∗∗), and (𝑁∗∗∗, 𝐿∗∗∗) in the concept lattices ℬ(𝒦1), ℬ(𝒦2), ℬ(𝒦3), and ℬ(𝒦4), respectively. 

Proposition 3.1 Let (((𝑁, 𝐿), (𝑁∗, 𝐿∗)), ((𝑁∗∗, 𝐿∗∗), (𝑁∗∗∗, 𝐿∗∗∗))) be a concept in the Tri-Concept lattice 

ℨ (𝔜(ℬ(𝒦1), ℬ(𝒦2)), 𝔜(ℬ(𝒦3), ℬ(𝒦4))). It is a frequent concept if and only if, for a fixed threshold minsupp, we get 

𝑡𝑟𝑖𝑠𝑢𝑝𝑝 (((𝑁, 𝐿), (𝑁∗, 𝐿∗)), ((𝑁∗∗, 𝐿∗∗), (𝑁∗∗∗, 𝐿∗∗∗))) ≥ 𝑚𝑖𝑛𝑠𝑢𝑝𝑝 

Consequently, the set of all frequent concepts for the Tri-Concept lattice "𝑡𝑟𝑖𝑖𝑐𝑒" can be explained as  

𝑡𝑟𝑖𝑖𝑐𝑒 = {
(((𝑁, 𝐿), (𝑁∗, 𝐿∗)), ((𝑁∗∗, 𝐿∗∗), (𝑁∗∗∗, 𝐿∗∗∗))) ∈ ℨ (𝔜(ℬ(𝒦1), ℬ(𝒦2)), 𝔜(ℬ(𝒦3), ℬ(𝒦4)))

∶ 𝑡𝑟𝑖𝑠𝑢𝑝𝑝 (((𝑁, 𝐿), (𝑁∗, 𝐿∗)), ((𝑁∗∗, 𝐿∗∗), (𝑁∗∗∗, 𝐿∗∗∗))) ≥ 𝑚𝑖𝑛𝑠𝑢𝑝𝑝
} 

It forms a join semilattice of ℨ (𝔜(ℬ(𝒦1), ℬ(𝒦2)), 𝔜(ℬ(𝒦3), ℬ(𝒦4))) that we deal with, as a result, after using a 

relevant minsupp. 

ICE-T Algorithm: 

The First FreqCon and Next FreqCon algorithms, previously introduced in [9], have been extended to include the First 

FreqTri-Con and Next FreqTri-Con algorithms, optimized for utilizing the Tri-Concept lattices. Furthermore, the ICE-T 

algorithm has been introduced to identify all frequent concepts with support greater than or equal to a specific minimum 

threshold. 

First FreqTri-Con Algorithm 

Input: 𝒦1 = (𝐺, 𝑀1, 𝐼1), 𝒦2 = (𝐺, 𝑀2, 𝐼2), 𝒦3 = (𝐺, 𝑀3, 𝐼3) and 𝒦4 = (𝐺, 𝑀4, 𝐼4) four contexts 

𝜏𝑀1
 – minimal support of 𝒦1 & (𝑁, L) is a formal concept of 𝒦1 

𝜏𝑀2
 – minimal support of 𝒦2 & (𝑁∗, 𝐿∗) is a formal concept of 𝒦2 

𝜏𝑀3
 – minimal support of 𝒦3 & (𝑁∗∗, 𝐿∗∗) is a formal concept of 𝒦3 

𝜏𝑀4
 – minimal support of 𝒦4 & (𝑁∗∗∗, 𝐿∗∗∗) is a formal concept of 𝒦4 

Output: (((𝑁, 𝐿), (𝑁∗, 𝐿∗)), ((𝑁∗∗, 𝐿∗∗), (𝑁∗∗∗, 𝐿∗∗∗))) 
 

(𝑁, 𝐿) = 𝐹𝑖𝑟𝑠𝑡 𝐹𝑟𝑒𝑞𝐶𝑜𝑛𝑐 ((𝐺, 𝑀1, 𝐼1), 𝜏𝑀1
) 

(𝑁∗, 𝐿∗) = 𝐹𝑖𝑟𝑠𝑡 𝐹𝑟𝑒𝑞𝐶𝑜𝑛𝑐 ((𝐺, 𝑀2, 𝐼2), 𝜏𝑀2
) 

(𝑁∗∗, 𝐿∗∗) = 𝐹𝑖𝑟𝑠𝑡 𝐹𝑟𝑒𝑞𝐶𝑜𝑛𝑐 ((𝐺, 𝑀3, 𝐼3), 𝜏𝑀3
) 

(𝑁∗∗∗, 𝐿∗∗∗) = 𝐹𝑖𝑟𝑠𝑡 𝐹𝑟𝑒𝑞𝐶𝑜𝑛𝑐 ((𝐺, 𝑀4, 𝐼4), 𝜏𝑀4
) 

Return (((𝑁, 𝐿), (𝑁∗, 𝐿∗)), ((𝑁∗∗, 𝐿∗∗), (𝑁∗∗∗, 𝐿∗∗∗))) 
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Next FreqTri-Con Algorithm 

Input: 𝒦1 = (𝐺, 𝑀1, 𝐼1), 𝒦2 = (𝐺, 𝑀2, 𝐼2), 𝒦3 = (𝐺, 𝑀3, 𝐼3) and 𝒦4 = (𝐺, 𝑀4, 𝐼4) four contexts 

𝜏𝑀1
 – minimal support of 𝒦1 & (𝑁, L) is a formal concept of 𝒦1 

𝜏𝑀2
 – minimal support of 𝒦2 & (𝑁∗, 𝐿∗) is a formal concept of 𝒦2 

𝜏𝑀3
 – minimal support of 𝒦3 & (𝑁∗∗, 𝐿∗∗) is a formal concept of 𝒦3 

𝜏𝑀4
 – minimal support of 𝒦4 & (𝑁∗∗∗, 𝐿∗∗∗) is a formal concept of 𝒦4 

Output: (((𝑁i, 𝐿i), (𝑁i
∗, 𝐿i

∗)), ((𝑁i
∗∗, 𝐿i

∗∗), (𝑁i
∗∗∗, 𝐿i

∗∗∗))) 

  (𝑁i, 𝐿i) = 𝑁𝑒𝑥𝑡 𝐹𝑟𝑒𝑞𝐶𝑜𝑛𝑐 ((𝑁, L), (G, M1, 𝐼1), 𝜏𝑀1
) 

(𝑁i
∗, 𝐿i

∗) = 𝑁𝑒𝑥𝑡 𝐹𝑟𝑒𝑞𝐶𝑜𝑛𝑐 ((𝑁∗, 𝐿∗), (G, M2, 𝐼2), 𝜏𝑀2
) 

(𝑁i
∗∗, 𝐿i

∗∗) = 𝑁𝑒𝑥𝑡 𝐹𝑟𝑒𝑞𝐶𝑜𝑛𝑐 ((𝑁∗∗, 𝐿∗∗), (G, M3, 𝐼3), 𝜏𝑀3
) 

(𝑁i
∗∗∗, 𝐿i

∗∗∗) = 𝑁𝑒𝑥𝑡 𝐹𝑟𝑒𝑞𝐶𝑜𝑛𝑐 ((𝑁∗∗∗, 𝐿∗∗∗), (G, M4, 𝐼4), 𝜏𝑀4
) 

Return (((𝑁i, 𝐿i), (𝑁i
∗, 𝐿i

∗)), ((𝑁i
∗∗, 𝐿i

∗∗), (𝑁i
∗∗∗, 𝐿i

∗∗∗))) 

 

ICE-T Algorithm: 

Input: 
𝒦1 = (𝐺, 𝑀1, 𝐼1), 𝒦2 = (𝐺, 𝑀2, 𝐼2), 𝒦3 = (𝐺, 𝑀3, 𝐼3) and 𝒦4 = (𝐺, 𝑀4, 𝐼4) four contexts 

  𝜏𝑀 — minimal support threshold 

Output: ℨ =  {(((𝑁, 𝐿), (𝑁∗, 𝐿∗)), ((𝑁∗∗, 𝐿∗∗), (𝑁∗∗∗, 𝐿∗∗∗)))} 

𝑀 =  𝑀1  ∪  𝑀2  ∪  𝑀3 ∪ 𝑀4 

𝐼1 =  𝐼 ∩  (𝐺 ×  𝑀1) 

𝐼2 =  𝐼 ∩  (𝐺 ×  𝑀2) 

𝐼3 =  𝐼 ∩  (𝐺 ×  𝑀3) 

𝐼4 =  𝐼 ∩  (𝐺 ×  𝑀4) 

𝐼 ∈ (𝐼1 × 𝐼2) × (𝐼3 × 𝐼4) = (𝐺 × 𝑀1) × (𝐺 × 𝑀2) × (𝐺 × 𝑀3) × (𝐺 × 𝑀4) 

= (((𝐺 × 𝑀1) × (𝐺 × 𝑀2)) × ((𝐺 × 𝑀3) × (𝐺 × 𝑀4))) 

ℨ = ∅  

repeat 

(((𝑁, 𝐿), (𝑁∗, 𝐿∗)), ((𝑁∗∗, 𝐿∗∗), (𝑁∗∗∗, 𝐿∗∗∗))) : =First FreqTri-Con 

 ((((𝐺, 𝑀1, 𝐼1), (𝐺, 𝑀2, 𝐼2)), ((𝐺, 𝑀3, 𝐼3), (𝐺, 𝑀4, I4))) , 𝜏𝑀) 

Repeat 

𝑇𝑟𝑖 − 𝑠𝑢𝑝𝑝 =
1

4
(

|𝐿#|

|𝐺|
+

|(L∗)#|

|𝐺|
+

|(L∗∗)#|

|𝐺|
+

|(L∗∗∗)#|

|𝐺|
)   

      if N = (L)#, 𝑁∗ = (𝐿∗)#, 𝑁∗∗ =  (𝐿∗∗)# 𝑎𝑛𝑑 𝑁∗∗∗ =  (𝐿∗∗∗)# then 

           if 𝑇𝑟𝑖 − 𝑠𝑢𝑝𝑝 = 𝜏𝑀 then       

                 add (((𝑁, 𝐿), (𝑁∗, 𝐿∗)), ((𝑁∗∗, 𝐿∗∗), (𝑁∗∗∗, 𝐿∗∗∗))) to ℨ 

           end if 

           if 𝑇𝑟𝑖 − 𝑠𝑢𝑝𝑝 > 𝜏𝑀 then 

                  add (((𝑁, 𝐿), (𝑁∗, 𝐿∗)), ((𝑁∗∗, 𝐿∗∗), (𝑁∗∗∗, 𝐿∗∗∗))) to ℨ 

           end if   

      end if     

until not NextFreqTriCon 

      ((((𝑁, 𝐿), (𝑁∗, 𝐿∗)), ((𝑁∗∗, 𝐿∗∗), (𝑁∗∗∗, 𝐿∗∗∗))) , (((𝐺, 𝑀1, 𝐼1), (𝐺, 𝑀2 , 𝐼2)), ((𝐺, 𝑀3, 𝐼3), (𝐺, 𝑀4, I4))) , 𝜏𝑀) 

until max(𝑀) 

Example 3.3 Applying the Representation Theorem of Tri-Concept lattices (Theorem 3.2) and the ICE-T Algorithm will 

help us obtaining f 140 reduced tri-concepts out of 2366 concepts as presented in Table 3.6. The results are obtained using 

Python. They are based on the data provided in Tables 3.2, 3.3, 3.4, and 3.5.  
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Table 3.6: A sample of concepts of the Tri-Concept lattice 

Tri-concept Supp (𝑳) Supp (𝑳∗) Supp (𝑳∗∗) Supp (𝑳∗∗∗) 
Tri-

Supp 

(
(({I, II, III, IV, V}, { }), ({II, IV}, {𝐷𝑖, 𝐴𝑠})),

 (({I, II, III, IV, V}, {𝐹𝑒, 𝐷𝐶}), ({I, II, III, IV, V}, { }))
) 1 0.4 1 1 0.85 

(
(({I, II, III, IV, V}, { }), ({II, IV}, {𝐷𝑖, 𝐴𝑠})),

(({I, II, IV}, {𝐹𝑒, 𝐷𝐶, 𝐹𝑎}), ({I, II, III, IV, V}, { }))
) 1 0.4 0.6 1 0.75 

(
(({I, II, III, IV, V}, { }), ({II, IV}, {𝐷𝑖, 𝐴𝑠})),

(({I, II, III, IV, V}, {𝐹𝑒, 𝐷𝐶}), ({I, II, III, IV, V}, { }))
) 1 0.4 1 1 0.85 

(
(({I, II, III, IV, V}, { }), ({II, V}, {𝐶𝐿, 𝐴𝑠})),

(({I, II, IV}, {𝐹𝑒, 𝐷𝐶, 𝐹𝑎}), ({I, II, III, IV, V}, { }))
) 1 0.4 0.6 1 0.75 

(
(({I, II, III, IV, V}, { }), ({II, V}, {𝐶𝐿, 𝐴𝑠})),

(({I, II, III, IV, V}, {𝐹𝑒, 𝐷𝐶}), ({I, II, III, IV, V}, { }))
) 1 0.4 1 1 0.85 

(
(({I, II, III, IV, V}, { }), ({IV, V}, {𝐴𝑠, 𝐻𝑇})),

(({I, II, III, IV, V}, {𝐹𝑒, 𝐷𝐶}), ({I, II, III, IV, V}, { }))
) 1 0.4 1 1 0.85 

 

If the minsupp is 0.70, the reduced Tri-Concept lattice can be represented, as shown in Fig. 3.8. 
 

Fig. 3.8: Iceberg concept lattice of Tri-Concept lattice 𝖅 (𝖄(𝓑(𝓚𝟏), 𝓑(𝓚𝟐)), 𝖄(𝓑(𝓚𝟑), 𝓑(𝓚𝟒))) 
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Construction of Tri-Concept Lattices using the Iceberg Concept lattices corresponding to Frequent Generators 

In this part, Tri-Concept lattices are constructed using Iceberg concept lattices obtained from frequent closures and the 

associated generators. The Snow Algorithm is utilized to process each subcontext, following the steps outlined below: 

1) Form the concept lattice of each subcontext. 

2) Generate the set of all closed itemsets and their generator for each concept lattice. 

3) Apply the Snow Algorithm for each set of closed itemsets (CI) and their associated generators to get all frequent 

itemsets and frequent generators. 

4) Build the iceberg concept lattice for each dyadic context. 

5) Build two bi-concept lattices; one of them corresponds to the concept lattices ℬ(𝒦1) and ℬ(𝒦2), while the other 

corresponds to ℬ(𝒦3) and ℬ(𝒦4). Then form their nested diagram that represents the Tri-Concept lattice in a more 

reduced form using Error! Reference source not found. and the TRI-NEST Algorithm. 

By setting a minsupp to 45%, the concept lattices are described in Fig 3.9 and 3.10. The diagram shown in  Fig. 3.11 is 

obtained by constructing the nested diagram representing the Tri-Concept lattice.  

 
 

Iceberg concept lattice for ℬ(𝒦1) Iceberg concept lattice for ℬ(𝒦2) 

 

 

Iceberg concept lattice for ℬ(𝒦3) Iceberg concept lattice for ℬ(𝒦4) 

Fig. 3.9: Iceberg Concept Lattices of the Four Contexts 𝓚𝒊, 𝒊 = {𝟏, 𝟐, 𝟑, 𝟒} 

 

 

The reduced bi − concept lattice 

𝔜(ℬ(𝒦1), ℬ(𝒦2)) 

The reduced bi − concept 

lattice 𝔜(ℬ(𝒦3), ℬ(𝒦4)) 

Fig. 3.10: Iceberg Diagrams of the Bi-Concept Lattices 𝖄(𝓑(𝓚𝟏), 𝓑(𝓚𝟐)) and 𝖄(𝓑(𝓚𝟑), 𝓑(𝓚𝟒)) 

Forming the reduced form of the Tri-Concept lattice shows that iceberg concept lattices effectively reduce the noise in 

concept lattices by reducing the nodes in the diagram, preserving all data without loss. 
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4 Conclusion and Discussion 

Introducing the notion of Tri-Concept lattices enables us to deal with data arising from different information sources. The 

representation by the product of bi-concept lattices leads to the generalization of nested diagrams using the suggested 

algorithm TRI-NEST. 

Nested Diagrams, a well-established and widely recognized tool in Formal Concept Analysis (FCA), that makes it 

possible to distribute representation details across several levels. Adding the ICE-T algorithm and applying the snow 

algorithm facilitate the computation of all frequent concepts of Tri-Concept lattices. This computation is needed to 

construct the iceberg concept lattices, a perfect tool for analyzing large databases. It represents the most essential part of 

the Tri-Concept lattice without compromising any vital information. 

Applying an example of real-world data provides us with a valuable opportunity to understand the role played by the 

added structures in data analysis. This application involves using different methods to reduce the complexity of extracting 

information from the concept lattices.  

5 Future Work 

Our main interest is to continue analyzing big data using the structure of the bi-concept lattice and its representations, 

such as association rule mining and concept stability.  
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