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Abstract: The hydro-magnetic stability of a self-gravitating oscillating medium with streams of variable velocities for 
fluid cylinder has been defined and investigated. The streaming is unstable, but the magnetic field has a significant 
stabilizing effect. Under certain conditions, the rotating forces have a stabilizing effect. Using suitable and specific 
conditionsto distinguish between stable and unstable domains, the stability criterion is derived and investigated 
numerically and analytically. The effects of inertial self-gravity, and electromagnetic forces on the stability of a fluid 
cylinder are studied. All basic functions and equations have been solved after defining the problem. 
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1 Introduction 

Using suitable and specific conditions, analytically and numerically, the stability criterion is derived and discussed for 
the purpose of identifying the characteristics of stable and unstable domains. See Radwan [13] Moreover, 
Chandrasekhar [4] demonstrated the magneto-hydro-dynamic`s stability of a complete fluid cylinder permeated by a 
homogeneous magnetic field.  There are tests which were executed to determine the stability of an annular fluid jet. 
Also, Chandrasekhar [4] gives the classic example of a gas cylinder submerged in a liquid's capillary instability for 
axisymmetric perturbation. Drazin and Reid [7], Hassan [10], Elazab et al. [8], and Hassan [10] Cheng examined the 
unpredictability of a gas jet in a liquid that can't be compressed. However, we must point out that Cheng's results [6] are 
not to be taken lightly, where for all modes, the dispersion relation was valid. The axisymmetric magneto-
hydrodynamic self-gravitating stability of a fluid cylinder is studied, as is the magneto-hydrodynamic stability of an 
oscillating fluid cylinder in the presence of a magnetic field. Discussed by Barakat. M [3]. Modes of Mehring C and 
Sirignano [12], axisymmetric capillary waves on thin annular liquid sheets are explored. The purpose of this research is 
to determine the self-gravitating stability for a confined liquid with a magnetic field, all symmetric and asymmetric 
perturbation modes of a fluid cylinder exist. 

 

Fig. I: self-gravitation Hydromagnetic cylindrical Fluid sketch. 
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2 The Problem's Formation 

We take into account a fluid cylinder with a uniform cross-section of (radius𝑅"), the fluid is as assumed to be 
incompressible, non-viscous and non-dissipative of permeality coefficient. There is a uniform axial magnetic field inside 
the fluid, which surrounds the fluid jet and has negligible motion. 
𝐻"
(%) = (0,0, 𝐻")           (1)     

While the encompassing locale outside the liquid is given by 
𝐻"
(*) = (0,0, 𝛼𝐻")          (2)  

 
where 𝐻" is the intensity of the magnetic field and 𝛼 is a parameter, the fluid is assumed to be streaming with oscillating 
velocity... 
𝑢" = (0,0, 𝑈 cosΩ𝑡)          (3) 
 Where Ω	is the oscillating frequency of the fluid at t=0  
U is the amplitude of velocity𝑢". 
 
The components of 𝐻"

(%)	, 𝐻"
(*) and 𝑢" are taken into consideration along cylinder coordinates (r,𝜑, 𝑧) with the fluid 

cylinder's axis coincident with the z-axis. The combined force of self-gravitating, magneto dynamic, and pressure 
gradient forces acts on the fluid. 
 
Concerning the current model's stability, the basic equations for that are synthesis of hydrodynamic equations and 
Maxwell equations  
𝜌 789

8:
+ <𝑢. ∇?𝑢@ = 𝜌∇𝑉 + 𝜇<∇˄𝐻?˄𝐻 − ∇𝑝       (4)  

∇. 𝑢=0                                      (5) 
8F
8:
= ∇˄<𝑢˄𝐻?           (6)  

∇.𝐻 = 0            (7)  
∇G𝑉 = −4𝜋𝐺𝜌           (8) 
∇.𝐻(*) = 0           (9) 
∇˄𝐻(*)=0                                   (10) 
∇G𝑉(*) = 0           (11) 
Along the interface of fluid 
𝑃L = 𝑇<∇.𝑁L?           (12) 
Where 
 
𝑁L =

∇O(P,Q,R;:)
|∇O(P,Q,R;:)|

           
 (13) 
 
Which u and p are the fluid velocity vector and kinematic pressure, T the coefficient of surface tension, 𝑁L the unit 
vector normal to the fluid interface where  
f(r,𝜑, 𝑧; 𝑡) =0                                                                                                              (14) 
 

3 State of equilibrium 

Equation (4) can be written as  
𝜌 789

8:
+ <𝑢. ∇?𝑢@ − µ<𝐻. ∇?𝐻 = −∇𝛱	                     (15) 

Where 
𝛱 = 𝑝 + 𝜌𝑉 + W

G
<𝐻.𝐻?                       (16) 

Where π total magneto hydrodynamic pressure. The basic equations (4)-(16) are solved with taking equations (1)-(3) in 
the unperturbed state and applying the boundary conditions at r=𝑅"we get 
𝛱" = 𝑝" − 𝜌𝑉" +

W
G
(𝐻". 𝐻") = 𝑐𝑜𝑛𝑠𝑡.                      (17) 

𝑝"L=T/𝑅" 
But the balance of the pressure 
𝑝"=𝛱" + 𝜌𝑉" −

W
G
(𝐻". 𝐻") 
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The self-gravitating potentials 𝑉" and 𝑉"
(*) in the equilibrium satisfy 

∇G𝑉" = -4𝜋𝐺𝜌         (18) 
∇G𝑉"

(*\) = 0         (19) 
The solutions of equations (18), (19) 
𝑉" = −𝜋𝜌𝐺𝑟G + 𝑐^         (20)  
𝑉"
(*\) = 𝑐G ln 𝑟	+𝑐a         (21)  

Where𝑐^	, 𝑐G	𝑎𝑛𝑑	𝑐a are integration constants that must be identified in conjunction with boundary conditions. 
𝑐^ = 0	

𝑐G=-2𝜋𝐺𝜌𝑅"G         (22)  
𝑐a=-𝜋𝐺𝜌𝑅"G+2𝜋𝐺𝜌𝑅"G ln𝑅"        (23)  
therefore 
𝑉" = −𝜋𝐺𝜌𝑟G         (24) 
𝑉"
(*\) = −𝜋𝐺𝜌𝑅"G 71 + 2 ln f

P
gh
i@                     (25) 

by balancing the pressure a cross the boundary surface r=𝑅" 
rating the fluid pressure 𝑝" in the equilibrium state is given by 
𝑝" =

j
gh
+ 𝜋𝐺𝜌G(𝑅"G − 𝑟G) +

W
G
(𝛼G − 1)𝐻"G      (26) 

In the equilibrium state as 𝛼 = 1, we observe that there is no donating in the magnetic field ,Outside of the cylinder the 
magnetic field becomes active. 
When𝑅" > 𝑟, the self-gravitating force donates to	𝑝" in a positive manner; when r> 𝑅", it donates in a negative manner, 
and when r=𝑅" , it donates nothing at all. 

4 Perturbed States 

Every physical quantity Q(r,𝜑 z; t) can be developed as for minor deviations from the equilibrium state:  
Q(r,𝜑, 𝑧; 𝑡) =𝑄"(𝑟) + 𝜀(𝑡)𝑄^(𝑟, 𝜑, 𝑧) +⋯      (27)  
where 
𝑄^ = 𝜀"𝑞^(𝑟) exp<𝜎𝑡 + 𝑖(𝑘𝑧 +𝑚𝜑)?      (28)  
the modified form of the formula in the cylindrical interface is given by 
r=𝑅" + 𝑅^ +⋯         (29)  
with 
𝑅^ = 𝜀(𝑡) exp<𝑖(𝑘𝑧 +𝑚𝜑)?       (30) 
where 
𝜀(𝑡) = 𝜀" exp(𝜎𝑡) 
The height of the surface wave measured from the unperterbuted state. From eq. (27) and (30) in the basic equations 
(4) - (14), the pertinent perturbation equations are given by 
𝜌 789

8:
+ <𝑢". ∇?𝑢^@ − 𝜇<𝐻". ∇?𝐻^ = −∇𝛱^      (31) 

 Where  
𝛱^ = 𝑝^ − 𝜌𝑉 + 𝜇(𝐻". 𝐻^)       (32)  
 
∇. 𝑢^=0                                                                        (33) 
8Fw
8:
= <𝐻". ∇?𝑢^ − <𝑢". ∇?𝐻^       (34) 

∇.𝐻^ = 0	         (35) 
∇G𝑉 = 0         (36) 
𝑃 x = − j

ghy
(𝑅^ +

8ygw
8Qy

+ 𝑅G 8
ygw
8R
)       (37) 

∇.𝐻^
(*\) = 0         (38)  

∇˄𝐻^
(*\)=0                                                                                     (39) 

∇G𝑉*\ = 0         (40)  
every perturbed Q(r,𝜑, 𝑧; 𝑡) may be expressed as 
Q(r,𝜑, 𝑧; 𝑡) =𝑞^(𝑟) exp<𝜎𝑡 + 𝑖(𝑘𝑧 +𝑚𝜑)?      (41)  
by using (28), (36) and (40) given the second-order differential equation. 
From Laplace equation in cylinder coordinate eq. (36) and (40) become in the form 
𝑉 = 𝐴𝜀"𝐼|(𝑥) exp<𝜎𝑡 + 𝑖(𝑘𝑧 +𝑚𝜑)?        (42) 
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𝑉(*\) = 𝐵𝜀"𝑘�(𝑥) exp<𝜎𝑡 + 𝑖(𝑘𝑧 +𝑚𝜑)?        (43)  
From equations (38), (34) we get 
𝐻^ =

%�Fh
(��%�� ���Ω:)

𝑢^          (44)       
by take the divergence to eq. (31) we get 
∇G𝛱^ = 0           (45) 
Here equation (39) means the magnetic field 𝐻^

(*\)could be a scalar 
function  𝛹(*\) 
𝐻^
(*\) = ∇𝛹(*\)           (46)  

And equation (38) we get  
∇G𝛹(*\) = 0           (47)  
the fluid is incompressible, in viscid and irrational 
𝑢^ = ∇𝛷           (48)  
combining equations (48), (33) 
∇G𝛷^ = 0                         (49) 
From eq. (28), the variable 𝛷^	, 𝜋^𝑎𝑛𝑑	𝛹

(*\) then nonsingular solutions of equations (45), (47) and (49) 
𝛷^ = 𝑐�𝜀"𝐼�(𝑘𝑟)exp(𝜎𝑡 + 𝑖(𝑘𝑧 +𝑚𝜑))        (50) 
𝛱^ = 𝑐�𝜀"𝐼�(𝑥)exp	(𝜎𝑡 + 𝑖(𝑘𝑧 +𝑚𝜑))        (51) 
𝛷(*\) = 𝑐�𝜀"𝑘�(𝑥) exp<𝜎𝑡 + 𝑖(𝑘𝑧 +𝑚𝜑)?        (52)  
Where 𝑐�, 𝑐�	𝑎𝑛𝑑	𝑐� are constant of integration which 𝐼�(𝑘𝑟)𝑎𝑛𝑑	𝑘�(𝑘𝑟) are the Bessel functions which m is the first and 
second type of order. 

The perturbed state caused by the capillary force is the surface pressure along the cylindrical fluid interface 
fromequation(53) 
𝑝^L = − j

ghy
(1 −𝑚G − 𝑥G)𝑅^                       (53)  

where (x=k𝑅") 

5 Boundary Conditions 

The boundary conditions of the problem must be satisfied by the sol. Of basic equations (4-14) in the 
unperterbuted state by eqs. (1-3), (17) and (23-26) while in perturbed state given by (44) and (53) 

5.1Magnetic condition 
It stipulates that the normal magnetic field component must remain continuous across the fluid interface. 
 (29) At r= 𝑅" 
𝑁".𝐻^ + 𝑁^.𝐻" = 𝑁".𝐻^

(*\) + 𝑁^. 𝐻"
(*\)   (54)  

where 
𝑁" = (1,0,0)          ,     𝑁^ = f0, �%�

gh
, −𝑖𝑘i    

then, 
𝑐� =

%�Fh
��
\ (\)

 where   (x=kr)                   (56) 

5.2 Kinematic condition 
The velocity of the perturbed boundary fluid interface and the normal component of the fluid's velocity u must match. 
(29)  
At r=𝑅" 
𝑢^P = (𝜎 + 𝑖𝑘𝑈 cosΩ𝑡)𝜀" exp<𝜎𝑡 + 𝑖(𝑘𝑧 +𝑚𝜑)?                   (57)  
combining eq. (57) 

𝑢^P =
𝜕ɸ^
𝜕𝑟  

We get 
𝑐� =

(��%�� ���Ω:)

�	��
\ (\)

                        (58)  

from eq. (31), (44) we get 
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𝜌 789w�
8:

+ 𝑈 cosΩ𝑡 89w�
8R
@ − %�WFhy

(��%�� ���Ω:)
89w�
8R

= −8�
8P

       (59)  
from which we get 
𝑐� =

��

���
\ (\)

[𝜎G + 2𝑖𝑘𝜎𝑈 cosΩ𝑡 − 𝑖𝑘𝑈ΩsinΩ𝑡 − 𝑘G𝑈G𝑐𝑜𝑠GΩ𝑡] − W�Fhy

��
\ (\)

    (60) 

5.3Self-gravitating Conditions 
(A) The self-gravitating potential must be continuous across the equilibrium surface. At r=𝑅" 

𝑉 + 𝑅^
8�h
8P
= 𝑉(*\) + 𝑅^

8�h
(��)

8P
         (61)  

(B)The derivative of the self-gravitating potential must be continuous over the initial equilibrium's surface at 
r=𝑅" 
8�w
8P
+ 𝑅^

8y�h
8Py

= 8�w
(��)

8P
+ 𝑅^

8�h
(��)

8P
         (62)  

sub. From eqs. (23), (24), (29), (42) and (43) we get 
A=4𝜋𝐺𝜌𝑅"𝑘�(𝑥)          (63)  
B=4𝜋𝐺𝜌𝑅"𝐼�(𝑥)           (64) 
Finally, we have to apply some compatibility condition of the leap of the total stress in the fluid and framing 𝑝^L 
across the fluid cylindrical interface (29) at r=𝑅" 
𝑝^ + 𝑅^

8�h
8P
+ 𝜇(𝐻". 𝐻^) − 𝜇(𝐻". 𝐻^)(*\) = 𝑝^L       (65) 

 The condition can be written  
[𝛱^ + 𝜌𝑉 ] =𝑝^L − 𝑅^

8�h
8P
+ 𝜇(𝐻". 𝐻^)(*\)        (66)  

By sub. From equations (26),(30),(48),(42),(51),(52),(53),(63),(60),(56) into condition (66) 
we get 

𝜎G + 2𝑖𝑘𝜎𝑈 cosΩ𝑡 − 𝑖𝑘𝑈ΩsinΩ𝑡 − 𝑘G𝑈G𝑐𝑜𝑠GΩ𝑡 = �
��h 

(1 −mG − xG) ¢£¤
\ (¢)
£¤(¢)

+ 4πGρ ¢£¤
\ (¢)
£¤(¢)

7k©(x)I©(x) −

^
G
@ + WFhy

�ghy
«−𝑥G + 𝛼G \

y��(\)��
\ (\)

��
\ (\)��(\)

¬         (67) 

 
6 General Discussions 
 
Equation (67) is the dispersion relation of self-gravitating fluid cylinder (acted by mutual affected the 
electromagnetic and capillary forces)  
implanted into a negligibly moving weak self-gravitating center. 
IF we put Ω=0 ,eq. (67) become 

(σ + ikU)G =
T
ρR"a

±
xI©
\ (x)
I©(x)

² (1 −mG − xG) +	

4πGρ ¢£¤
\ (¢)
£¤(¢)

7k©(x)I©(x) −
^
G
@ + ³´hy

��hy
«−xG + αG ¢

y¶¤(¢)£¤
\ (¢)

·¤
\ (¢)£¤(¢)

¬      (68) 

the debate of the argument in this equation, uniform fluid streaming has a destabilizing effect, and this effect 
exists not only in the axisymmetric mode of perturbation (m=0), but also in the non-axisymmetric mode 
 (m≥ 1). 
 

If we put U=0, Ω=0 and m≥ 0  ... eq. (67) become 

𝜎G = j
�ghy

¹\��
\ (\)

��(\)
º (1 −𝑚G − 𝑥G) + 4𝜋𝐺𝜌 \��

\ (\)
��(\)

7𝑘�(𝑥)𝐼�(𝑥) −
^
G
@ + ³´hy

��hy
«−xG + αG ¢

y·¤(¢)£¤՝ (¢)

·¤՝ (¢)£¤(¢)
¬  (69)  

If we put G=0, 𝐻" = 0 and m=0 eq. (67) become 
𝜎G = j

�gh 
f\�w(\)
�h(\)

i (1 − 𝑥G)																		, 𝐼"
\(𝑥) = 𝐼 (𝑥)       (70)  

this is the standard capillary instability dispersion relation. If we put G=0, 𝐻" = 0	,	m≥ 0 

𝜎G = j
�gh 

¹\��
\ (\)

��(\)
º 7𝐼�(𝑥)𝑘(\) −

^
G
@         (71) 

this relation has been derived by Chandrasekhar (6) discussing the capillary instability of fluid cylinder. 
If we put T=0, 𝐻"	𝑎𝑛𝑑	𝑚 = 0	,the relation (67) become 
𝜎G = 4𝜋𝐺𝜌 f\�w(\)

�h(\)
i 7𝐼"(𝑥)𝑘"(𝑥) −

^
G
@     ,𝐼"

\(𝑥) = 𝐼 (𝑥)        (72)  
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this relation (72) has been proven for the first time by Chandrasekhar and Fermi (12). 

𝜎G = 4𝜋𝐺𝜌 \��
\ (\)

��(\)
7𝐼�(𝑥)𝑘�(𝑥) −

^
G
@         (73) 

 
7 Numerical Discussions 
 
In this instance of magneto hydro gravitodynamic stability caused by the interaction of capillary, 
 self-gravitating, and electromagnetic forces, the fluid jet model is utilized. Using numbers to discuss the relation 
(67)... 

𝜎∗ = 𝛾 + 𝛽 + 𝑤(1 −𝑚G − 𝑥G) \��
\ (\)

��(\)
 +\��

\ (\)
��(\)

7𝑘�(𝑥)𝐼�(𝑥) −
^
G
@ + 𝑁𝑥G «−1 + 𝛼G ��

\ (\)��(\)

��(\)��
\ (\)

¬ (74)  

where𝛾 = �%��¿ÀLΩ:

(�ÁÂ�)
w
y

,  𝛽 = %��Ω�ÃÄΩ:
�ÁÂ�

, 𝜎∗ = �

(�ÁÂ�)
w
y
 , w= j

�ÁÂ�ygh 
 

N=fFh
FÅ
i
G
    which    𝐻L = 2𝜌𝑅"Æ

ÁÂ
W

, 

 
(I) For w=0.2 conformable with N=0.1,0.4,0.7,0.9 and 1.2 it is found that gravitational magneto hydrodynamic 
unstable domain is 
0< 𝑥 < 1.422	, 
the contiguous stable domain are  
1.422≤ 𝑥 < ∞ ,             0< 𝑥 < ∞.                         0< 𝑥 < ∞. 
0< 𝑥 < ∞.                     0< 𝑥 < ∞. 

 
 

 

Fig. 1: For w=0.2with N=0.1,0.4,0.7,0.9 and 1.2. 
 

(II) For w=0.4 conformable with N=0.1, 0.4, 0.7, 0.9 and 1.2 it is found 
that gravitational magneto hydrodynamic unstable domain is  
0< 𝑥 < 1.331,                     0< 𝑥 < 0.6277 
The contiguous stable domain are 
 1.745≤ 𝑥 < ∞ ,              0< 𝑥 < ∞ .              0< 𝑥 < ∞ 
0< 𝑥 < ∞				                     0< 𝑥 < ∞ 
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Fig. 2: For w=0.4with N=0.1,0.4,0.7,0.9 and 1.2 

 
(III) For w=0.4,𝛾 = 0.1, 𝛽 = 0.1 and N=0.1, 0.4, 0.7, 0.9 and 1.2 
The gravitational magneto hydrodynamic unstable domains are 
0< 𝑥 < 1.436,                   0< 𝑥 < 1.030,                         0< 𝑥 < 0.637 
0< 𝑥 < 0.536,		 
 While the contiguous stable domain are  
1.436< 𝑥 < ∞,	                 1.030< 𝑥 < ∞,                       0< 𝑥 < ∞ 
0.536< 𝑥 < ∞,                  0< 𝑥 < ∞ 
 

 
Fig. 3: For w=0.4,𝛾 = 0.1, 𝛽 = 0.1 and N=0.1, 0.4, 0.7, 0.9 and 1.2 

 
 
(IV)For w=0.4,	𝛾 = 0.7, 𝛽 = 0.9	and N=0.1, 0.4, 0.7, 0.9 and 1.2 
The gravitational magneto hydrodynamic unstable domains are 
0< 𝑥 < 1.743,                0< 𝑥 < 1.544,                 0< 𝑥 < 1.344 
0< 𝑥 < 1.148,                0< 𝑥 < 1.044 
 
while the contiguous stable domain are  
 
1.743< 𝑥 < ∞,                1.544< 𝑥 < ∞,                1.344< 𝑥 < ∞ 
1.148< 𝑥 < ∞,                1.044< 𝑥 < ∞ 
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Fig. 4: For w=0.4,	𝛾 = 0.7, 𝛽 = 0.9	and N=0.1, 0.4, 0.7, 0.9 and 1.2 

 
(VI) For w=0.4,𝛾 = 0.9, 𝛽 = 1.2 and N=0.1, 0.4, 0.7, 0.9 and 1.2 
The gravitational magneto hydrodynamic unstable domains are 
0< 𝑥 < 1.744,              0< 𝑥 < 1.547,                 0< 𝑥 < 1.349 
0< 𝑥 < 1.248,              0< 𝑥 < 1.143 
 
while the contiguous stable domains are  
1.744< 𝑥 < ∞,              1.547< 𝑥 < ∞,              1.349< 𝑥 < ∞ 
1.248< 𝑥 < ∞,              1.143< 𝑥 < ∞ 

 

 
Fig. 5: For w=0.4,𝛾 = 0.9, 𝛽 = 1.2 and N=0.1, 0.4, 0.7, 0.9 and 1.2 

 

8 Conclusions 
 

From numerical analysis we get: 
 

As N rises while velocity remains constant, the number of unstable domains decreases. This suggests that there is a 
stabilizing influence of the magnetic field. 
The stable domains rise while the unstable domains shrink as N is increased with constant capillary force (w). 
The capillary force has a strong stabilizing effect on the model. 
It is found that when velocity values rise, unstable domains rise for the same values of N.This explains why the 
streaming effect destabilizes for both short- and long-wavelength waves. 
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