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Abstract: Electrohydrodynamic Stability consists of a fluid cylinder with self-gravitation A self-gravitating tenuous 
medium surrounds it. that is permeated by a transversely variable electric field while being affected by self-gravitating 
forces, Capillary, and Electrical Forces is covered across all axisymmetric and (non)axisymmetric perturbation types. 
The problem is solved and all individual solutions are excluded. The model stabilizes as a result of continuous Electric 
field stability in all perturbation modes. In a narrow area of the axisymmetric perturbation. It has been established that 
self-gravitating and capillary forces have a destabilizing effect. However, the present model instability is improved 
and modified by self-gravitating and capillary forces' stabilizing effects in all large axisymmetric fields and 
(non)axisymmetric domains. 
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1 Introduction 

Many scholars, including Lin [9], Rayleigh [1], Drazin and Reid [10],were interested in the stability of a full jet fluid 
under surface tension, whether it is optimum or not. Rayleigh [1] pioneered the fundamental computational techniques 
for investigating numerous stability-related issues and also established the stability criteria. The cutoff wavenumber 
normalised is related to the cylinder unit's radius, according to the stability study results of an ideal liquid cylinder 
subjected to capillary forces, whereas the highest instability growth rate is shown when the wavenumber is about 
0.0697. Simplifying solenoidal vectors into toroidal and poloidal amounts was addressed by Chandrasekhar and Fermi 
[4]. Chandrasekhar [5] investigated the stability of a whole liquid jet under the influence of capillary forces and self-
gravitation of all sorts of axisymmetric and (non)axisymmetric disturbance, as well as the impact of the fixed complete 
fluid jet's axisymmetric capillary instability due to a magnetic field perturbation measured by toroidal and poloidal 
values, the solenoidal vectors.C. D. S. [11]. The same was carried out for a fluid cylinder under the influence of the 
Lorentz force, by Chandrasekhar (with uniform magnetic field) and self-gravitating forces. In several cylindrical 
models, Radwan [6] created hydrodynamic and hydro-magnetic instability. Additionally, since Kelly's seminal 
publications [9], several researchers have examined cylindrical fluids' electrodynamic stability (Mohammed and Nayyar 
[8], Melcher et al. ( see also Mestel [12-13]). The consistency of various Radwan and Hassan have developed cylinder 
models that work with self-gravitating forces as well as other forces [17–18]. For all (non)axisymmetric and 
axisymmetric perturbation modes, Hassan [14] examined the stability of a cylinder filled with oscillating flowing fluid 
under the combined influence of capillary and self-gravitation. force of electrodynamics. Hassan's research used a 
gravity fluid cylinder with varying electric fields. [20] study of the Capillary Electrodynamic Stability of Self. Here, we 
study the instability of a fluid cylinder surrounded by a self-gravitating tenuous medium and permeated by a 
transversely variable electric field under the action of all kinds of perturbations and the interaction of the self-
gravitating, electric, and capillary forces. 
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2 The Problem's Formation 

Take a look at a cylinder of self-gravitating, incompressible, streaming fluid that has a uniform cross-section and a 
radius of (radius RO). We presume the fluid will be dielectric, self-gravitating, permeated by a uniform electric field, 
and both its interior and exterior have a dielectric constant. 

𝐄˳𝐢= ( 0 , 0 , 𝐄˳)                       (1) 

Additionally, the transversely varying electric field is permeating the nearby self-gravitating tenuous medium. 
𝐄˳𝐞= ( 0 , 𝛃	𝐄˳	𝐑˳

𝐫
 , 0 )                

(2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. I: self-gravitation Electrohydrodynamic cylindrical Fluid sketch. 

 
Where β is any parameter, E˳ is the electric field's strength, and The components of 𝐸˳*   and 𝐸˳+ are taken into account 
along the cylindrical coordinate ( r, ϕ, z)  system where the axis of the fluid cylinder and the Z-axis are congruent. 
When velocity, electric forces, self-gravitating forces, and capillary forces are coupled, they have an additive influence 
on the fluid. Shown in Fig (I) 
conventional hydrodynamic equations and the Maxwell equations in combination, electromagnetic theory, and 
Newtonian self-gravitating equations make up fundamental equations ( see Chandrasekhar [5] and Lin [2]). The basic 
equations are provided as follows. 

In the fluid 

ρ -./
.0
+ 2	u	. ∇	6	u	7 = 	−∇P + ρ∇v +	<

=
∇ >ε@2E@. EB6C	                                                                            (3) 

∇. u = 0                 (3)                                                                                                                                                                     

∇. (εE)@ = 0            (4)                                                                                                                                                                      

∇ʌ2ε@E@6             (5)                                                                                                                                                                         

∇=v = 	−4	πρG            (6)                                                                                                                                                                
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Surface of the fluid cylinder 
PL = T	2∇. N6                                            (7)                                                                                                                                 

In the tenuous medium around it  

∇. E(B) = 0                    (8)                                                                                                                                                           

∇ʌ2εBEB6                          (9)                                                                                                                                                                

∇=vB = 	0                            (10)                                                                                                                                                               

Where ρ is mass density, u	is vector of velocity, p is kinetic force,	v is self-gravitating potential, G  stands for gravity 
constant , T coefficient of surface tension., N  is the exterior unit vector the surface is perpendicular to it. and  EB,  vB 
are the fluid cylinder's surrounding tenuous mediums. 

3 State of equilibrium 

We examine the equilibrium state and show how the variables may be calculated in a situation where 𝑢˳ = 0  , P
PQ
= 0  

and  P
PR
= 0 using equation (3) we get 

 
𝐯˳ = −	𝛑𝛒𝐆𝐫𝟐                                     (11)                                                                                                                                                 

𝐯˳(𝐞) = 𝟐𝛑𝛒𝐆𝐑˳𝟐 -𝐥𝐧
𝐑˳
𝐫
− 𝟏

𝟐
7                     (12)                                                                                                                                          

𝐏𝐨𝐬 = 	
𝐓
𝐑˳

                          (13)                                                                                                                                                                       

Additionally, after exerting the remaining pressure across the boundary surface at 𝑟 = 𝑅˳ the The formula for the fluid 
pressure distribution in the equilibrium state is 
 
𝐏˳ = 	

𝐓
𝐑˳
+ 	𝛑𝐆𝛒𝟐a𝐑˳𝟐 − 𝐫𝟐b +	

𝐄˳𝟐

𝟐
	[𝛆𝐢 − 𝛃𝟐𝛆𝐞]                                (14)                                                                                                     

4 Perturbed State 

Every variable quantity Q(	r, φ	, z	, t) may be represented as follows for little variations from the equilibrium condition. 
𝐐(	𝐫, 𝛗	, 𝐳	, 𝐭) = 	𝐐˳(𝐫) +	𝛈˳(𝐭)𝐐𝟏(𝐫,𝛗, 𝐳) +⋯                       (15)                                                                                      

Here Q stands for 	ρ, u	, E(B), E(@), vB	, v@, Nr	and	Pr . η(t) is a parameter with dimensions that measures the magnitude of 
the disturbance. η(t) may be expressed as 
𝛈(𝐭) = 𝛈˳𝐞(𝛔𝐭)	                            (16)                                                                                                                               

Where ε˳(= ε	at	t = 0) is the initial amplitude, and σ	is	the	growth	rate, σ = iω 
A normal mode may be expressed as  
  𝐫 = 𝐑˳ + 𝐑𝟏	, 𝐑𝟏 ≪ 𝐑˳                       (17) 

With 
𝐑𝟏 = 	𝛈(𝐭)	𝐞𝐢(𝐤𝐳�𝐦𝛗)                           (18) 

Where 𝐑𝟏 The longitudinal wave number, It is k an actual number. and the transverse wave number, which is an 
integer, is the elevation surface wave recorded from the equilibrium site. By using the expansion (16), the pertinent 
perturbation equations in the fundamental equations (3) to (11), are provided by 

 𝛛𝐮𝟏
𝛛𝐭
= 	−𝛁𝛑𝟏𝐢                           (19)                                                                                                                                                                  
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𝛑𝟏𝐢 = 	
��
𝛒
− 𝐯𝟏𝐢 −	

𝟏
𝛒
�𝛆𝐢 >𝐄˳𝐢	. 𝐄𝟏𝐢 C�                       (20)                                                                                                                                 

 𝛁. 𝐮𝟏 = 𝟎                         (21)                                                                                                                                                                        

𝛁. 2𝛆𝐢𝐄𝟏𝐢 6 = 𝟎                          (22)                                                                                                                                                               

𝛁ʌ𝛆𝐢𝐄𝟏𝐢 = 𝟎                          (23)                                                                                                                                                                 

  𝛁𝟐𝐯𝟏𝐢 = 	𝟎                           (24)                                                                                                                                                                    

Near the fluid-tenuous media contact 
𝐏𝟏𝐬 = 	−	

𝐓
𝐑˳
	>𝛈 +	 𝛛

𝟐𝛈
𝛛𝛗𝟐

+ 𝐑˳𝟐 	
𝛛𝟐𝛈
𝛛𝐳𝟐
C                        (25) 

Around the fluid, in the tenuous midrange 
𝛁. 2𝛆𝐞𝐄𝟏𝐞6 = 𝟎                            (26)                                                                                                                                                             

𝛁ʌ𝐄𝟏𝐞 = 𝟎                                (27)                                                                                                                                                                

𝛁𝟐𝐯𝟏𝐞 = 	𝟎                            (28)       

                                                                                                                                                             

5 Fourier Analysis 

a method for tackling cylindrical stability issues that uses linear perturbation and the space-time dependence (18) and 
(19) of the relevant perturbed quantityQ<(	r, φ	, z	, t) May be expressed by 
Q<(	r, φ	, z	, t) = Q<(	r)e(@(�����)��0)                                                                                                               (29) 
Take the divergence of equation (20) and using equations (22) and (23), we get  
∇=π<@ = 	0                                                                                                                                                                         (30) 
Equations (23) and (28) state that the corresponding magnetic field perturbation,E<

@,B can be derived from the ascolor 
function say, 
  E<

@,B = 	−∇ψ<
@,B                                                                                                                                                                (31) 

If the equations (32),(24),and (27), we obtain 
	
 ∇=ψ<

@,B = 0                                                                                                                                                                      (32) 
We obtain the solution to equations (29), (31), (32), and (33) by using the expansion (30). 
 r�< �

��
>r ���(�)

��
C − >�

�

��
+ k=C Q<(r) = 0                                                                                                                       (33) 

Where, Q<(r)	stands	for	π<@ (r), v<@ 	(r), v<B(r), and	ψ<@ (r). The solution of the ordinary second-order differential equation 
(34) is expressed using standard Bessel functions of order m. Other than a single resolution, we obtain 
v<@ = 	A@I�(	kr)e(@(�����)��0)                                                                                                                                         (34) 
v<B = 	ABK�(	kr)e(@(�����)��0)                                                                                                                                       (35) 
π<@ = 	B@I�(	kr)e(@(�����)��0)                                                                                                                                         (36) 
ψ<@ = 	C@I�(	kr)e(@(�����)��0)                                                                                                                                        (37) 
ψ<B = 	C�K�(	kr)e(@(�����)��0)                                                                                                                                      (38) 
 

6 Stability Criterion 

6-1 Self-gravitating condition 
 
1-  A steady self-gravitating potential over the equilibrium surface is required at	r = R˳ 

  v<@ + R<
.¡˳¢

.�
= 	 v<B + R<

.¡˳£

.�
                          (39)                                                                                                                                        
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2- The self-gravitating potential's derivative needs to X`.LOUAYJT  be continuous throughout the equilibrium surface 
at	r = R˳ 
 
.¡�¢

.�
+ R<

.�¡˳¢

.��
= .¡�¢

.�
+ R<

.�¡˳£

.��
                                                                                                                                          (40) 

From which, we get 
A@ = 4πρR˳=GK�(	x	)	                                                                                                                                                     (41) 
AB = 4πρR˳=GI�(	x	)                                                                                                                                                       (42) 
 
 6-2 Kinematic condition 
 
 The fluid tenuous medium interface velocity and there must be consistency between the fluid velocity vector's normal 
component at r = R˳  i.e. 
  N. u = .�

.0
	                                                                                                                                                                        (43) 

Where 
N = (	1	, 0	, 0	) + η˳ ¦	0	, −	

@�
§˳
	 , −ik	¨ e(@(�����)��0)                                                                                                      (44) 

We get 
B@ = − ��§˳�

©ª«¬ (	©	)
                                                                                                                                                                   (45) 

 
6-3 Electric condition 
 
1- The electric field potential's normal component must also be constant over the equilibrium surface. at r = R˳ 
N. 2ε@E@ − εBEB6 = 0	                                                                                                                                                      (46) 

E = E˳ +	R<
.�˳
.�
+ E<                                                                                                                                                      (47) 

If 
ψ˳@ = 	−E˳r                                                                                                                                                                       (48) 

ψ˳B = 	−R˳E˳ ­1 + log
�
§˳
¯                                                                                                                                                  (49) 

ψ<@ + R<
.°˳¢

.�
= 	ψ<B + R<

.°˳£

.�
                                                                                                                                            (50) 

c@ = @	�˳a²³£�³¢b´«(	©	)

³¢ª«¬ (	©	)´«(	©	)�³£´«¬ (	©	)ª«(	©	)
                                                                                                                                     (51) 

cB = @	�˳a²³£�³¢bª«(	©	)

³¢ª«¬ (	©	)´«(	©	)�³£´«¬ (	©	)ª«(	©	)
                                                                                                                                    (52) 

Where x = kR˳ is dimensionless, the longitudinal wave number. 
The condition can be written as follows for the issue at hand: 
P<L = P< + R<

.�˳
.�
+ <

=
ε@22E˳@	. E<@ 6 −

<
=
εB22E˳B	. E<B6                                                                                                        (53) 

BY substituting from equations (15), (21), and(26) we get 

σ= = ¶
·	§˳̧

[	1 − m= − x=] ©ª«
¬ (	©	)
ª«(	©	)

+ 4πGρ -I�(	x	)K�(	x	) −
<
=
7 ©ª«

¬ (	©	)
ª«(	©	)

+ ��˳�	
·	§�˳

º a³¢�²³£b
�
©�ª«¬ (	©	)´«¬ (	©	)

³¢ª«¬ (	©	)´«(	©	)�³£´«¬ (	©	)ª«(	©	)
»                (54) 

7 Case Limitations 

The relationship (55) is a combined stability of a linear equation requirements for a cylinder for liquids working just 
under its own gravitational pull, a fluid cylinder acting under the influence of one acting as a result of electric force, and 
one acting under the influence of capillary force (55) are a connection between the wavenumber x and m, modifications 
to Bessel functions,and the oscillation frequency, or temporal amplification 𝐼½(	𝑥	), 𝐾½(	𝑥	) and its derivation, the 
parameter 𝛽  for the parameters, the transverse electric field 𝜌, 𝐸˳, 𝐺, 𝑇, 𝑎𝑛𝑑𝑅˳ of the problem and with the fundamental 

quantity Ç
È	É˳̧

 as well as <
ÊËÌÍÈ

 , andÎ Ï�˳	
È	É�˳

  time unit.  Given that the current problem is a little more generic than the 

previous analysed situations, stability requirements for many problems with various characteristics can be obtained as 
limiting examples with sufficient alternatives from the general dispersion relation (55). Several simplifications, such as 
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1- 𝐺	 = 	0, 𝐸˳ = 	0, 𝑎𝑛𝑑	𝑚	 = 	0, are necessary to obtain the following dispersion relation from (55) 

𝛔𝟐 = 𝐓
𝛒	𝐑�˳�

[	𝟏 − 𝐱𝟐] ¦𝐱𝐈˳
¬(	𝐱	)

𝐈˳(	𝐱	)
¨                                              (55)                                                                                                                                        

2- G	 = 	0, E˳ = 	0, and	β	 = 	0,while	m ≥ 1 are necessary to obtain the following dispersion relation from (55) 

σ= = ¶
·	§˳̧

[	1 − m= − x=] >©ª«
¬ (	©	)
ª«(	©	)

C                                                                                                                 (56)                   

3- T	 = 	0, E˳ = 	0, β	 = 	0, and	m = 0	are necessary to obtain the following dispersion relation from (55) 

σ= = 4πGρ -I˳(	x	)K˳(	x	) −
<
=
7 ¦©ª˳

¬(	©	)

ª˳(	©	)
¨                                                                                                    (57)                                      

4- T	 = 	0, E˳ = 	0, β	 = 	0,while	m ≥ 1	are necessary to obtain the following dispersion relation from (55) 

σ= = 4πGρ -I�(	x	)K�(	x	) −
<
=
7 >©ª«

¬ (	©	)
ª«(	©	)

C                                                                               (58)                                                    
5- T	 = 	0, G = 	0,while	m ≥ 0	are necessary to obtain the following dispersion relation from (55) 

σ= = ��˳�	
·	§�˳

º a³¢�²³£b
�
©�ª«¬ (	©	)´«¬ (	©	)

³¢ª«¬ (	©	)´«(	©	)�³£´«¬ (	©	)ª«(	©	)
»                                                                                                  (59) 

8 Stability Discussions 

The modified Bessel functions that exist in the criterion must be studied for some of their behaviour (54). The modified 
Bessel functions' recurrence relations are provided in the form for the nonzero real value of x (see Abramowitz and 
Stegun [17]). 
 
2I�Ö (	x	) = I��<(	x	) + I��<(	x	)                       (60) 

 2K�Ö (	x	) = −K��<(	x	) − K��<(	x	)                                                                                                                            (61) 
Due to the fact that for each actual value X that	I�(	x	) is constantly favourable and steadily growing whileK�(	x	) is 
monotonically declining but never negative, as we can see 
I�Ö (	x	)	and	K�Ö (	x	) < 0                                                                                                                                                  (62) 
Consequently, For each nonzero real value, we obtain x 

>©ª«
¬ (	©	)
ª«(	©	)

C > 0	while	 >©�«
¬ (	©	)

�«(	©	)
C < 0                                                                                                                                 (63) 

m = 0	and (non)axisymmetric modes m ≥ 1 are both true for all axisymmetric modes. 
 

 9 Mathematical Discussions 
 
This model's stable and unstable regions, as well as their properties, must be statistically identified using σ∗ the relation 
of dispersion (55). Additionally, research will be done to determine how the capillary force in the most important mode 
of disturbance is affected by the self-gravitating and electrodynamic forces.For	m	 = 	0 equation (55) reads 

σ∗= = (1 − x=) ©ª˳
¬(	©	)

ª˳(	©	)
+ N -I˳(	x	)K˳(	x	) −

<
=
7 ©ª˳

¬(	©	)

ª˳(	©	)
		− M=x= ­ [<�²³]�ª˳¬(	©	)´˳¬(	©	)

ª¬˳(	©	)´˳(	©	)�³´¬˳(	©	)ª˳(	©	)
¯                                             (64) 

Where 

σ∗ = �

Î
Û

Ü	Ý˳̧

			 , N = 	 ËÞß·
�§˳¸

¶
	 , and M= = �˳�³¢§˳	

¶
  

are dimensionsless amounts. for all wavelengths, including short and long0	 ≤ 	X	 ≤ 	3, the dispersion relation (65) has 
been calculated using several computer tools. The σ∗=  values related to the unstable 
domains and those of ω∗ = 	 ã

Î
Û

Ü	Ý˳̧

 These data are gathered, collated, and visually shown in relation to the stable 

domains. Typical values of x in the range 0	 ≤ 	X	 ≤ 	3, such computations have been developed for various values 
ofβ,M	and	N. 
i) For M = 0	, N = 0.1	, 0.4	, 0.7	, 0.9	and	1.2 it is discovered that:- 
There exist unstable domains  

0	 < 	x	 < 	1.1331																																0	 < 	x	 < 	1.3257																																and	0	 < 	x	 < 	1.7496  
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while domains that are stable are 
1.1331	 < 	x	 < ∞																															1.3257 < 	x	 < ∞																																	and	1.7496 < 	x	 < ∞ 

Thus, as seen in Figure 1 , The equalities line up with the states of marginal stability. 
                            
 
 

 

 

 

 

 
 
 
 

 

 

Fig. 1: For 	M = 0	, N = 0.1	, 0.4	, 0.7	, 0.9	and	1.2. 

ii) For M = 0.1	, N = 0.1	, 0.4	, 0.7	, 0.9	and	1.2 it is discovered that:- 
There exist unstable domains 

0	 < 	x	 < 	1.3310																															0	 < 	x	 < 	1.3258																															and	0	 < 	x	 < 	1.8472 
while domains that are stable are 

1.3310		 < 	x	 < ∞																																		1.3258 < 	x	 < ∞																															and	1.8472	 < 	x	 < ∞ 
Thus, as seen in Figure 2, The equalities line up with the states of marginal stability. 
 

 

 

 

 

 

 

 

 

 

Fig. 2: For 	M = 0.1	, N = 0.1	, 0.4	, 0.7	, 0.9	and	1.2. 

iii) For M = 0.2	, N = 0.1	, 0.4	, 0.7	, 0.9	and	1.2 it is discovered that:- 
There exist unstable domains 
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0	 < 	x	 < 	1.1332																															0	 < 	x	 < 	1.3260																																	and	0	 < 	x	 < 	1.8472 
while domains that are stable are 

1.1332		 < 	x	 < ∞																															1.3260 < 	x	 < ∞		,																															and	1.8472	 < 	x	 < ∞ 
 Thus, as seen in Figure 3, The equalities line up with the states of marginal stability. 

 

Fig. 3: For 	M = 0.2	, N = 0.1	, 0.4	, 0.7	, 0.9	and	1.2. 

 
iv) For M = 0.4	, N = 0.1	, 0.4	, 0.7	, 0.9	and	1.2 it is discovered that:- 
There exist unstable domains  

0	 < 	x	 < 	1.1334																															0	 < 	x	 < 	1.3266																															and	0	 < 	x	 < 	1.8472 
while domains that are stable are 

1.1334		 < 	x	 < ∞																																1.3266 < 	x	 < ∞																																and	1.8472	 < 	x	 < ∞ 
 Thus, as seen in Figure 4, The equalities line up with the states of marginal stability. 

 

 

 

 

 

 

 

 

 

Fig. 4: For 	M = 0.4	, N = 0.1	, 0.4	, 0.7	, 0.9	and	1.2. 

v) For M = 0.8	, N = 0.1	, 0.4	, 0.7	, 0.9	and	1.2 it is discovered that: 
There exist unstable domains  
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0	 < 	x	 < 	1.1386																															0	 < 	x	 < 	1.3290																														nd	0	 < 	x	 < 	1.8471 
while domains that are stable are 

1.1386		 < 	x	 < ∞																																1.3290 < 	x	 < ∞																																and	1.8471	 < 	x	 < ∞ 
Thus, as seen in Figure 5, The equalities line up with the states of marginal stability. 

 

 

. 

 

 

 

 

 

 

Fig. 5: For M = 0.8	, N = 0.1	, 0.4	, 0.7	, 0.9	and	1.2 

10 Conclusions 

Using numerical analysis, we arrive at the following conclusion: 

1- The model is stabilised when N is increased while the capillary force (M) remains unchanged, showing that the 
electric force has a stabilising effect. 

2- Indicating that the capillary force significantly contributes to the self-gravitation destabilisation of the model, the 
unstable domain expands with increasing M values for a given value of N. 

3- The self-gravitating instabilities of the model are stabilised by the electric. 

4- The capillary force on the model significantly stabilizes the system. 
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