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Abstract: In this paper, an advanced definition of arbitrary order derivative i.e. Fractional derivative without singular kernel has been

discussed. Also, verify the new results by using Laplace transform for time variable and Fourier transform for spatial variable by a

non-local arbitrary order derivative, for which it is more convenient to work with the Fourier Transform.
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1 Introduction

The calculus of arbitrary order which commonly known as fractional calculus is a differentiation and integration of
non-integer order. The calculus of arbitrary order grabbed the attention of other known mathematicians, many of them
directly or indirectly increased to its development. In the last three centuries the calculus of half derivative had a
distinguished development as reveal by the many mathematical literature committed to it (e.g. Baleanu et al. [1],
Caponetto [2], Caputo [3], Diethelm [4], Hilfer [5], Jiao et al [6], Kilbas et al. [7], Kyriakova [8], Mainardi [9], McBride
[10], Miller and Ross [11], Petras [12], Samko et al [13], Podlubny [14], Sabatier et al. [15], Torres and Malinowska
[16], Ying and Chen [17]) and by the distinguished diffusion as shown by the many meetings dedicated to it and the
superfluous of articles appeared in mathematical (e.g. Kilbas and Marzan [18], Heinsalu et al [19], Luchko and Gorenflo
[20]).
The use of derivative of arbitrary order has also spread into many other fields of science as well mathematics and physics
(e.g.Laskin [21], Naber [22], Baleanu et al. [23], Zavada [24], Baleanu et al. [25], Caputo and Fabrizio [26],[27]) such as
biology (e.g. Cesarone et al. [28], Caputo and Cametti [29]), economy (e.g. Caputo [30]), demography (e.g. Jumarie
[31]), geophysics (e.g. Iaffaldano [32]), medicine (e.g El Sahed [33]) and bioengineering (e.g. Magin [34]). The
significant contribution in the arbitrary derivative which carried out by the researchers One can see also [35], [36], [37],
[38], [39], [40] and [41]. However, some condemnation has been made for a little cumbersome mathematical expression
of its definition and the resultant obstacle in the solutions of the arbitrary order differential equations.
We deal with the most advanced definition of arbitrary order derivative, which assumes two different depiction for the
temporal and spatial variable. The first efforts proposed on the time variable, where the real powers come into sight and
obtain the solutions of the usual arbitrary order derivative will turn into integer powers, with some compendiums in these
formulae and the computations. In this framework, it is appropriately used the Laplace transform. The second definition
is related to the spatial variables, thus for this non-local arbitrary order derivative it is more suitable to work with the
Fourier transform [42].

∗ Corresponding author e-mail: laxmimorya91@gmail.com

c© 2023 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/pfda/090405


590 L. Morya et al.: New results by using advanced definition...

2 An Advanced Fractional Time Derivative

We know that the usual Caputo fractional time derivative (UFDt) of order α , given by

Dα
t f (t) =

1

(1−α)

t
∫

a

f ′(τ)
f (τ)

dτ (1)

with α ∈ [0,1] and a ∈ (−∞, t], f ∈ H1(a,b), b > a.

Caputo and Fabrizo [42] replace the kernel (t −τ)−α with the function exp[−α(t − τ)

(1−α)
] and [− 1

(1−α)
] with

M(α)

(1−α)
and

obtained the new definition of fractional time derivative NFD without singular kernel for detailed information one may go
through [42].
An Advanced definition of fractional time derivative

Dα
t f (t) =

M(α)

(1−α)

t
∫

a

f (τ)exp[−α(t − τ)

(1−α)
]dτ, (2)

where M(α) is a normalization function M(0) = M(1) = 1. Here, exp[−α(t − τ)

(1−α)
] is replaced by exp[

α(t − τ)

(1−α)
] by us,

then obtained as follows

Dα
t f (t) =

M(α)

(1−α)

t
∫

a

f (τ)exp[
α(t − τ)

(1−α)
]dτ. (3)

3 Some Important Results

Case I: Adding the equation (2) and (3) then we obtain the new result namely Advanced fractional derivative Type-1
which is given as under

Dα
t f (t) =

2M(α)

(1−α)

t
∫

a

f (τ)cosh[
α(t − τ)

(1−α)
]dτ. (4)

Case II: Subtracting the equation (2) and (3) we get the result namely Advanced fractional derivative Type-2 which is
given as under

Dα
t f (t) =

2M(α)

(1−α)

t
∫

a

f (τ)sinh[
α(t − τ)

(1−α)
]dτ. (5)

Theorem 3.1: For NF Dt if the function f (t) is such that

f (p)(α) = 0, p = 1,2, .... (6)

Then we have D
(n)
t

(

D
(α)
t f (t)

)

= D
(α)
t

(

D
(n)
t f (t)

)

Proof: If n ≥ 1 and α ∈ [0,1] the fractional time derivative D
(α+n)
t f (t) of order (n+α) is defined by

Dα+n
t f (t) = D

(α)
t

(

D
(n)
t f (t)

)

, (7)

we consider the n = 1, then the definition of (7) D
(α+1)
t f (t), we get

D
(α)
t

(

D
(1)
t f (t)

)

=
M(α)

(1−α)

t
∫

a

f (τ)exp[
α(t − τ)

(1−α)
]dτ.
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After that integration by parts and suppose that f ′(a) = 0, we have

D
(α)
t

(

D
(1)
t f (t)

)

=
M(α)

(1−α)

t
∫

a

d

dτ
f (τ)exp[

α(t − τ)

(1−α)
]dτ.

=
M(α)

(1−α)

t
∫

a

d

dτ
f (τ)exp[

α(t − τ)

(1−α)
]dτ +

α

(1−α)

t
∫

a

f (τ)exp[
α(t − τ)

(1−α)
]dτ

=
M(α)

(1−α)



 f (τ)+
α

(1−α)

t
∫

a

f (τ)exp[
α(t − τ)

(1−α)
]dτ



 .

Otherwise,

D
(1)
t

(

D
(α)
t f (t)

)

=
d

dt





M(α)

(1−α)

t
∫

a

f (τ)exp[
α(t − τ)

(1−α)
]dτ



 ,

=
M(α)

(1−α)



 f (t)+
α

(1−α)

t
∫

a

f (τ)exp[
α(t − τ)

(1−α)
]dτ



 .

It is easy to generalize it for any n > 1
4. The Laplace transform of the advanced definition of fractional time derivative NFDt , [4]
In this section, we have studied the properties of NFDt defined in equation

D
(α)
t f (t) =

N(σ)

σ





t
∫

a

f (τ)exp[
α(t − τ)

(1−α)
]dτ



 , (8)

where σ =
1−α

α
∈ [0,∞),α =

−1

1+α
∈ [0,1] with a = 0 has priority the computation of its Laplace transform is given by

LT [D
(α)
t f (t)] =

1

1−α

∞
∫

0

exp(−pt)





t
∫

a

f (τ)exp[
α(t − τ)

(1−α)
]dτ



 . (9)

Using the convolution theorem of Laplace transform, we have

LT [D
(α)
t f (t)] =

1

1−α
LT

[

exp[
α(t − τ)

(1−α)
]

]

,

=
p[L f (t)]− f (0)

p−α(p+ 1)
,

LT [D
(α+1)
t f (t)] =

1

1−α
LT [ f (t)]LT

(

exp

[

α(t − τ)

(1−α)

])

,

=
p2[L f (t)]− p f (0)− f ′(0)

p−α(p+ 1)
,

LT [D
(α+n)
t f (t)] =

pn+1[L f (t)]− pn f (0)−·· ·− f ′(0)
p−α(p+ 1)

. (10)

5. Fractional gradient operator [42]:
In this section, we discuss a new notion of fractional gradient able to describe non-local dependence in constitutive
equations [42]
Let us consider a set Ω ∈ R3 and a scalar function u(·) : Ω → R, we have introduced the Fractional gradient of order
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α ∈ [0,1] is given by

∇(α)u(x) =
α

(1−α)
√

πα

∫

Ω

∇u(y)exp

[

α2(x− y)2

(1−α)2

]

dy (11)

with x,y ∈ Ω .

We have the property limα→1

α

(1−α)
√

π
exp

[

α2(x− y)2

(1−α)2

]

= δ (x− y).

Then ∇(1)u(x) = ∇u(x) and ∇(0)u(x) =
∫

Ω

∇u(y)dy.

Fractional divergence is defined for the smooth function u(·) : Ω → R is given by

∇(α)u(x) =
α

(1−α)
√

πα

∫

Ω

∇u(y)exp

[

α2(x− y)2

(1−α)2

]

dy. (12)

Theorem 5.1: The definition is given in equation (11) and (12) and we have used the function u(x) : Ω → R, such that

∇u(x).n|δΩ = 0. (13)

We have the following identity

∇∇(α)u(x) = ∇(α)∇u(x). (14)

Proof: Using equation (11) and (14), we get

∇∇(α)u(x) =
α

(1−α)
√

πα

∫

Ω

∇u(y)exp

[

α2(x− y)2

(1−α)2

]

dy,

=
α

(1−α)
√

πα

∫

Ω

∇u(y) ·∇exp

[

α2(x− y)2

(1−α)2

]

dy,

=
α

(1−α)
√

πα

∫

Ω

∇ ·∇u(y) ·∇exp

[

α2(x− y)2

(1−α)2

]

dy− α

(1−α)
√

πα

∫

δΩ

∇u(y) ·n · exp

[

α2(x− y)2

(1−α)2

]

dy.

Hence, using the boundary condition (13) and we have proved the identity (14).

∇∇(α)u(x) = ∇(α)∇u(x).

6. Fourier transform of fractional gradient and divergence [42].
In this section, we use the smooth function u(x) : R3 → R and Fourier transform of the Fractional gradient is defined by

FT
(

∇(α)u(x)
)

(ζ ) =

∫

R3

∇(α)u(x)exp[2π iζx]dx. (15)

The Fourier transform

FT (∇(α)u)(ζ ) =
α

(1−α)
√

πα
FT





∫

R3

∇u(y)exp

[

α2(x− y)2

(1−α)2

]

dy



(ζ ),

=
α

(1−α)
√

πα
FT (∇u)(ζ )FT

(

exp

[

α2(x)2

(1−α)2

])

(ζ ).

Here, FT

(

exp

[

α2(x)2

(1−α)2

])

(ζ ) =
(1−α)

α

√
πexp

[

π2(1−α)2(ζ )2

(α)2

]

.

Hence, FT (∇(α)u)(ζ ) =
√

π1−αFT (∇u)(ζ )FT

[

exp

(

α2(x)2

(1−α)2

)

(ζ )

]

.
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Fourier transform of the fractional divergence is given by

FT (∇(α)u)(ζ ) =
α

(1−α)
√

πα
FT





∫

R3

∇u(y)exp

[

α2(x− y)2

(1−α)2

]

dy



(ζ ). (16)

Hence, FT (∇(α)u)(ζ ) =
√

π1−αFT (∇ ·u)(ζ )exp

[

π2(1−α)2(ζ )2

(α)2

]

.

7. The fractional Laplacian: [42]
In this section, we use the definition of Fractional gradient and divergence, we represent the Fractional Laplacian for a
smooth function f (x) : Ω → R3, such that

∇ f (x).n|δΩ = 0, (17)

(∇2)α f (x) =
α

(1−α)
√

πα





∫

Ω

∇ ·∇ f (y)exp

[

α2(x− y)2

(1−α)2

]

dy



 . (18)

By using the theorem 5.1, we have
(∇2)α f (x) = ∇ ·∇α f (x) = ∇α ·∇ f (x).
And we assume that f (x) = 0 om δΩ .
Hence, we can extend the function f (x) = 0 on R3 −Ω and we can consider the Fourier transform

FT
(

(∇2)α f (x)
)

=
α

(1−α)
√

πα
FT





∫

R3

(∇)2 f (y)exp

[

α2(x− y)2

(1−α)2

]

dy



(ζ ),

=
α

(1−α)
√

πα
FT (∇ ·∇ f (x))(ζ )FT

(

exp

[

α2(x)2

(1−α)2

])

(ζ ),

= 4π |ζ |2FT ( f (x))(ζ )
√

π1−αexp

[

(1−α2)(ζ )2

(α)2

]

. (19)

If α = 1, we get the solution

FT (∇2 f (x)) =−limα→14π |ζ |2FT ( f (x))(ζ )
√

π1−αexp

[

(1−α2)(ζ )2

(α)2

]

.

=−4π |ζ |2FT ( f (x))(ζ ). (20)

4 Conclusion

In this work, we have derived the new results by using advanced definition of fractional derivative without singular
kernel. The results of the advanced definition of fractional derivative without singular kernel are same as the ones of
Michele Caputo and Mauro Fabrizio [42].
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