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Abstract: This study develops into a conformable singular system characterized by second-class constraints. The conformable Poisson

bracket (CPB) is introduced as the mathematical framework for defining the bracket operation between two functions. The Dirac theory

is extended to accommodate conformable singular systems. To exemplify the practical application of the developed theory, an illustrative

example is presented and solved. The obtained results align with those of Rabeı et al., validating the proposed framework, particularly

when the parameter α is set to 1.
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1 Introduction

Constrained systems, also known as singular systems, are a prominent framework of physics. When dealing with
physical systems subject to certain constraints, these constraints impose limitations on the degrees of freedom, affecting
the dynamics and behavior of the system, etc [13, 14, 30, 31]. In other words, the constraints impose additional relations
on the system’s variables, resulting in a reduction of the number of independent degrees of freedom. This reduction leads
to unique phenomena in understanding the singular systems.
Singular systems find applications in various branches of physics, including classical mechanics, quantum mechanics,
and field theory [11, 12, 26, 27].
In the last few decades, fractional calculus and physical applications have been developed. Particularly in Lagrangian and
Hamiltonian formulations of non-conservative systems, fractional calculus has been applied [8, 9, 23, 29, 32]. The field
of mathematics known as fractional calculus focuses on applying non-integer orders to differentiation and integration.
This powerful mathematical framework has found wide applications in science and engineering. Due to its capacity to
offer a more exact description of different physical phenomena. Besides, fractional models possess enhanced properties,
such as superior memory capabilities, which render them more potent compared to conventional models [20, 22, 24].
This field has attracted a lot of interest recently: There are numerous ways to define fractional integral and derivative
[21].
In [19] Khalil et al proposed a new definition which is called a conformable derivative, it has common properties with the
known traditional derivative. For a given function f (t) : [0,∞)→ R, the conformable derivative of f (t) of order α where
0 < α ≤ 1, denoted as Dα

t f (t) is defined as [19]:

Dα
t f (t) = lim

ε→0

f (t + εt1−α)− f (t)

ε
= t1−α d

dt
f (t). (1)

In [1, 18], this conformable fractional derivative is re-investigated and new properties similar to these in traditional
calculus were derived and discussed. Conformable calculus has numerous applications in many fields of physics such as
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quantum mechanics [3–6, 10], nuclear physics [15, 16], special relativity [2, 25], classical mechanics [28] and
mathematical physics [7, 17].

2 Conformable singular system

Let us define the conformable Lagrangian in the following form:

L(t,Dα−1qi,D
α qi) = ai jD

α qiD
α q j + b jD

α q j +V(Dα−1qi), (2)

where 0 < α ≤ 1.
Noting that Dα qi is the conformable derivative of the coordinate qi which represented the conformable velocity and
Dα−1qi is the canonical conformable conjugate coordinate. The Hessian matrix for the conformable Lagrangian is defined
as

Wi j =
∂ 2L

∂Dα qi∂Dα q j

, i, j = 1,2, . . . ,n, (3)

If this matrix has rank n, then the system is called regular and can be treated using traditional conformable mechanics
and the conformable regular systems have been treated by many authors [23] and references therein, while systems with
a rank less than n are called conformable singular systems. Traditional singular systems were treated using two methods:
the Dirac method [13] and the canonical method [30].
The conformable singular systems are discussed by Rabei and Horani [28] using the canonical method. The conformable
systems which have the rank of the Hessian matrix less than n are called conformable constrained systems. Let us assume
that the rank of the Hessian matrix is r which is less than n. Following to Dirac [13], this implies the existence of (n− r)
conformable primary constraints. Thus, we may define the total conformable Hamiltonian as

HT α = H0α +νµH
′

µα , µ = n− r+ 1, . . . ,n. (4)

and H0α being the conformable Hamiltonian

H0α =−L(t,Dα−1qi,D
α qi)+PiαDα qi, i = 1,2, . . . ,n, (5)

Where Piα is the conformable generalized momenta defined as

Paα =
∂L

∂ (Dα qa)
, a = 1,2, . . . ,n− r. (6)

Pµα =
∂L

∂ (Dα qµ)
, µ = n− p+ 1,2, . . .,n. (7)

νµ are unknown coefficients and H
′

µα are the conformable primary constraints which can be obtained using eq.(7) as
follows

H
′

µα = Pµα +Hµ(D
α−1qi,D

α qi,Paα), ν = n− p+ 1, . . .,n. (8)

The conformable Poisson bracket (CPB) of two functions f (Dα−1qi,Paα) and
g(Dα−1qi,Paα) is defined as

{ f ,g}α =
∂ f

∂ (Dα−1qi)

∂g

∂Piα
−

∂ f

∂Piα

∂g

∂ (Dα−1qi)
. (9)

The total time derivative of any function g in terms of the generalized coordinates Dα−1qi and momenta Piα is given as:

ġ = {g,H0α}α +νµ{g,Hµα}α , (10)

according to Dirac [13], the consistency conditions the total time derivative of the primary constraints H ′
µ should be equal

to zero. Thus,
˙H ′
µα = {H ′

µα ,H0α}α +νµ{H ′
µα ,H

′
να}α ≈ 0. (11)

This equation may be solved to obtain the unknowns νµ or lead to new constraints that restrict the motion [13]. Following
Dirac, the constraints that have vanishing CPB’s are called Conformable First Class, and that do not have vanishing CPB’s
are called Conformable Second Class, constraints and the equations of motion will be proposed as,

Dα qi = {Dα−1qi,HT α}α , (12)

DPiα = {Piα ,HT α}α . (13)
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3 Conformable second class constraints

To demonstrate our theory we would like to give a model of the conformable constraints of the Second Class [30].
Investigate the following Lagrangian:

L =
1

2
(Dα q1)

2 −
1

4
((Dα q2)

2 − 2Dαq2Dα q3 +(Dαq3)
2) (14)

+(Dα−1q1 +Dα−1q3)D
α q2 − (Dα−1q1 +Dα−1q2 +(Dα−1q3)

2).

The Hessian matrix W33 can be constructed as follow:

W33 =









∂ 2L
∂Dα q1∂Dα q1

∂ 2L
∂Dα q1∂Dα q2

∂ 2L
∂Dα q1∂Dα q3

∂ 2L
∂Dα q2∂Dα q1

∂ 2L
∂Dα q2∂Dα q2

∂ 2L
∂Dα q2∂Dα q3

∂ 2L
∂Dα q3∂Dα q1

∂ 2L
∂Dα q3∂Dα q2

∂ 2L
∂Dα q3∂Dα q3









(15)

It is easy to show that the rank of this matrix is two. Then, the momenta read as,

P1α =
∂L

∂ (Dα q1)
= Dα q1, (16)

P2α =
∂L

∂ (Dα q2)
=−

1

2
Dα q2 +

1

2
Dα q3 +(Dα−1q1 +Dα−1q3), (17)

P3α =
∂L

∂ (Dα q3)
=

1

2
Dα q2 −

1

2
Dα q3. (18)

Thus, the Hamiltonian H0 can be calculated as

H0α =
1

2
P2

1α −P2
3α +Dα−1q1 +Dα−1q2 +(Dα−1q3)

2
. (19)

Substituting eq.(18) in eq.(17) one may obtain

P2α =−P3α +Dα−1q1 +Dα−1q2. (20)

The conformable momentum P2α is not independent. Thus, following to eq.(8), these are conformable primary constraints
which can be written as

H ′
2α = P2α +P3α −Dα−1q1 −Dα−1q2. (21)

Making use of equation (4), the total conformable Hamiltonian reads as

HT α =
1

2
P2

1α −P2
3α +Dα−1q1 +Dα−1q2 +(Dα−1q3)

2

+ν2(P2α +P3α −Dα−1q1 −Dα−1q2). (22)

Now, the total time derivative of the conformable primary constraints should be equal to zero. So, using eq.(10) we obtain

Ḣ ′
2α = {H ′

2α ,HαT}α = {H ′
2α ,H0α}α +ν2{H ′

2α ,H
′
2α}α (23)

=
∂H ′

2α

∂Dα−1q1

∂H0α

∂P1α
−

∂H0α

∂Dα−1q1

∂H ′
2α

∂P1α
+

∂H ′
2α

∂Dα−1q2

∂H0α

∂P2α
−

∂H ′
2α

∂P2α

∂H0α

∂Dα−1q2

+
∂H ′

2α

∂Dα−1q3

∂H0α

∂P3α
−

∂H ′
2α

∂P3α

∂H0α

∂Dα−1q3

= P1α − 1+ 2P3α − 2Dα−1q3 = 0.

This consistency condition imposes a new constraint

H ′
1α = 2P3α −P1α − 2Dα−1q3 − 1. (24)
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Again the total time derivative of the new constraint should be equal to zero.

Ḣ ′
1α = {H ′

1α ,HαT}α = {H ′
1α ,H0α}α +ν2{H ′

1α ,H
′
2α}α (25)

=
∂H ′

1α

∂Dα−1q1

∂H0α

∂P1α
−

∂H0α

∂Dα−1q1

∂H ′
1α

∂P1α
+

∂H ′
1α

∂Dα−1q2

∂H0α

∂P2α
−

∂H ′
1α

∂P2α

∂H0α

∂Dα−1q2

+
∂H ′

1α

∂Dα−1q3

∂H0α

∂P3α
−

∂H ′
1α

∂P3α

∂H0α

∂Dα−1q3

+ν2(
∂H ′

1α

∂Dα−1q1

∂H2α

∂P1α
−

∂H2α

∂Dα−1q1

∂H ′
1α

∂P1α

+
∂H ′

1α

∂Dα−1q2

∂H2α

∂P2α
−

∂H ′
1α

∂P2α

∂H2α

∂Dα−1q2

+
∂H ′

1α

∂Dα−1q3

∂H2α

∂P3α
−

∂H ′
1α

∂P3α

∂H2α

∂Dα−1q3

)

= 1+ 4P3α − 4Dα−1q3 −ν2 = 0.

Then, we arrive at the result
ν2 =−(4Dα−1q3 − 4P3α − 1). (26)

There is no further constraint, and the unknown ν2 is determined and the conformable constraints H ′
2α and H ′

1α are second
class. Thus, the total Hamiltonian read as

HT α =
1

2
P2

1α −P2
3α +Dα−1q1 +Dα−1q2 +(Dα−1q3)

2 (27)

− (4Dα−1q3 − 4P3α − 1)(P2α +P3α −Dα−1q1 −Dα−1q3),

and the equation of motion can be calculated as

Dα q1 = {Dα−1q1,HαT}α = {Dα−1q1,
1

2
P2

1α}α =
1

2
P1α{Dα−1q1,P1α}α

+ {Dα−1q1,P1α}α
1

2
P1α = P1α . (28)

Dα q2 = {Dα−1q2,HαT}α = ν2{Dα−1q2,P2α}α = ν2

= 4P3α − 4Dα−1q3 + 1. (29)

Dα q3 = {Dα−1q3,HαT}α =−{Dα−1q3,P
2
3α}α

+ {Dα−1q3,4P3α}α(P2α +P3α −Dα−1q1 −Dα−1q3)

− (4Dα−1q3 − 4P3α − 1){Dα−1q3,P3α}α

=−2P3α + 4(P2α +P3α −Dα−1q1 −Dα−1q3)− (4Dα−1q3 − 4P3α − 1)

= 4P2α + 6P3α − 4Dα−1q1 − 8Dα−1q3 + 1. (30)

Ṗ1α = {P1α ,HαT}α = {P1α ,D
α−1q1}α +(4Dα−1q3 − 4P3α − 1){P1α,D

α−1q1}α

=−1− (4Dα−1q3 − 4P3α − 1)

= 4P3α − 4Dα−1q3. (31)

Ṗ2α = {P2α ,HαT}α = {P1α ,D
α−1q1}α =−1. (32)

Ṗ3α = {P3α ,HαT}α = {P3α ,(D
α−1q3)

2}α

− 4{P3α,D
α−1q3}α(P2α +P3α −Dα−1q1 −Dα−1q3)

+ (4Dα−1q3 −P3α − 1){P3α,D
α−1q3}α

=−2Dα−1q3 + 4(P2α +P3α −Dα−1q1 −Dα−1q3)− 4Dα−1q3 + 4P3α + 1

=−10Dα−1q3 + 4P2α + 8P3α − 4Dα−1q1 + 1. (33)
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Taking the total time derivative of eq.(28) we arrive

Dα+1q1 = Ṗ1α = 4P3α − 4Dα−1q3. (34)

Making use of the primary constraint, we get

Dα+1q1 = 2P1α + 2. (35)

Again using the equation of motion (28), we have

Dα+1q1 − 2Dαq1 = 2. (36)

One may using the conformable operator, we can rewrite the above equation in the following form

q̈1 − 2q̇1 = 2tα−1
. (37)

This equation can be written as

ẏ− 2y = 2tα−1
, (38)

where y = q̇1. This is a non-homogeneous first-order ordinary differential equation. One may solve it to get

y(t) = 2e2t

∫

e−2ttα−1dt +Ae2t
. (39)

Using the incomplete gamma function

Γ (s,x) =

∫ ∞

x
ts−1e−tdt. (40)

We get

y(t) =−21−αe2tΓ (α,2t)+Ae2t
. (41)

Thus,

q1 =

∫

y(t)dt =−21−α
∫

e2tΓ (α,2t)dt +
A

2
e2t +B, (42)

after simple calculations, we get

q1 =−2−αe2tΓ (α,2t)−
tα

α
+

A

2
e2t +B. (43)

α=1

α=0.9

α=0.8

α=0.7

α=0.6

α=0.5

0.2 0.4 0.6 0.8 1.0
t

0.0

0.5

1.5

2.0

2.5

3.0

q1

Fig. 1: The coordinate q1 at different values of α .
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Where we suppose the constants A,B are equal to 1. For α = 1, we find

q1 =−2−1e2tΓ (1,2t)− t+
A

2
e2t +B

= B−
1

2
− t +

A

2
e2t

. (44)

This is in agreement with Ref [30].
Taking the total time derivative of eq.(29) we have:

Dα+1q2 = 3Ṗ3α − 4Dαq3. (45)

Inserting eq.(30) and eq.(33) we obtain:

Dα+1q2 = 4(2P3α − 2Dα−1q3). (46)

Using the conformable secondary constraint we can rewrite eq.(46) as

Dα+1q2 = 4Dαq1 + 4. (47)

Using the definition of conformable derivative eq.(47) can be written as

q̈2 = 4q̇1 + 4tα−1
. (48)

By integrating, we have

q̇2 = 4q1 + 4
tα

α
+C1. (49)

Inserting the solution of q1, we get

q̇2 =−22−αe2tΓ (α,2t)+ 2Ae2t +C2.

Thus, one may obtain q2 as follows

q2 =−21−αe2tΓ (α,2t)− 2
tα

α
+Ae2t +C2t +C3. (50)

α=1

α=0.9

α=0.8

α=0.7

α=0.6

α=0.5

0.2 0.4 0.6 0.8 1.0
t

-1

1

2

3

4

5

q2

Fig. 2: The coordinate q2 at different values of α .

Again, when α = 1, we arrive to the same result in Ref [30].
Where we suppose the constants A,C2,C3 are equal to 1. Now, making use of the primary constraint (21), one may write
the equation of motion (30) as

Dα+1q3 + 2Dαq3 =
1

2
Dα+1q2. (51)
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Making use of eq.(50) and the definition of conformable derivative we get:

q̈3 + 2q̇3 =−22−αe2tΓ (α,2t)+ 2tα−1+ 2Ae2t
, (52)

one may solve this equation to find:

q3 =
e−2tΓ (α,−2t)

2α+1(−1)α
−

e2t

21+α
Γ (α,2t)+

A

4
e2t −

B

2
e−2t +C4. (53)

α=1

α=0.9

α=0.8

α=0.7

α=0.6

α=0.5

0.2 0.4 0.6 0.8 1.0
t

0.0

0.5

1.0

1.5

2.0

q3

Fig. 3: The coordinate q3 at different values of α .

where we suppose the constants A,B,C4 are equal to 1. When α = 1, this solution goes to the result obtained in Ref [30].

4 Conclusion

The constrained systems that involve conformable derivatives are discussed using the Dirac theory. This theory finds
broad application in field theory, quantum electrodynamics theory, and quantum chromodynamics. The Dirac theory is
developed to be applicable to singular systems containing conformable orders. The equations of motion are formulated
using the conformable Poisson bracket and solved for an illustrative example to obtain the coordinates as functions of
time. It is observed that the general solutions of the conformable singular system of second-class constraints converge to
the results obtained by Rabeı et al. for the traditional second-class constraint when α = 1. additionally, we plot the general
solutions q1(t),q2(t), and q3(t) for various values of α , setting all constants in general solutions q1(t),q2(t), and q3(t)
to 1. We demonstrate that the curve gradually converges to α = 1, indicating a transition towards the curve traditional
second-class constraints obtained by Rabei et Al.
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