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Abstract: In this work, we proposed a fractional order Monkeypox virus model with Caputo Fabrizio fractional operator to investigate

the dynamical transmission of the Monkeypox virus and its effects on society. Qualitative analysis of the model is examined such as

the existence and uniqueness of Lipschitz conditions, including analysis of the endemic equilibrium and the disease-free and epidemic

equilibrium points. Laplace transform with the Adomian decomposition method is used to construct the iterative scheme of the model.

Self mapping with a unique solution with a fractional Lagrange multiplier is used for Picard stability under Banach space theory for

the iterative scheme. It will be demonstrated through some numerical comparisons that the findings produced by the fractional order

model are substantially more accurate than those of the integer order model when compared to some genuine data. In the end, we have

also determined the numerical results proposed model utilizing the Laplace transform method having the fastest convergence approach

to steady state point for such an epidemic model.
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1 Introduction

The contagious viral illness Monkeypox, also known as mpox by the WHO, may affect both humans and certain other
animals. Fever, enlarged lymph nodes, and a rash that boils and then crusts over are all symptoms. Five to 21 days pass
from exposure to the beginning of symptoms. Symptoms last between two and four weeks on average. The potential
for further transmission, the absence of adequate surveillance, and the recent apparent increase in human Monkeypox
cases across a vast geographic area, according to Petersen et al. [1], have all raised the degree of worry for this new
zoonosis. In collaboration with the Centers for Disease Control and Prevention, the World Health Organization held an
informal consultation on Monkeypox in November 2017 with researchers, partners in global health, ministries of health,
and experts in the orthopoxvirus to review and discuss human Monkeypox in African nations. The Orthopox viral genus
includes the variola virus, which causes smallpox, the vaccinia virus used in the smallpox vaccine, and the cowpox virus,
which was employed in an earlier vaccine. Although it happens frequently, the Monkeypox virus mainly spreads to humans
through wild animals like rats and primates. A skin lesion on an infected person, respiratory droplets, contact with body
fluids, a contaminated patient’s surroundings, and contaminated patient’s goods have all been related to human to human
transmission [2]. The Monkeypox virus has replaced smallpox as the most prevalent orthopaedic virus [3]. Symptoms of
Monkeypox include fever, headache, muscular pains, backaches, enlarged lymph nodes, chills, and exhaustion in some
people. Up to 10% of people who with Monkeypox pass away, with children under the age of puberty accounting for
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the majority of fatalities [4]. Monkeypox was later recognised in the United Kingdom and Israel as a result of its arrival.
Mortality rates varied from 1% to 10%, with the majority of deaths occurring in younger age groups [5]. Monkeypox
takes around six to sixteen days to incubate, although it can take anywhere between 5 and 21 days. The infectious phase
comprises two parts, the first of which lasts 5 days and is characterized by fever, lymph node swelling, back pain, acute
headache, muscle soreness, and significant energy depletion. A fat based skin rash starts one to three days after the onset
of the fever and progresses to small fuid filled blisters that become pus-filled and crust up in 10 days [6].

Monkeypox infection currently has no effective therapies, however new antivirals like Brincindofovir, Tecovirimat,
and vaccinia immune globulin can help contain the disease’s transmission. The last ten years have seen a sharp rise in
Monkeypox cases, which have been linked to a loss of smallpox herd immunity. Monkeypox can be prevented by
smallpox vaccine to an extent of 85%, however it is no longer widely accessible owing to smallpox’s global elimination.
Post-exposure immunisation may assist to prevent or lessen the severity of the illness, according to [7,8]. This method
enhanced the Schmidt orthogonalization approach and Sobolev space-based solutions, which, given the arbitrary kernel
functions satisfy Robin’s homogeneous conditions, may be directly employed to produce Fourier expansion at a high
convergence rate [14,15]. Because of a characterization of the memory and hereditary properties in [17], Ordinary
integer order cannot always explain real-world situations as clearly as fractional order, which incorporates integration
and transects differentiation with the aid of fractional calculus. Fractional order may also aid in the modelling of real
occurrences.

The Caputo derivative is expressed as a fractional type in the model. The recommended settings, we examine the
proposed model’s chaotic behavior with different values of the fractional order parameter. Numerical approach is used
to provide the graphical results for the Caputo operator derivative. Additionally, in order to investigate for the provided
set of parameters, we display the graphical results. Generalized models, also known as fractional models, are essential
in the mathematical modeling of real world issues. The fractional order models are known as generalized models since
they may be examined in non-integer cases in addition to arbitrary cases. Due to its memory and heredity characteristics,
fractional order models are preferred over integer order. In addition, fractional modeling is the sole way to adequately
study the crossover behavior in nonlinear epidemic models. Additionally, we show the usefulness and application of a
numerical approach that includes estimating partial derivatives when working with Caputo fractional operators. In order
to demonstrate how different kernels for the fractional operator may be utilized to better correctly characterize the process,
an application of the fractional derivative is then explained [18,19].

In this study, we examine a FD of the type Caputo Fabrizio with respect to another function. Additionally, we
demonstrate the effectiveness and application of a numerical technique for dealing with the Caputo fractional operator
that involves estimating the fractional derivative [20,21]. The application of the fractional derivative is then offered,
using the population growth simulate to demonstrate with different kernels, such as the Power law kernel, Mittag Leffler
law kernel, and exponential law kernel for the fractional operator, may be used to model the process more precisely. In
this work, the connection between the immune system and cancer cells is investigated using fractal fractional operators in
the Caputo and Caputo-Fabrizio senses [22,23]. The numerical and theoretical analysis of the singular and non-singular
fractal fractional operators has focused on the Monkeypox model. The model under the Caputo Fabrizio fractal fractional
operator has been shown to exist and be unique using fixed point theorems. Under the Caputo-Fabrizio case, it has been
determined that a singular solution exists. The dynamics of the Monkeypox model with fractional derivative are explored
in the current work. The Caputo-Fabrizio fractional derivative is used to formulate the model. Also with recommended
settings, we examine the proposed model’s chaotic behaviour. Results for the fixed points’ stability are displayed. With
different values of the fractional order parameter, a numerical approach is used to generate the graphical results for the
Caputo-Fabrizio derivative. Additionally, we provide the graphical results to investigate how the model responds to the
given set of parameters in periodic and quasi-periodic limit cycles. Fractional models, often referred to as generalised
models, are important in the mathematical modelling of everyday issues. We explored some of the favourable properties
of the new derivative and applied them to solve the fractional heat transfer model. It is suggested that new derivatives
with nonlocal and nonsingular kernels be used in this work [24]. The exponential kernel, Caputo-Fabrizio derivative, and
Hilfer fractional derivative are employed in a novel fractional model for the human liver [25,26].

Because of their limitations at birth, working with nonsingular kernels is a difficult undertaking, as Refai and Baleanu
discovered. In this brief study, we propose an extension of the fractional operator that permits an integrable singular kernel
at the origin by involving the Mittag-Leffler kernel. New solutions to the associated differential equations were presented
along with various modeling-related viewpoints [27]. By replacing this f ′(t) with a more generic proportional derivative,
Baleanu et al. [28] develop a new fractional operator. This novel operator can also be expressed as a linear combination of
a Riemann-Liouville integral and a Caputo derivative in some significant particular instances, or as a Riemann-Liouville
integral of a proportionate derivative. For neural networks with ring or hub architectures, the stability area of a steady state
has been extensively characterised, and the critical fractional order values for which Hopf bifurcations may occur have
been discovered [29]. An example of fractional-order neural networks with mixed delays that exhibit periodic oscillation
caused by delays in [30]. The dynamics of the model have changed, according to simulations. With the aid of fractional
values and discoveries from multiple dimensions, the findings of the nonlinear system memory were also identified.
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Without imposing any more requirements, it provides a better technique for how you want to manage the sickness. The
numerical results show how the dynamics in the different fractional orders behave [31,32]. Some application of modified
Atangana-Baleanu [33], piecewise fractional analysis [34], intravenous drug model [35], piecewise constant for chemo-
immunotherapy [36], SEIQR model [37] and HIV/AIDS with new fractional techniques in [38].

The remaining portions of this study article are as continues to follow: The complete introduction of the recommended
model is described in detail in the section 1. Some basic fractional order derivatives are provided in the section 2 that may
be utilised to help address the epidemiological suggested model. The generalised form, singularity and existence of the
model are all described in the section 3. In section “4”, stability results of the solutions gained by the iterative Laplace
transform technique are produced by applying the Picard successive approximation methodology and the fixed point
theory coming from Banach. In sections 5 and 6, the recommended approach is applied to a fractional Monkeypox model,
and numerical simulations are visually displayed. Section 7 discuss the results and the conclusion, respectively.

2 Fundamental Fractional Operator Concepts

In [9,16,12], we obtained a number of significant and useful dynamic behavior and current calculus results.

Definition 1.The Caputo-Fabrizio fractional differential operator is described as if Ψ(t) ∈ H 1(0,b),b > 0, 0 < ν < 1.

CFDν
t Ψ (t) =

(2−ν)M (ν)

2(1−ν)

∫ t

0
exp

{

−
ν(t − s)

1−ν

}

Ψ ′(ρ)dρ , (1)

where the normalisation function M (ν) relies on ν such that M (o) = M (1) = 1 and t ≥ 0, 0 < ν < 1.

Definition 2.This formula yields the Caputo-Fabrizio fractional integral operator of order 0 < ν < 1.

CFJ ν
t Ψ (t) =

2(1−ν)

(2−ν)M (ν)
Ψ(t)+

2ν

(2−ν)M (ν)

∫ t

0
Ψ(ρ)dρ . (2)

This new operator gives CFDν
t Ψ(t) = 0, which is similar to the conventional Caputo derivative, Ψ (t) has a constant

value.

The lack of the s = t singularity in the new kernel is the fundamental advantage of the Caputo-Fabrizio operator over

the original Caputo operator.

Definition 3.The following Laplace transform applies to the Caputo-Fabrizio fractional operator of order 0 < ν ≤ 1 and

η ∈ N

L (CFDν
t Ψ(t)) =

1

1−ν
L (Ψ (1+η)(t))L

{

exp

(

−
ν

1−ν
t

)}

,

=
sη+1L (Ψ(t))− sηΨ(0)− sη−1Ψ ′(0)−·· ·−Ψη(0)

s+ν(1− s)
, (3)

Specifically, we have

L (CFDν
t Ψ(t)) =

sL (Ψ(t))

s+ν(1− s)
, η = 0. (4)

L (CFDν
t Ψ(t)) =

s2L (Ψ(t))− sΨ(0)−Ψ ′(0)

s+ν(1− s)
, (5)

where η = 1.

3 Monkeypox Mathematical Model with Fractional Operator

We offer a deterministic model of the dynamics of Monkeypox transmission that takes into consideration the populations
of people and rodents. The rodent population is separated into three sections while the human population is divided into
five compartments. Researchers are looking at the causes and recurrence of epidemics of Monkeypox. The full list of
parameters for the developed framework is presented in table 1. Now let us look at some key aspects of the compartmental
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mathematical epidemic model for viral transmission put out by Peter et al. [11]. A specific time t, the suggested system
splits the whole population N into eight divisions.

Table 1: The compartment and parameters of the proposed model are described.

Sh(t) Susceptible Humans Group

Eh(t) Exposed Humans Group

Ih(t) Infected Humans Group

Qh(t) Isolated Humans Group

Rh(t) Recovered Humans Group

Sr(t) Susceptible Rodents Group

Er(t) Exposed Rodents Group

Ir(t) Infected Rodents Group

θr Recruitment Rate for Rodents

θh Recruitment Rate for Humans

β1 Rodent Contact Rate to Humans

β2 Human to Humans Contact Rate

β3 Rodent to Rodent Contact Rate

α1 Proportion of (Exposed to Infected) Humans

α2 Proportion Identifed as Suspected Case

τ Progression from Isolated to Recovered Group

ϕ Proportion not Detected after Diagnosis

γ Humans Recovery Rate

µh Natural Death Rate of Human

δh Disease Induced Death Rate for Humans

µr Natural Death Rate of Rodents

δr Disease Induced Death Rate for Rodents

The following set of nonlinear ordinary differential equations serves as a representation of the epidemic Monkeypox
model























































CFDν
t Sh = θh −

(β1Ir+β2Ih)Sh

Nh
− µhSh +ϕQh,

CFDν
t Eh =

(β1Ir+β2Ih)Sh

Nh
− (α1 +α2 + µh)Eh,

CFDν
t Ih = α1Eh − (µh + δh + γ)Ih,

CFDν
t Qh = α2Eh − (ϕ + τ + δh + µh)Qh,

CFDν
t Rh = γIh + τQh − µhRh,

CFDν
t Sr = θr −

β3SrIr
Nr

− µrSr,

CFDν
t Er =

β3SrIr
Nr

− (µr +α3)Er,

CFDν
t Ir = α3Er − (µr + δr)Ir.

(6)

Sh(0) = S0
h,Eh(0) = E0

h ,Qh(0) = Q0
h, Ih(0) = I0

h ,Rh(0) = R0
h,Sr(0) = S0

r , Ir(0) = I0
r ,Er(0) = E0

r . (7)

3.1 System Qualitative Analysis

By setting the left side to zero, we get to an equilibrium point that is free of sickness and endemic. The following equation
is used to compute the disease-free equilibrium

E⋆ = (S⋆h, I
⋆
h ,E

⋆
h ,R

⋆
h,Q

⋆
h,S

⋆
r ,E

⋆
r , I

⋆
r )

and endemic equilibrium point is given as

E∗
h =−

Θ1

Θ2

(8)
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Θ1 = Nhγµ3
h +Nhγµ2

h τ +Nhγµ2
h ϕ +Nhγµ2

h α1 +Nhγµ2
h α2 +Nhγµ2

h δh +Nhγµhτα1

+Nhγµhτα2 +Nhγµhϕα1 +Nhγµhϕα2 +Nhγµhα1δh +Nhγµhα2δh +Nhµ4
h +Nhµ3

h τ

+Nhµ3
h ϕ +Nhµ3

h α1 +Nhµ3
h α2 + 2Nhµ3

h δh +Nhµ2
h τα1 +Nhµ2

h τα2 +Nhµ2
h τδh

+Nhµ2
h ϕα1 +Nhµ2

h ϕα2 +Nhµ2
h ϕδh + 2Nhµ2

h α1δh + 2Nhµ2
h α2δh +Nhµ2

h δ 2
h +Nhµhτα1δh

+Nhµhτα2δh +Nhµhϕα1δh +Nhµhϕα2δh +Nhµhα1δ 2
h +Nhµhα2δ 2

h −β2µhα1θh −β2τα1θh

−β2ϕα1θh −β2α1δhθh

Θ2 = α1

(

µ2
h + µhτ + µhϕ + µhα1 + µhα2 + µhδh + τα1 + τα2 +ϕα1 +α1δh +α2δh

)

β2

E∗
r = 0 (9)

I∗h =−
Θ3

Θ4

(10)

Θ3 = Nhγµ3
h +Nhγµ2

h τ +Nhγµ2
h ϕ +Nhγµ2

h α1 +Nhγµ2
h α2 +Nhγµ2

h δh +Nhγµhτα1

+Nhγµhτα2 +Nhγµhϕα1 +Nhγµhϕα2 +Nhγµhα1δh +Nhγµhα2δh +Nhµ4
h +Nhµ3

h τ

+Nhµ3
h ϕ +Nhµ3

h α1 +Nhµ3
h α2 + 2Nhµ3

h δh +Nhµ2
h τα1 +Nhµ2

h τα2 +Nhµ2
h τδh

+Nhµ2
h ϕα1 +Nhµ2

h ϕα2 +Nhµ2
h ϕδh + 2Nhµ2

h α1δh + 2Nhµ2
h α2δh +Nhµ2

h δ 2
h

+Nhµhτα1δh +Nhµhτα2δh +Nhµhϕα1δh +Nhµhϕα2δh +Nhµhα1δ 2
h +Nhµhα2δ 2

h

−β2µhα1θh −β2τα1θh −β2ϕα1θh −β2α1δhθh

Θ4 = β2(γµ2
h + γµhτ + γµhϕ + γµhα1 + γµhα2 + γµhδh + γτα1 + γτα2 + γϕα1 + γα1δh

+ γα2δh + µ3
h + µ2

h τ + µ2
h ϕ + µ2

h α1 + µ2
h α2 + 2µ2

h δh + µhτα1 + µhτα2 + µhτδh + µhϕα1

+ µhϕδh + 2µhα1δh + 2µhα2δh + µhδ 2
h + τα1δh + τα2δh +ϕα1δh +α1δ 2

h +α2δ 2
h )

I∗r = 0 (11)

Q∗
h =−

Θ5

Θ6

(12)

Θ5 = α2(Nhγµ2
h +Nhγµhα1 +Nhγµhα2 +Nhµ3

h +Nhµ2
h α1 +Nhµ2

h α2 +Nhµ2
h δh +Nhµhα1δh

+Nhµhα2δh −β2α1θh)

Θ6 = α1(µ
2
h + µhτ + µhϕ + µhα1 + µhα2 + µhδh + τα1 + τα2 +ϕα1 +α1δh +α2δh)β2

R∗
h =−

Θ7

Θ8

(13)

Θ7 = Nhγ2µ3
h α1 +Nhγ2µ2

h τα1 +Nhγ2µ2
h τα2 +Nhγ2µ2

h ϕα1 +Nhγ2µ2
h α2

1 +Nhγ2µ2
h α1α2

+Nhγ2µ2
h α1δh +Nhγ2µhτα2

1 + 2Nhγ2µhτα1α2 +Nhγ2µhτα2
2 +Nhγ2µhϕα2

1 +Nhγ2µhϕα1α2

+Nhγ2µhα2
1 δh +Nhγ2µhα1α2δh +Nhγµ4

h α1 +Nhγµ3
h τα1 + 2Nhγµ3

h τα2 +Nhγµ3
h ϕα1

+Nhγµ3
h α2

1 +Nhγµ3
h α1α2 + 2Nhγµ3

h α1δh +Nhγµ2
h τα2

1 + 3Nhγµ2
h τα1α2 +Nhγµ2

h τα1δh

+ 2Nhγµ2
h τα2

2 + 2Nhγµ2
h τα2δh +Nhγµ2

h ϕα2
1 +Nhγµ2

h ϕα1α2 +Nhγµ2
h ϕα1δh + 2Nhγµ2

h α2
1 δh

+ 2Nhγµ2
h α1α2δh +Nhγµ2

h α1δ 2
h +Nhγµhτα2

1 δh + 3Nhγµhτα1α2δh + 2Nhγµhτα2
2 δh

+Nhγµhϕα2
1 δh +Nhγµhϕα1α2δh +Nhγµhα2

1 δ 2
h +Nhγµhα1α2δ 2

h +Nhµ4
h τα2 +Nhµ3

h τα1α2

+Nhµ3
h τα2

2 + 2Nhµ3
h τα2δh + 2Nhµ2

h τα1α2δh + 2Nhµ2
h τα2

2 δh +Nhµ2
h τα2δ 2

h +Nhµhτα1α2δ 2
h

+Nhµhτα2
2 δ 2

h −β2γµhα2
1 θh −β2γτα2

1 θh −β2γτα1α2θh −β2γϕα2
1 θh −β2γα2

1 δhθh

−β2µhτα1α2θh −β2τα1α2δhθh
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Θ8 = µh

(

µ2
h + µhτ + µhϕ + µhα1 + µhα2 + µhδh + τα1 + τα2 +ϕα1 +α1δh +α2δh

)

×α1(µh + δh + γ)β2

S∗h =
Nh(γµh + γα1 + γα2 + µ2

h + µhα1)

β2α1

+
Nh(µhα2 + µhδh +α1δh +α2δh)

β2α1

(14)

S∗r =
θt

µr

(15)

The proposed model [11] reproduction number is reported as

Ro =
α1β1

(α1 +α2 + µh)(µh + δh + γ)
(16)

3.2 Analysis of the Proposed System

In this section, the fixed point hypothesis (6) is used to explain the existence and uniqueness of the system’s solution.
Taking into account equation (2), we have

Sh(t) = Sh(0)+
2(1−ν)

2νM (ν)

{

θh −
(β1Ir(t)+β2Ih(t))Sh(t)

Nh

− µhSh(t)+ϕQh(t)
}

+
2(1−ν)

(2−ν)M (ν)
×

∫ t

0

{

θh −
(β1Ir(ρ)+β2Ih(ρ))Sh(ρ)

Nh

− µhSh(ρ)+ϕQh(ρ)
}

dρ ,

Eh(t) = Eh(0)+
2(1−ν)

2νM (ν)

{ (β1Ir(t)+β2Ih(t))Sh(t)

Nh

− (α1 +α2 + µh)Eh(t)
}

+
2(1−ν)

(2−ν)M (ν)
×

∫ t

0

{ (β1Ir(ρ)+β2Ih(ρ))Sh(ρ)

Nh

− (α1 +α2 + µh)Eh(ρ)
}

dρ ,

Ih(t) = Ih(0)+
2(1−ν)

2νM (ν)
{α1Eh(t)− (µh + δh + γ)Ih(t)}

+
2(1−ν)

(2−ν)M (ν)

∫ t

0
{α1Eh(ρ)− (µh + δh + γ)Ih(ρ)}dρ ,

Qh(t) = Qh(0)+
2(1−ν)

2νM (ν)

{

α2Eh(t)− (ϕ + τ + δh + µh)Qh(t)
}

+
2(1−ν)

(2−ν)M (ν)

∫ t

0
{α2Eh(ρ)− (ϕ + τ + δh + µh)Qh(ρ)}dρ ,

Rh(t) = Rh(0)+
2(1−ν)

2νM (ν)

{

γIh(t)+ τQh(t)− µhRh(t)
}

+
2(1−ν)

(2−ν)M (ν)

∫ t

0
{γIh(ρ)+ τQh(ρ)− µhRh(ρ)}dρ ,

Sr(t) = Sr(0)+
2(1−ν)

2νM (ν)

{

θr −
β3Sr(t)Ir(t)

Nr

− µrSr(t)
}

+
2(1−ν)

(2−ν)M (ν)

∫ t

0

{

θr −
β3Sr(ρ)Ir(ρ)

Nr

− µrSr(ρ)

}

dρ ,

Er(t) = Er(0)+
2(1−ν)

2νN (ν)

{β3Sr(t)Ir(t)

Nr

− (µr +α3)Er(t)
}

+
2(1−ν)

(2−ν)M (ν)

∫ t

0

{

β3Sr(ρ)Ir(ρ)

Nr

− (µr +α3)Er(ρ)

}

dρ ,

Ir(t) = Ir(0)+
2(1−ν)

2νM (ν)

{

α3Er(t)− (µr + δr)Ir(t)
}

+
2(1−ν)

(2−ν)M (ν)

∫ t

0
{α3Er(ρ)− (µr + δr)Ir(ρ)}dρ ,
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Now, let’s think about the subsequent kernels



















































φ1 = θh −
(β1Ir+β2Ih)Sh

Nh
− µhSh +ϕQh,

φ2 =
(β1Ir+β2Ih)Sh

Nh
− (α1 +α2 + µh)Eh,

φ3 = Ehα1 − (δh + µh + γ)Ih,

φ4 = Ehα2 − (ϕ + δh + µh + τ)Qh,

φ5 = γIh + τQh − µhRh,

φ6 = θr −
β3SrIr

Nr
− µrSr,

φ7 =
β3SrIr

Nr
− (µr +α3)Er,

φ8 = α3Er − (µr + δr)Ir.

(17)

Theorem 1.The kernels φ1,φ2,φ3,φ4,φ5,φ6,φ7 and φ8 given in (17) satisfy the Lipschitz axioms if the aforementioned

disparity persists

0 < ψ1,ψ2,ψ3,ψ4,ψ5,ψ6,ψ7,ψ8 < 1 (18)

Proof.Let S1
h and S2

h, for the kernel φ1, E1
h and E2

h , for the kernel φ2, I1
h and I2

h , for the kernel φ3, Q1
h and Q2

h, for the kernel

φ4, R1
h and R2

h, for the kernel φ5, S1
r and S2

r , for the kernel φ6, E1
r and E2

r , for the kernel φ7 and I1
r and I2

r , for the kernel φ8

are corresponding functions that go with φ8

‖φ1(t,S
1
h(t))−φ1(t,S

2
h(t))‖

=
∥

∥

∥

{

θh −
(β1Ir(t)+β2Ih(t))S

1
h(t)

Nh

− µhS1
h(t)+ϕQh(t)

}

−

{

θh −
(β1Ir(t)+β2Ih(t))S

2
h(t)

Nh

− µhS2
h(t)+ϕQh(t)

}

∥

∥

∥

=
∥

∥

∥
θh −

(β1Ir(t)+β2Ih(t))S
1
h(t)

Nh

− µhS1
h(t)+ϕQh(t)

−θh +
(β1Ir(t)+β2Ih(t))S

2
h(t)

Nh

+ µhS2
h(t)−ϕQh(t)

∥

∥

∥
,

‖φ1(t,S
1
h(t))−φ1(t,S

2
h(t))‖=

∥

∥

∥

∥

−

{

(β1Ir(t)+β2Ih(t))

Nh

+ µh

}

(S1
h(t)− S2

h(t))

∥

∥

∥

∥

, (19)

and similarly

‖φ2(t,E
1
h (t))−φ2(t,E

2
h (t))‖=

∥

∥−{α1 +α2 + µh}(E
1
h (t)−E2

h(t))
∥

∥ , (20)

‖φ3(t, I
1
h (t))−φ3(t, I

2
h(t))‖ =

∥

∥−{µh + δh + γ}(I1
h(t)− I2

h(t))
∥

∥ , (21)

‖φ4(t,Q
1
h(t))−φ4(t,Q

2
h(t))‖=

∥

∥−{ϕ + τ + δh + µh}(Q
1
h(t)−Q2

h(t))
∥

∥ , (22)

‖φ5(t,R
1
h(t))−φ5(t,R

2
h(t))‖ =

∥

∥−{µh}(R
1
h(t)−R2

h(t))
∥

∥ , (23)

‖φ6(t,S
1
r (t))−φ6(t,S

2
r (t))‖=

∥

∥

∥

∥

−

{

β3Ir

Nr

+ µr

}

(S1
r (t)− S2

r (t))

∥

∥

∥

∥

, (24)

‖φ7(t,E
1
r (t))−φ7(t,E

2
r (t))‖=

∥

∥−{µr +α3}(E
1
r (t)−E2

r (t))
∥

∥ , (25)

‖φ8(t, I
1
r (t))−φ8(t, I

2
r (t))‖=

∥

∥−{µr + δr}(I
1
r (t)− I2

r (t))
∥

∥ . (26)

Now we suppose

‖φ1(t,S
1
h(t))−φ1(t,S

2
h(t))‖=

∥

∥

∥
−
{(β1Ir(t)+β2Ih(t))

Nh

+ µh

}

(S1
h(t)− S2

h(t))
∥

∥

∥
,
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‖φ1(t,S
1
h(t))−φ1(t,S

2
h(t))‖ ≤

{

β1 ‖Ir‖+β2‖Ih‖

Nh

+ µh

}

∥

∥(S1
h(t)− S2

h(t))
∥

∥ ,

‖φ1(t,S
1
h(t))−φ1(t,S

2
h(t))‖ ≤

{

β1ir +β2ih

Nh

+ µh

}

∥

∥(S1
h(t)− S2

h(t))
∥

∥ ,

‖φ1(t,S
1
h(t))−φ1(t,S

2
h(t))‖ ≤ ϖ1

∥

∥(S1
h(t)− S2

h(t))
∥

∥ , (27)

where ϖ1 =
β1ir+β2ih

Nh
+µh, ih = maxt∈ϒ ‖Ih(t)‖ and ir = maxt∈ϒ ‖Ir(t)‖ are bounded functions. Similarly, we can discover

‖φ2(t,E
1
h(t))−φ2(t,E

2
h (t))‖ ≤ ϖ2

∥

∥(E1
h (t)−E2

h(t))
∥

∥ , (28)

‖φ3(t, I
1
h(t))−φ3(t, I

2
h (t))‖ ≤ ϖ3

∥

∥(I1
h (t)− I2

h(t))
∥

∥ , (29)

‖φ4(t,Q
1
h(t))−φ4(t,Q

2
h(t))‖ ≤ ϖ4

∥

∥(Q1
h(t)−Q2

h(t))
∥

∥ , (30)

‖φ5(t,R
1
h(t))−φ5(t,R

2
h(t))‖ ≤ ϖ5

∥

∥(R1
h(t)−R2

h(t))
∥

∥ , (31)

‖φ6(t,S
1
r (t))−φ6(t,S

2
r (t))‖ ≤ ϖ6

∥

∥(S1
r (t)− S2

r (t))
∥

∥ , (32)

‖φ7(t,E
1
r (t))−φ7(t,E

2
r (t))‖ ≤ ϖ7

∥

∥(E1
r (t)−E2

r (t))
∥

∥ , (33)

‖φ8(t, I
1
r (t))−φ8(t, I

2
r (t))‖ ≤ ϖ8

∥

∥(I1
r (t)− I2

r (t))
∥

∥ . (34)

where

ϖ2 = α1 +α2 + µh,

ϖ3 = µh + δh + γ,
ϖ4 = ϕ + τ + δh + µh,

ϖ5 = µh,

ϖ6 =
β3Ir
Nr

+ µr,

ϖ7 = µr +α3,

ϖ8 = µr + δr.

The following recursive procedure yields



































































Sn
h(t) =

2(1−ν)
(2−ν)M (ν)φ1(t,S

n−1
h (t))+ 2ν

(2−ν)M (ν)

∫ t
0 φ1(ρ ,S

n−1
h (ρ))dρ ,

En
h (t) =

2(1−ν)
(2−ν)M (ν)φ2(t,E

n−1
h (t))+ 2ν

(2−ν)M (ν)

∫ t
0 φ2(ρ ,E

n−1
h (ρ))dρ ,

In
h (t) =

2(1−ν)
(2−ν)N (ν)

φ3(t, I
n−1
h (t))+ 2ν

(2−ν)M (ν)

∫ t
0 φ3(ρ , I

n−1
h (ρ))dρ ,

Qn
h(t) =

2(1−ν)
(2−ν)N (ν)

φ4(t,Q
n−1
h (t))+ 2ν

(2−ν)M (ν)

∫ t
0 φ4(ρ ,Q

n−1
h (ρ))dρ ,

Rn
h(t) =

2(1−ν)
(2−ν)N (ν)φ5(t,R

n−1
h (t))+ 2ν

(2−ν)M (ν)

∫ t
0 φ5(ρ ,R

n−1
h (ρ))dρ ,

Sn
r (t) =

2(1−ν)
(2−ν)N (ν)φ6(t,S

n−1
r (t))+ 2ν

(2−ν)M (ν)

∫ t
0 φ6(ρ ,S

n−1
r (ρ))dρ ,

En
r (t) =

2(1−ν)
(2−ν)N (ν)φ7(t,E

n−1
r (t))+ 2ν

(2−ν)M (ν)

∫ t
0 φ7(ρ ,E

n−1
r (ρ))dρ ,

In
r (t) =

2(1−ν)
(2−ν)N (ν)φ8(t, I

n−1
r (t))+ 2ν

(2−ν)M (ν)

∫ t
0 φ8(ρ , I

n−1
r (ρ))dρ .

(35)
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Triangular inequality is also used to acquire















































































































































‖Mn
1‖= ‖Sn

h(t)− Sn−1
h (t)‖ ≤ 2(1−ν)

(2−ν)M (ν)‖φ1(t,S
n−1
h (t))−φ1(t,S

n−2
h (t))‖

+ 2ν
(2−ν)M (ν)‖

∫ t
0

{

φ1(ρ ,S
n−1
h (ρ))−φ1(ρ ,S

n−2
h (ρ))

}

dρ‖,

‖Mn
2‖= ‖En

h (t)−En−1
h (t)‖ ≤ 2(1−ν)

(2−ν)M (ν)
‖φ2(t,E

n−1
h (t))−φ2(t,E

n−2
h (t))‖

+ 2ν
(2−ν)M (ν)‖

∫ t
0

{

φ2(ρ ,E
n−1
h (ρ))−φ2(ρ ,E

n−2
h (ρ))

}

dρ‖,

‖Mn
3‖= ‖In

h (t)− In−1
h (t)‖ ≤ 2(1−ν)

(2−ν)M (ν)‖φ3(t, I
n−1
h (t))−φ3(t, I

n−2
h (t))‖

+ 2ν
(2−ν)M (ν)‖

∫ t
0

{

φ3(ρ , I
n−1
h (ρ))−φ3(ρ , I

n−2
h (ρ))

}

dρ‖,

‖Mn
4‖= ‖Qn

h(t)−Qn−1
h (t)‖ ≤ 2(1−ν)

(2−ν)M (ν)‖φ4(t,Q
n−1
h (t))−φ4(t,Q

n−2
h (t))‖

+ 2ν
(2−ν)M (ν)

‖
∫ t

0

{

φ4(ρ ,Q
n−1
h (ρ))−φ4(ρ ,Q

n−2
h (ρ))

}

dρ‖,

‖Mn
5‖= ‖Rn

h(t)−Rn−1
h (t)‖ ≤ 2(1−ν)

(2−ν)M (ν)‖φ5(t,R
n−1
h (t))−φ5(t,R

n−2
h (t))‖

+ 2ν
(2−ν)M (ν)‖

∫ t
0

{

φ5(ρ ,R
n−1
h (ρ))−φ5(ρ ,R

n−2
h (ρ))

}

dρ‖,

‖Mn
6‖= ‖Sn

r (t)− Sn−1
r (t)‖ ≤ 2(1−ν)

(2−ν)M (ν)
‖φ6(t,S

n−1
r (t))−φ6(t,S

n−2
r (t))‖

+ 2ν
(2−ν)M (ν)‖

∫ t
0

{

φ6(ρ ,S
n−1
r (ρ))−φ6(ρ ,S

n−2
r (ρ))

}

dρ‖,

‖Mn
7‖= ‖En

r (t)−En−1
r (t)‖ ≤ 2(1−ν)

(2−ν)M (ν)‖φ7(t,E
n−1
r (t))−φ7(t,E

n−2
r (t))‖

+ 2ν
(2−ν)M (ν)‖

∫ t
0

{

φ7(ρ ,E
n−1
r (ρ))−φ7(ρ ,E

n−2
r (ρ))

}

dρ‖,

‖Mn
8‖= ‖In

r (t)− In−1
r (t)‖ ≤ 2(1−ν)

(2−ν)M (ν)‖φ8(t, I
n−1
r (t))−φ8(t, I

n−2
r (t))‖

+ 2ν
(2−ν)M (ν)

‖
∫ t

0

{

φ8(ρ , I
n−1
r (ρ))−φ8(ρ , I

n−2
r (ρ))

}

dρ‖.

(36)

Sn
h(t) =

∞

∑
m=0

Mm
1 (t), En

h (t) =
∞

∑
m=0

Mm
2 (t), In

h (t) =
∞

∑
m=0

Mm
3 (t), Qn

h(t) =
∞

∑
m=0

Mm
4 (t),

Rn
h(t) =

∞

∑
m=0

Mm
5 (t), Sn

r (t) =
∞

∑
m=0

Mm
6 (t), En

r (t) =
∞

∑
m=0

Mm
7 (t), In

r (t) =
∞

∑
m=0

Mm
8 (t).

(37)

Since the kernels φ1, φ2, φ3, φ4, φ5, φ6, φ7, and φ8 holds the Lipschitz condition, we obtain



































































‖Mn
1‖ ≤

2(1−ν)
(2−ν)M (ν)ψ1‖Sn−1

h (t)− Sn−2
h (t)‖+ 2ν

(2−ν)M (ν)ψ1

∫ t
0 ‖Sn−1

h (ρ)− Sn−2
h (ρ)‖dρ ,

‖Mn
2‖ ≤

2(1−ν)
(2−ν)M (ν)ψ2‖En−1

h (t)−En−2
h (t)‖+ 2ν

(2−ν)M (ν)ψ2

∫ t
0 ‖En−1

h (ρ)−En−2
h (ρ)‖dρ ,

‖Mn
3‖ ≤

2(1−ν)
(2−ν)M (ν)

ψ3‖In−1
h (t)− In−2

h (t)‖+ 2ν
(2−ν)M (ν)

ψ3

∫ t
0 ‖In−1

h (ρ)− In−2
h (ρ)‖dρ ,

‖Mn
4‖ ≤

2(1−ν)
(2−ν)M (ν)

ψ4‖Qn−1
h (t)−Qn−2

h (t)‖+ 2ν
(2−ν)M (ν)

ψ4

∫ t
0 ‖Qn−1

h (ρ)−Qn−2
h (ρ)‖dρ ,

‖Mn
5‖ ≤

2(1−ν)
(2−ν)M (ν)ψ5‖Rn−1

h (t)−Rn−2
h (t)‖+ 2ν

(2−ν)M (ν)ψ5

∫ t
0 ‖Rn−1

h (ρ)−Rn−2
h (ρ)‖dρ ,

‖Mn
6‖ ≤

2(1−ν)
(2−ν)M (ν)ψ6‖Sn−1

r (t)− Sn−2
r (t)‖+ 2ν

(2−ν)M (ν)ψ6

∫ t
0 ‖Sn−1

r (ρ)− Sn−2
r (ρ)‖dρ ,

‖Mn
7‖ ≤

2(1−ν)
(2−ν)M (ν)ψ7‖En−1

r (t)−En−2
r (t)‖+ 2ν

(2−ν)M (ν)ψ7

∫ t
0 ‖En−1

r (ρ)−En−2
r (ρ)‖dρ ,

‖Mn
8‖ ≤

2(1−ν)
(2−ν)M (ν)ψ8‖In−1

r (t)− In−2
r (t)‖+ 2ν

(2−ν)M (ν)ψ8

∫ t
0 ‖In−1

r (ρ)− In−2
r (ρ)‖dρ .

(38)

Which proves the result.

3.2.1 Existence of the Suggested System’s Solution

Theorem 2.The system described in (6) has a solution.
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Proof.We have found the following using the recursive formula and the results of (38).















































































‖Mn
1‖ ≤ ‖Sh(0)‖+

{(

2(1−ν)
(2−ν)M (ν)

ψ1

)n

+
(

2ν
(2−ν)M (ν)

ψt
1

)n}

,

‖Mn
2‖ ≤ ‖Eh(0)‖+

{(

2(1−ν)
(2−ν)M (ν)ψ2

)n

+
(

2ν
(2−ν)M (ν)ψ

t
2

)n }

,

‖Mn
3‖ ≤ ‖Ih(0)‖+

{(

2(1−ν)
(2−ν)M (ν)ψ3

)n

+
(

2ν
(2−ν)M (ν)ψ

t
3

)n}

,

‖Mn
4‖ ≤ ‖Qh(0)‖+

{(

2(1−ν)
M (ν)(2−ν)

ψ4

)n

+
(

2ν
(2−ν)M (ν)

ψt
4

)n}

,

‖Mn
5‖ ≤ ‖Rh(0)‖+

{(

2(1−ν)
M (ν)(2−ν)ψ5

)n

+
(

2ν
(2−ν)M (ν)ψ

t
5

)n }

,

‖Mn
6‖ ≤ ‖Sr(0)‖+

{(

2(1−ν)
(2−ν)M (ν)ψ6

)n

+
(

2ν
(2−ν)M (ν)ψ

t
6

)n}

,

‖Mn
7‖ ≤ ‖Er(0)‖+

{(

2(1−ν)
(2−ν)M (ν)ψ7

)n

+
(

2ν
(2−ν)M (ν)ψt

7

)n}

,

‖Mn
8‖ ≤ ‖Ir(0)‖+

{(

2(1−ν)
(2−ν)M (ν)ψ8

)n

+
(

2ν
(2−ν)M (ν)ψ

t
8

)n}

.

(39)

Consequently, (39) exists. Additionally, we demonstrate the system of solutions in (39) and (6) that the functions.

Sh(t) = Sn
h(t)−∆1(n)(t), Eh(t) = En

h (t)−∆2(n)(t), Ih(t) = In
h (t)−∆3(n)(t),

Qh(t) = Qn
h(t)−∆4(n)(t), Rh(t) = Rn

h(t)−∆5(n)(t), Sr(t) = Sn
r (t)−∆6(n)(t),

Er(t) = En
r (t)−∆7(n)(t), Ir(t) = In

r (t)−∆8(n)(t).

(40)

where ∆1(n)(t), ∆2(n)(t), ∆3(n)(t), ∆4(n)(t), ∆5(n)(t), ∆6(n)(t), ∆7(n)(t) and ∆8(n)(t) remaining conditions of the solution.
Hence, we get



































































Sh(t)− Sn−1
h (t) = (1−ν)2

M (ν)(2−ν)φ1(t,Sh(t)−∆1(n)(t))+
2ν

(2−ν)M (ν)

∫ t
0 φ1(ρ ,Sh(ρ)−∆1(n)(ρ)),

Eh(t)−En−1
h (t) =

(1−ν)2
M (ν)(2−ν)φ2(t,Eh(t)−∆1(n)(t))+

2ν
(2−ν)M (ν)

∫ t
0 φ2(ρ ,Eh(ρ)−∆2(n)(ρ)),

Ih(t)− In−1
h (t) = 2(1−ν)

M (ν)(2−ν)
φ3(t, Ih(t)−∆1(n)(t))+

2ν
(2−ν)M (ν)

∫ t
0 φ3(ρ , Ih(ρ)−∆3(n)(ρ)),

Qh(t)−Qn−1
h (t) = 2(1−ν)

(2−ν)M (ν)
φ4(t,Qh(t)−∆4(n)(t))+

2ν
(2−ν)M (ν)

∫ t
0 φ4(ρ ,Qh(ρ)−∆4(n)(ρ)),

Rh(t)−Rn−1
h (t) = 2(1−ν)

(2−ν)M (ν)φ5(t,Rh(t)−∆5(n)(t))+
2ν

(2−ν)M (ν)

∫ t
0 φ5(ρ ,Rh(ρ)−∆5(n)(ρ)),

Sr(t)− Sn−1
r (t) = 2(1−ν)

(2−ν)M (ν)φ6(t,Sr(t)−∆6(n)(t))+
2ν

(2−ν)M (ν)

∫ t
0 φ6(ρ ,Sr(ρ)−∆6(n)(ρ)),

Er(t)−En−1
r (t) = 2(1−ν)

(2−ν)M (ν)φ7(t,Er(t)−∆7(n)(t))+
2ν

(2−ν)M (ν)

∫ t
0 φ7(ρ ,Er(ρ)−∆7(n)(ρ)),

Ir(t)− In−1
r (t) =

2(1−ν)
(2−ν)M (ν)φ8(t, Ir(t)−∆8(n)(t))+

2ν
(2−ν)M (ν)

∫ t
0 φ8(ρ , Ir(ρ)−∆8(n)(ρ)).

(41)
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Utilizing the Lipschitz property and the norm, we have



































































































































































Sh(t)− Sh(0)−
2(1−ν)

(2−ν)M (ν)
φ1(t,Sh(t))−

2ν
(2−ν)M (ν)

∫ t
0 φ1(ρ ,Sh(ρ))dρ

≤ ‖∆1(n)(t)‖
{

1+
(

2(1−ν)
(2−ν)M (ν)

ψ1

)

+
(

2ν
(2−ν)M (ν)

ψt
1

)}

,

Eh(t)−Eh(0)−
2(1−ν)

(2−ν)M (ν)
φ2(t,Eh(t))−

2ν
(2−ν)M (ν)

∫ t
0 φ2(ρ ,Eh(ρ)dρ)

≤ ‖∆2(n)(t)‖
{

1+
(

2(1−ν)
(2−ν)M (ν)ψ2

)

+
(

2ν
(2−ν)M (ν)ψt

2

)}

,

Ih(t)− Ih(0)−
2(1−ν)

(2−ν)M (ν)φ3(t, Ih(t))−
2ν

(2−ν)N (ν)

∫ t
0 φ3(ρ , Ih(ρ))dρ

≤ ‖∆3(n)(t)‖
{

1+
(

2(1−ν)
(2−ν)M (ν)ψ3

)

+
(

2ν
(2−ν)M (ν)ψt

3

)}

,

Qh(t)−Qh(0)−
2(1−ν)

(2−ν)M (ν)φ4(t,Qh(t))−
2ν

(2−ν)M (ν)

∫ t
0 φ4(ρ ,Qh(ρ))dρ

≤ ‖∆4(n)(t)‖
{

1+
(

2(1−ν)
(2−ν)M (ν)ψ4

)

+
(

2ν
(2−ν)M (ν)ψt

4

)}

,

Rh(t)−Rh(0)−
2(1−ν)

(2−ν)M (ν)
φ5(t,Rh(t))−

2ν
(2−ν)M (ν)

∫ t
0 φ5(ρ ,Rh(ρ))dρ

≤ ‖∆5(n)(t)‖
{

1+
(

2(1−ν)
(2−ν)M (ν)

ψ5

)

+
(

2ν
(2−ν)M (ν)

ψt
5

)}

,

Sr(t)− Sr(0)−
2(1−ν)

(2−ν)M (ν)φ6(t,Sr(t))−
2ν

(2−ν)M (ν)

∫ t
0 φ6(ρ ,Sr(ρ))dρ

≤ ‖∆6(n)(t)‖
{

1+
(

2(1−ν)
(2−ν)M (ν)ψ6

)

+
(

2ν
(2−ν)M (ν)ψt

6

)}

,

Er(t)−Er(0)−
2(1−ν)

(2−ν)M (ν)φ7(t,Er(t))−
2ν

(2−ν)M (ν)

∫ t
0 φ7(ρ ,Er(ρ))dρ

≤ ‖∆7(n)(t)‖
{

1+
(

2(1−ν)
(2−ν)M (ν)ψ7

)

+
(

2ν
(2−ν)M (ν)ψt

7

)}

,

Ir(t)− Ir(0)−
2(1−ν)

(2−ν)M (ν)φ8(t, Ir(t))−
2ν

(2−ν)M (ν)

∫ t
0 φ8(ρ , Ir(ρ))dρ

≤ ‖∆8(n)(t)‖
{(

2(1−ν)
(2−ν)M (ν)ψ8

)

+ 1+
(

2ψt
8ν

M (ν)(2−ν)

)}

.

(42)

Now attempting to take limn→∞ in the Equation (42), we get ‖∆i(n)‖→ 0, i = 1,2, · · · ,8. Thus, we get



































































Sh(t) = Sh(0)+
2(1−ν)

(2−ν)M (ν)φ1(t,Sh(t))+
2ν

(2−ν)M (ν)

∫ t
0 φ1(ρ ,Sh(ρ))dρ ,

Eh(t) = Eh(0)+
2(1−ν)

(2−ν)M (ν)φ2(t,Eh(t))+
2ν

(2−ν)M (ν)

∫ t
0 φ2(ρ ,Eh(ρ))dρ ,

Ih(t) = Ih(0)+
2(1−ν)

(2−ν)M (ν)
φ3(t, Ih(t))+

2ν
(2−ν)M (ν)

∫ t
0 φ3(ρ , Ih(ρ))dρ ,

Qh(t) = Qh(0)+
2(1−ν)

(2−ν)M (ν)
φ4(t,Qh(t))+

2ν
(2−ν)M (ν)

∫ t
0 φ4(ρ ,Qh(ρ))dρ ,

Rh(t) = Rh(0)+
2(1−ν)

(2−ν)M (ν)φ5(t,Rh(t))+
2ν

(2−ν)M (ν)

∫ t
0 φ5(ρ ,Rh(ρ))dρ ,

Sr(t) = Sr(0)+
2(1−ν)

(2−ν)M (ν)φ6(t,Sr(t))+
2ν

(2−ν)M (ν)

∫ t
0 φ6(ρ ,Sr(ρ))dρ ,

Er(t) = Er(0)+
2(1−ν)

(2−ν)M (ν)φ7(t,Er(t))+
2ν

(2−ν)M (ν)

∫ t
0 φ7(ρ ,Er(ρ))dρ ,

Ir(t) = Ir(0)+
2(1−ν)φ8(t,Ir(t))
M (ν)(−ν+2) + 2ν

M (ν)(−ν+2)

∫ t
0 φ8(ρ , Ir(ρ))dρ .

(43)

Similarly, as limit limn→∞, we get ‖∆i(n)(t)‖→ 0, i = 1,2, · · · ,8. As a result, there are work around to (6) like (43).

3.2.2 Solution for the Proposed System’s Uniqueness

Theorem 3.The system mentioned in (6) has a clear solution.

c© 2025 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


290 A. Hasan et al. : Computational analysis of Monkeypox disease ...

Proof.Now we suppose there is another solution of the system (6), say S⋆h, E⋆
h , I⋆h , Q⋆

h, R⋆
h, S⋆r , E⋆

r and I⋆r , then we get















































































































































Sh(t)− S⋆h(0) =
2(1−ν)

(2−ν)M (ν)

{

φ1(t,Sh(t))−φ1(t,S
⋆
h(t))

}

+ 2ν
(2−ν)M (ν)

∫ t
0

{

φ1(ρ ,Sh(ρ))−φ1(ρ ,S
⋆
h(ρ))

}

dρ ,

Eh(t)−E⋆
h(0) =

2(1−ν)
(2−ν)M (ν)

{

φ2(t,Eh(t))−φ2(t,E
⋆
h (t))

}

+ 2ν
(2−ν)M (ν)

∫ t
0

{

φ2(ρ ,Eh(ρ))−φ2(ρ ,E
⋆
h (ρ))

}

dρ ,

Ih(t)− I⋆h(0) =
2(1−ν)

(2−ν)M (ν)

{

φ3(t, Ih(t))−φ3(t, I
⋆
h (t))

}

+ 2ν
(2−ν)M (ν)

∫ t
0

{

φ3(ρ , Ih(ρ))−φ3(ρ , I
⋆
h (ρ))

}

dρ ,

Qh(t)−Q⋆
h(0) =

2(1−ν)
(2−ν)M (ν)

{

φ4(t,Qh(t))−φ4(t,Q
⋆
h(t))

}

+ 2ν
(2−ν)M (ν)

∫ t
0

{

φ4(ρ ,Qh(ρ))−φ4(ρ ,Q
⋆
h(ρ))

}

dρ ,

Rh(t)−R⋆
h(0) =

2(1−ν)
(2−ν)M (ν)

{

φ5(t,Rh(t))−φ5(t,R
⋆
h(t))

}

+ 2ν
(2−ν)M (ν)

∫ t
0

{

φ5(ρ ,Rh(ρ))−φ5(ρ ,R
⋆
h(ρ))

}

dρ ,

Sr(t)− S⋆r(0) =
2(1−ν)

(2−ν)M (ν) {φ6(t,Sr(t))−φ6(t,S
⋆
r (t))}

+ 2ν
(2−ν)M (ν)

∫ t
0 {φ6(ρ ,Sr(ρ))−φ6(ρ ,S

⋆
r (ρ))}dρ ,

Er(t)−E⋆
r (0) =

2(1−ν)
(2−ν)M (ν) {φ7(t,Er(t))−φ7(t,E

⋆
r (t))}

+ 2ν
(2−ν)M (ν)

∫ t
0 {φ7(ρ ,Er(ρ))−φ7(ρ ,E

⋆
r (ρ))}dρ ,

Ir(t)− I⋆r (0) =
2(1−ν)

(2−ν)M (ν)
{φ8(t, Ir(t))−φ8(t, I

⋆
r (t))}

+ 2ν
(2−ν)M (ν)

∫ t
0 {φ8(ρ , Ir(ρ))−φ8(ρ , I

⋆
r (ρ))}dρ .

(44)

Again by using norm on (44), we obtain















































































































































‖Sh(t)− S⋆h(0)‖ ≤
2(1−ν)

(2−ν)M (ν)‖φ1(t,Sh(t))−φ1(t,S
⋆
h(t))‖

+ 2ν
(2−ν)M (ν)

∫ t
0 ‖φ1(ρ ,Sh(ρ))−φ1(ρ ,S

⋆
h(ρ))‖dρ ,

‖Eh(t)−E⋆
h(0)‖ ≤

2(1−ν)
(2−ν)M (ν)

‖φ2(t,Eh(t))−φ2(t,E
⋆
h (t))‖

+ 2ν
(2−ν)M (ν)

∫ t
0 ‖φ2(ρ ,Eh(ρ))−φ2(ρ ,E

⋆
h (ρ))‖dρ ,

‖Ih(t)− I⋆h(0)‖ ≤
2(1−ν)

(2−ν)M (ν)‖φ3(t, Ih(t))−φ3(t, I
⋆
h (t))‖

+ 2ν
(2−ν)M (ν)

∫ t
0 ‖φ3(ρ , Ih(ρ))−φ3(ρ , I

⋆
h (ρ))‖dρ ,

‖Qh(t)−Q⋆
h(0)‖ ≤

2(1−ν)
(2−ν)M (ν)‖φ4(t,Qh(t))−φ4(t,Q

⋆
h(t))‖

+ 2ν
(2−ν)M (ν)

∫ t
0 ‖φ4(ρ ,Qh(ρ))−φ4(ρ ,Q

⋆
h(ρ))‖dρ ,

‖Rh(t)−R⋆
h(0)‖ ≤

2(1−ν)
(2−ν)M (ν)‖φ5(t,Rh(t))−φ5(t,R

⋆
h(t))‖

+ 2ν
(2−ν)M (ν)

∫ t
0 ‖φ5(ρ ,Rh(ρ))−φ5(ρ ,R

⋆
h(ρ))‖dρ ,

‖Sr(t)− S⋆r (0)‖ ≤
2(1−ν)

(2−ν)M (ν)
‖φ6(t,Sr(t))−φ6(t,S

⋆
r (t))‖

+ 2ν
(2−ν)M (ν)

∫ t
0 ‖φ6(ρ ,Sr(ρ))−φ6(ρ ,S

⋆
r (ρ))‖dρ ,

‖Er(t)−E⋆
r (0)‖ ≤

2(1−ν)
(2−ν)M (ν)‖φ7(t,Er(t))−φ7(t,E

⋆
r (t))‖

+ 2ν
(2−ν)M (ν)

∫ t
0 ‖φ7(ρ ,Er(ρ))−φ7(ρ ,E

⋆
r (ρ))‖dρ ,

‖Ir(t)− I⋆r (0)‖ ≤
2(1−ν)

(2−ν)M (ν)‖φ8(t, Ir(t))−φ8(t, I
⋆
r (t))‖

+ 2ν
(2−ν)M (ν)

∫ t
0 ‖φ8(ρ , Ir(ρ))−φ8(ρ , I

⋆
r (ρ))‖dρ .

(45)
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Taking into consideration above Theorems 1 and 2, the outcomes attained are



































































‖Sh(t)− S⋆h(0)‖ ≤
2(1−ν)

(2−ν)M (ν)ψ1‖Sh(t)− S⋆h(t)‖+
2ν

(2−ν)M (ν)ψ
t
1‖Sh(ρ)− S⋆h(ρ)‖,

‖Eh(t)−E⋆
h(0)‖ ≤

2(1−ν)
(2−ν)M (ν)

ψ2‖Eh(t)−E⋆
h(t)‖+

2ν
(2−ν)M (ν)

ψt
2‖Eh(ρ)−E⋆

h(ρ)‖,

‖Ih(t)− I⋆h(0)‖ ≤
2(1−ν)

(2−ν)M (ν)
ψ3‖Ih(t)− I⋆h(t)‖+

2ν
(2−ν)M (ν)

ψt
3‖Ih(ρ)− I⋆h(ρ)‖,

‖Qh(t)−Q⋆
h(0)‖ ≤

2(1−ν)
(2−ν)M (ν)ψ4‖Qh(t)−Q⋆

h(t)‖+
2ν

(2−ν)M (ν)ψt
4‖Qh(ρ)−Q⋆

h(ρ)‖,

‖Rh(t)−R⋆
h(0)‖ ≤

2(1−ν)
(2−ν)M (ν)ψ5‖Rh(t)−R⋆

h(t)‖+
2ν

(2−ν)M (ν)ψ
t
5‖Rh(ρ)−R⋆

h(ρ)‖,

‖Sr(t)− S⋆r (0)‖ ≤
2(1−ν)

(2−ν)M (ν)ψ6‖Sr(t)− S⋆r (t)‖+
2ν

(2−ν)M (ν)ψ
t
6‖Sr(ρ)− S⋆r(ρ)‖,

‖Er(t)−E⋆
r (0)‖ ≤

2(1−ν)
(2−ν)M (ν)ψ7‖Er(t)−E⋆

r (t)‖+
2ν

(2−ν)M (ν)ψ
t
7‖Er(ρ)−E⋆

r (ρ)‖,

‖Ir(t)− I⋆r (0)‖ ≤
2(1−ν)

(2−ν)M (ν)
ψ8‖Ir(t)− I⋆r (t)‖+

2ν
(2−ν)M (ν)

ψt
8‖Ir(ρ)− I⋆r (ρ)‖.

(46)

The solution techniques in (46) satisfy the following inequality.



































































‖Sh(t)− S⋆h(t)‖
{

− 2ψ1

(2−ν)M (ν)(−tν + 1−ν)+ 1
}

≤ 0,

‖Eh(t)−E⋆
h(t)‖

{

− 2ψ2

(2−ν)M (ν) (−tν + 1−ν)+ 1
}

≤ 0,

‖Ih(t)− I⋆h(t)‖
{

− 2ψ3

(2−ν)M (ν) (−tν + 1−ν)+ 1
}

≤ 0,

‖Qh(t)−Q⋆
h(t)‖

{

− 2ψ4

(2−ν)M (ν)
(−tν + 1−ν)+ 1

}

≤ 0,

‖Sr(t)− S⋆r (t)‖
{

− 2ψ5

(2−ν)M (ν)(−tν + 1−ν)+ 1
}

≤ 0,

‖Er(t)−E⋆
r (t)‖

{

− 2ψ6

(2−ν)M (ν)(−tν + 1−ν)+ 1
}

≤ 0,

‖Ir(t)− I⋆r (t)‖
{

− 2ψ7

(2−ν)M (ν)
(−tν + 1−ν)+ 1

}

≤ 0.

(47)

The final equation results in the statement that

Sh(t) = S⋆h(t), Eh(t) = E⋆
h (t), Ih(t) = I⋆h(t), Qh(t) = Q⋆

h(t),

Rh(t) = R⋆
h(t), Sr(t) = S⋆r (t), Er(t) = E⋆

r (t), Ir(t) = I⋆r (t).
(48)

4 Stability Analysis of the Proposed System

The fractional Monkeypox model, the iterative Laplace transform method and stability standards we created for numerical
solutions are covered in this section.

4.1 Laplace Transform Iterative Technique

Consider the Monkeypox model (6) combined with the starting conditions (7). We are able to analyze the system (6) using
the Laplace transform.















































































ϖL (Sh(t))−Sh(0)
ϖ+ν(1−ϖ) = L

(

θh −
(β1Ir+β2Ih)Sh

Nh
− µhSh +ϕQh

)

,

ϖL (Eh(t))−Eh(0)
ϖ+ν(1−ϖ) = L

(

(β1Ir+β2Ih)Sh

Nh
− (α1 +α2 + µh)Eh

)

,

ϖL (Ih(t))−Ih(0)
ϖ+ν(1−ϖ) = L

(

Ehα1 − (δh + µh + γ)Ih

)

,

ϖL (Qh(t))−Qh(0)
ϖ+ν(1−ϖ) = L

(

Ehα2 − (ϕ + δh + µh + τ)Qh

)

,

ϖL (Rh(t))−Rh(0)
ϖ+ν(1−ϖ) = L

(

γIh + τQh − µhRh

)

,

ϖL (Sr(t))−Sr(0)
ϖ+ν(1−ϖ)

= L
(

θr −
β3SrIr

Nr
− µrSr

)

,

ϖL (Er(t))−Er(0)
ϖ+ν(1−ϖ) = L

(

β3SrIr
Nr

− (µr +α3)Er

)

,

ϖL (Ir(t))−Ir(0)
ϖ+ν(1−ϖ)

= L
(

α3Er − (µr + δr)Ir

)

.

(49)
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Rearranging, we get















































































L (Sh(t)) =
Sh(0)

ϖ + ϖ+ν(1−ϖ)
ϖ L

(

θh −
(β1Ir+β2Ih)Sh

Nh
− µhSh +ϕQh

)

,

L (Eh(t)) =
Eh(0)

ϖ + ϖ+ν(1−ϖ)
ϖ L

(

(β1Ir+β2Ih)Sh

Nh
− (α1 +α2 + µh)Eh

)

,

L (Ih(t)) =
Ih(0)

ϖ + ϖ+ν(1−ϖ)
ϖ L

(

Ehα1 − (δh + µh + γ)Ih

)

,

L (Qh(t)) =
Qh(0)

ϖ + ϖ+ν(1−ϖ)
ϖ L

(

Ehα2 − (ϕ + δh + τ + µh)Qh

)

,

L (Rh(t)) =
Rh(0)

ϖ + ϖ+ν(1−ϖ)
ϖ L

(

γIh + τQh − µhRh

)

,

L (Sr(t)) =
Sr(0)

ϖ + ϖ+ν(1−ϖ)
ϖ L

(

θr −
β3SrIr

Nr
− µrSr

)

,

L (Er(t)) =
Er(0)

ϖ + ϖ+ν(1−ϖ)
ϖ L

(

β3SrIr
Nr

− (µr +α3)Er

)

,

L (Ir(t)) =
Ir(0)

ϖ + ϖ+ν(1−ϖ)
ϖ L

(

− (µr + δr)Ir +α3Er

)

.

(50)

Moreover, equation (50)’s inverse Laplace transform results in















































































Sh(t) = S0
h +L −1

[

(1−ϖ)ν+ϖ
ϖ L

(

θh −
(β1Ir+β2Ih)Sh

Nh
− µhSh +ϕQh

)]

,

Eh(t) = E0
h +L −1

[

(1−ϖ)ν+ϖ
ϖ L

(

(β1Ir+β2Ih)Sh

Nh
− (α1 +α2 + µh)Eh

)]

,

Ih(t) = I0
h +L −1

[

(1−ϖ)ν+ϖ
ϖ L

(

α1Eh − (µh + δh + γ)Ih

)]

,

Qh(t) = Q0
h +L −1

[

(1−ϖ)ν+ϖ
ϖ L

(

α2Eh − (ϕ + τ + δh + µh)Qh

)]

,

Rh(t) = R0
h +L −1

[

(1−ϖ)ν+ϖ
ϖ L

(

γIh + τQh − µhRh

)]

,

Sr(t) = S0
r +L −1

[

(1−ϖ)ν+ϖ
ϖ L

(

θr −
β3SrIr

Nr
− µrSr

)]

,

Er(t) = E0
r +L −1

[

(1−ϖ)ν+ϖ
ϖ L

(

β3SrIr
Nr

− (µr +α3)Er

)]

,

Ir(t) = I0
r +L −1

[

(1−ϖ)ν+ϖ
ϖ L

(

α3Er − (µr + δr)Ir

)]

.

(51)

The infinite series roots are achieved by this technique given as

Sh =
∞

∑
n=0

Sn
h, Eh =

∞

∑
n=0

En
h , Ih =

∞

∑
n=0

In
h , Qh =

∞

∑
n=0

Qn
h,

Rh =
∞

∑
n=0

Rn
h, Sr =

∞

∑
n=0

Sn
r , Er =

∞

∑
n=0

En
r , Ir =

∞

∑
n=0

In
r .

(52)

The non linearity ShEh, ShIh, ShQh, ShRh, ShSr, ShEr and ShIr can be written as

ShEh =
∞

∑
n=0

Bn
, ShIh =

∞

∑
n=0

Cn
, ShQh =

∞

∑
n=0

En
, ShRh =

∞

∑
n=0

Fn
,

ShSr =
∞

∑
n=0

Gn
, ShEr =

∞

∑
n=0

Hn
, ShIr =

∞

∑
n=0

In
.

(53)

where Bn, Cn, En, Fn, Gn, Hn and In are decomposed as follows

Bn =
n

∑
i=0

Sn
h

n

∑
i=0

En
h −

n−1

∑
i=0

Sn
h

n−1

∑
i=0

En
h

Cn =
n

∑
i=0

Sn
h

n

∑
i=0

In
h −

n−1

∑
i=0

Sn
h

n−1

∑
i=0

In
h

En =
n

∑
i=0

Sn
h

n

∑
i=0

Qn
h −

n−1

∑
i=0

Sn
h

n−1

∑
i=0

Qn
h
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Fn =
n

∑
i=0

Sn
h

n

∑
i=0

Rn
h −

n−1

∑
i=0

Sn
h

n−1

∑
i=0

Rn
h

Gn =
n

∑
i=0

Sn
h

n

∑
i=0

Sn
r −

n−1

∑
i=0

Sn
h

n−1

∑
i=0

Sn
r

Hn =
n

∑
i=0

Sn
h

n

∑
i=0

En
r −

n−1

∑
i=0

Sn
h

n−1

∑
i=0

En
r

In =
n

∑
i=0

Sn
h

n

∑
i=0

In
r −

n−1

∑
i=0

Sn
h

n−1

∑
i=0

In
r

The following recursive formula is then obtained by using starting conditions.















































































Sn+1
h (t) = S0

h +L −1
[

(1−ϖ)ν+ϖ
ϖ L

(

θh −
(β1In

r +β2In
h )S

n
h

Nh
− µhSn

h +ϕQn
h

)]

,

En+1
h (t) = E0

h +L −1
[

(1−ϖ)ν+ϖ
ϖ L

(

(β1In
r +β2In

h
)Sn

h
Nh

− (α1 +α2 + µh)E
n
h

)]

,

In+1
h (t) = I0

h +L −1
[

(1−ϖ)ν+ϖ
ϖ L

(

α1En
h − (µh + δh + γ)In

h

)]

,

Qn+1
h (t) = Q0

h +L −1
[

(1−ϖ)ν+ϖ
ϖ L

(

α2En
h − (ϕ + τ + δh + µh)Q

n
h

)]

,

Rn+1
h (t) = R0

h +L −1
[

(1−ϖ)ν+ϖ
ϖ L

(

γIn
h + τQn

h − µhRn
h

)]

,

Sn+1
r (t) = S0

r +L −1
[

(1−ϖ)ν+ϖ
ϖ L

(

θr −
β3Sn

r In
r

Nr
− µrS

n
r

)]

,

En+1
r (t) = E0

r +L −1
[

(1−ϖ)ν+ϖ
ϖ L

(

β3Sn
r In

r
Nr

− (µr +α3)E
n
r

)]

,

In+1
r (t) = I0

r +L −1
[

(1−ϖ)ν+ϖ
ϖ L

(

α3En
r − (µr + δr)I

n
r

)]

.

(54)

5 Analysis of the Proposed System’s Iteration Method

Assume of U as the self map of Q and the Banach space (Q,‖ · ‖). Also represented by the notation Wn+1 = g(J,Wn) is
a precise repeating process. Let’s say J(U) denotes a fixed point established on U. In addition, for Wn to converge to the
point i ∈ J(U), U must also provide at least one element. Consider that {qn ∈ Q} and construct Kn = ‖qn+1 − g(U,qn)‖.
If limn→∞ Kn = 0 shows that limn→∞ qn = i, the iteration approach qn+1 = g(U,qn) is said to be U stable. The sequence
qn, in contrast, has an upper limit, we claim. This iteration is referred to as Picard′s iteration and is U stable if all of the
conditions for qn+1 =Y qn are satisfied.

Theorem 4.The Banach space (Q,‖ · ‖) and described U as an acceptable self map on Q.

‖Ux −Uy‖ ≤ B‖x−Yx‖+ b‖x− y‖ (55)

∀x,y ∈Q, 0 ≤ B,0 ≤ b < 1.

Proof.Suppose that U is stable to Picard. Think about the connection between equations (54) and (6).















































































Sn+1
h (t) = Sh(0)+L−1

[

(1−ϖ)ν+ϖ
ϖ L

(

θh −
(β1In

r +β2In
h )S

n
h

Nh
− µhSn

h +ϕQn
h

)]

,

En+1
h (t) = E0

h +L −1
[

(1−ϖ)ν+ϖ
ϖ L

(

(β1In
r +β2In

h
)Sn

h
Nh

− (α1 +α2 + µh)E
n
h

)]

,

In+1
h (t) = I0

h +L −1
[

(1−ϖ)ν+ϖ
ϖ L

(

α1En
h − (µh + δh + γ)In

h

)]

,

Qn+1
h (t) = Q0

h +L −1
[

(1−ϖ)ν+ϖ
ϖ L

(

α2En
h − (ϕ + τ + δh + µh)Q

n
h

)]

,

Rn+1
h (t) = R0

h +L −1
[

(1−ϖ)ν+ϖ
ϖ L

(

γIn
h + τQn

h − µhRn
h

)]

,

Sn+1
r (t) = S0

r +L −1
[

(1−ϖ)ν+ϖ
ϖ L

(

θr −
β3Sn

r In
r

Nr
− µrS

n
r

)]

,

En+1
r (t) = E0

r +L −1
[

(1−ϖ)ν+ϖ
ϖ L

(

β3Sn
r In

r
Nr

− (µr +α3)E
n
r

)]

,

In+1
r (t) = I0

r +L −1
[

(1−ϖ)ν+ϖ
ϖ L

(

α3En
r − (µr + δr)I

n
r

)]

.

(56)

where the fractional Lagrange multiplier is
ϖ+ν(1−ϖ)

ϖ .
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Theorem 5.Now self map U is defined as















































































U(Sn
h(t)) = Sn+1

h (t) = Sh(0)+L −1
[

(1−ϖ)ν+ϖ
ϖ L

(

θh −
(β1In

r +β2In
h )S

n
h

Nh
− µhSn

h +ϕQn
h

)]

,

U(En
h (t)) = En+1

h (t) = Eh(0)+L −1
[

(1−ϖ)ν+ϖ
ϖ L

(

(β1In
r +β2In

h
)Sn

h
Nh

− (α1 +α2 + µh)E
n
h

)]

,

U(In
h (t)) = In+1

h (t) = Ih(0)+L −1
[

(1−ϖ)ν+ϖ
ϖ L

(

α1En
h − (µh + δh + γ)In

h

)]

,

U(Qn
h(t)) = Qn+1

h (t) = Qh(0)+L −1
[

(1−ϖ)ν+ϖ
ϖ L

(

α2En
h − (ϕ + τ + δh + µh)Q

n
h

)]

,

U(Rn
h(t)) = Rn+1

h (t) = Rh(0)+L −1
[

(1−ϖ)ν+ϖ
ϖ L

(

γIn
h + τQn

h − µhRn
h

)]

,

U(Sn
r (t)) = Sn+1

r (t) = Sr(0)+L −1
[

(1−ϖ)ν+ϖ
ϖ L

(

θr −
β3Sn

r In
r

Nr
− µrS

n
r

)]

,

U(En
r (t)) = En+1

r (t) = Er(0)+L −1
[

(1−ϖ)ν+ϖ
ϖ L

(

β3Sn
r In

r
Nr

− (µr +α3)E
n
r

)]

,

U(In
r (t)) = In+1

r (t) = Ir(0)+L−1
[

(1−ϖ)ν+ϖ
ϖ L

(

α3En
r − (µr + δr)I

n
r

)]

.

(57)

is U stable in L1(a,b) if















































































(

β1Ξ3
Nh

h1(ν)+
β1Ξ1

Nh
h2(ν)+

β2Ξ4
Nh

h3(ν)+
β2Ξ1

Nh
h4(ν)+ µhh5(ν)+ϕh6(ν)

)

< 1,
(

β1Ξ3

Nh
h7(ν)+

β1Ξ1

Nh
h8(ν)+

β2Ξ4

Nh
h9(ν)+

β2Ξ1

Nh
h10(ν)+ (α1 +α2 + µh)h11(ν)

)

< 1,
(

α1h12(ν)+ (µh + δh + γ)h13(ν)
)

< 1,
(

α2h14(ν)+ (ϕ + τ + δh + µh)h15(ν)
)

< 1,
(

γh16(ν)+ τh17(ν)+ µhh18(ν)
)

< 1,
(

β3Ξ2
Nr

h19(ν)+
β3Ξ5

Nr
h20(ν)+ µrh21(ν)

)

< 1,
(

β3Ξ2
Nr

h22(ν)+
β3Ξ5

Nr
h23(ν)+ (µr +α3)h24(ν)

)

< 1,
(

α3h25(ν)+ (µr + δr)h26(ν)
)

< 1.

(58)

Proof.Here, we will show that U has a fixed point. Hence, for all (m,n) ∈ N ×N we evaluate the followings.















































































































































































U(Sn
h)−U(Sm

h ) = L −1
[

(1−ϖ)ν+ϖ
ϖ L

(

θh −
(β1In

r +β2In
h )S

n
h

Nh
− µhSn

h +ϕQn
h

)]

−L −1
[

ϖ+ν(1−ϖ)
ϖ L

(

θh −
(β1Im

r +β2Im
h
)Sm

h
Nh

− µhSm
h +ϕQm

h

)]

,

U(En
h )−U(Em

h ) = L −1
[

(1−ϖ)ν+ϖ
ϖ L

(

(β1In
r +β2In

h )S
n
h

Nh
− (α1 +α2 + µh)E

n
h

)]

−L −1
[

ϖ+ν(1−ϖ)
ϖ L

(

(β1Im
r +β2Im

h
)Sm

h
Nh

− (α1 +α2 + µh)E
m
h

)]

,

U(In
h )−U(Im

h ) = L −1
[

(1−ϖ)ν+ϖ
ϖ L

(

α1En
h − (µh + δh + γ)In

h

)]

−L −1
[

ϖ+ν(1−ϖ)
ϖ L

(

α1Em
h − (µh + δh + γ)Im

h

)]

,

U(Qn
h)−U(Qm

h ) = L −1
[

(1−ϖ)ν+ϖ
ϖ L

(

α2En
h − (ϕ + τ + δh + µh)Q

n
h

)]

−L −1
[

ϖ+ν(1−ϖ)
ϖ L

(

α2Em
h − (ϕ + τ + δh + µh)Q

m
h

)]

,

U(Rn
h)−U(Rm

h ) = L −1
[

(1−ϖ)ν+ϖ
ϖ L

(

γIn
h + τQn

h − µhRn
h

)]

−L −1
[

ϖ+ν(1−ϖ)
ϖ L

(

γIm
h + τQm

h − µhRm
h

)]

,

U(Sn
r )−U(Sm

r ) = L −1
[

(1−ϖ)ν+ϖ
ϖ L

(

θr −
β3Sn

r In
r

Nr
− µrS

n
r

)]

−L −1
[

ϖ+ν(1−ϖ)
ϖ L

(

θr −
β3Sm

r Im
r

Nr
− µrS

m
r

)]

,

U(En
r )−U(Em

r ) = L −1
[

(1−ϖ)ν+ϖ
ϖ L

(

β3Sn
r In

r
Nr

− (µr +α3)E
n
r

)]

−L −1
[

ϖ+ν(1−ϖ)
ϖ L

(

β3Sm
r Im

r
Nr

− (µr +α3)E
m
r

)]

,

U(In
r )−U(Im

r ) = L −1
[

(1−ϖ)ν+ϖ
ϖ L

(

α3En
r − (µr + δr)I

n
r

)]

−L −1
[

ϖ+ν(1−ϖ)
ϖ L

(

α3Em
r − (µr + δr)I

m
r

)]

.

(59)
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Without losing generality, and assuming the norm from (59), we obtain















































































































































































∥

∥U(Sn
h)−U(Sm

h )
∥

∥=
∥

∥

∥
L −1

[

(1−ϖ)ν+ϖ
ϖ L

(

θh −
(β1In

r +β2In
h )S

n
h

Nh
− µhSn

h +ϕQn
h

)]

−L −1
[

ϖ+ν(1−ϖ)
ϖ L

(

θh −
(β1Im

r +β2Im
h )Sm

h
Nh

− µhSm
h +ϕQm

h

)]∥

∥

∥
,

∥

∥U(En
h )−U(Em

h )
∥

∥=
∥

∥

∥
L −1

[

(1−ϖ)ν+ϖ
ϖ L

(

(β1In
r +β2In

h )S
n
h

Nh
− (α1 +α2 + µh)E

n
h

)]

−L −1
[

ϖ+ν(1−ϖ)
ϖ L

(

(β1Im
r +β2Im

h
)Sm

h
Nh

− (α1 +α2 + µh)E
m
h

)]∥

∥

∥
,

∥

∥U(In
h )−U(Im

h )
∥

∥=
∥

∥

∥
L −1

[

(1−ϖ)ν+ϖ
ϖ L

(

α1En
h − (µh + δh + γ)In

h

)]

−L −1
[

ϖ+ν(1−ϖ)
ϖ L

(

α1Em
h − (µh + δh + γ)Im

h

)]
∥

∥

∥
,

∥

∥U(Qn
h)−U(Qm

h )
∥

∥=
∥

∥

∥
L −1

[

(1−ϖ)ν+ϖ
ϖ L

(

α2En
h − (ϕ + τ + δh + µh)Q

n
h

)]

−L −1
[

ϖ+ν(1−ϖ)
ϖ L

(

α2Em
h − (ϕ + τ + δh + µh)Q

m
h

)]
∥

∥

∥
,

∥

∥U(Rn
h)−U(Rm

h )
∥

∥=
∥

∥

∥
L −1

[

(1−ϖ)ν+ϖ
ϖ L

(

γIn
h + τQn

h − µhRn
h

)]

−L −1
[

ϖ+ν(1−ϖ)
ϖ L

(

γIm
h + τQm

h − µhRm
h

)]∥

∥

∥
,

‖U(Sn
r )−U(Sm

r )‖=
∥

∥

∥
L −1

[

(1−ϖ)ν+ϖ
ϖ L

(

θr −
β3Sn

r In
r

Nr
− µrS

n
r

)]

−L −1
[

ϖ+ν(1−ϖ)
ϖ L

(

θr −
β3Sm

r Im
r

Nr
− µrS

m
r

)]∥

∥

∥
,

‖U(En
r )−U(Em

r )‖=
∥

∥

∥
L −1

[

(1−ϖ)ν+ϖ
ϖ L

(

β3Sn
r In

r
Nr

− (µr +α3)E
n
r

)]

−L −1
[

ϖ+ν(1−ϖ)
ϖ L

(

β3Sm
r Im

r
Nr

− (µr +α3)E
m
r

)]∥

∥

∥
,

‖U(In
r )−U(Im

r )‖=
∥

∥

∥
L −1

[

(1−ϖ)ν+ϖ
ϖ L

(

α3En
r − (µr + δr)I

n
r

)]

−L −1
[

ϖ+ν(1−ϖ)
ϖ L

(

α3Em
r − (µr + δr)I

m
r

)]∥

∥

∥
.

(60)

Triangular inequality combined with further simplification (60) results in























































































































































∥

∥U(Sn
h(t))−U(Sm

h (t))
∥

∥≤ L −1
[

(1−ϖ)ν+ϖ
ϖ L

(
∥

∥

∥
− β1In

r
Nh

(Sn
h − Sm

h )
∥

∥

∥
+
∥

∥

∥
−

β1Sm
h

Nh
(In

r − Im
r )

∥

∥

∥

+
∥

∥

∥
−

β2In
h

Nh
(Sn

h − Sm
h )
∥

∥

∥
+
∥

∥

∥
−

β2Sm
h

Nh
(In

h − Im
h )

∥

∥

∥
+
∥

∥

∥
− µh(S

n
h − Sm

h )
∥

∥

∥
+
∥

∥

∥
ϕ(Qn

h −Qm
h )
∥

∥

∥

)]

,

∥

∥U(En
h (t))−U(Em

h (t))
∥

∥≤ L −1
[

(1−ϖ)ν+ϖ
ϖ L

(
∥

∥

∥

β1In
r

Nh
(Sn

h − Sm
h )
∥

∥

∥
+
∥

∥

∥
−

β1Sm
h

Nh
(In

r − Im
r )

∥

∥

∥

+
∥

∥

∥

β2In
h

Nh
(Sn

h − Sm
h )
∥

∥

∥
+
∥

∥

∥
−

β2Sm
h

Nh
(In

h − Im
h )

∥

∥

∥
+
∥

∥

∥
− (α1 +α2 + µh)(E

n
h −Em

h )
∥

∥

∥

)]

,

∥

∥U(In
h (t))−U(Im

h (t))
∥

∥≤ L −1
[

(1−ϖ)ν+ϖ
ϖ L

(∥

∥

∥
α1(E

n
h −Em

h )
∥

∥

∥
+
∥

∥

∥
− (µh + δh + γ)(In

h − Im
h )

∥

∥

∥

)]

,

∥

∥U(Qn
h(t))−U(Qm

h (t))
∥

∥≤ L −1
[

(1−ϖ)ν+ϖ
ϖ L

(∥

∥

∥
α2(E

n
h −Em

h )
∥

∥

∥

+
∥

∥

∥
− (ϕ + τ + δh + µh)(Q

n
h −Qm

h )
∥

∥

∥

)]

,

∥

∥U(Rn
h(t))−U(Rm

h (t))
∥

∥≤ L −1
[

(1−ϖ)ν+ϖ
ϖ L

(∥

∥

∥
γ(In

h − Im
h )

∥

∥

∥
+
∥

∥

∥
τ(Qn

h −Qm
h

∥

∥

∥

+
∥

∥

∥
− µh(R

n
h −Rm

h )
∥

∥

∥

)]

,

‖U(Sn
r (t))−U(Sm

r (t))‖ ≤ L −1
[

(1−ϖ)ν+ϖ
ϖ L

(
∥

∥

∥
− β3Sn

r
Nr

(In
r − Im

r )
∥

∥

∥
+
∥

∥

∥
− β3Im

r
Nr

(Sn
r − Sm

r )
∥

∥

∥

+
∥

∥

∥
− µr(S

n
r − Sm

r )
∥

∥

∥

)]

,

‖U(En
r (t))−U(Em

r (t))‖ ≤ L −1
[

(1−ϖ)ν+ϖ
ϖ L

(
∥

∥

∥

β3Sn
r

Nr
(In

r − Im
r )

∥

∥

∥
+
∥

∥

∥

β3Im
r

Nr
(Sn

r − Sm
r )
∥

∥

∥

+
∥

∥

∥
− (µr +α3)(E

n
r −Em

r )
∥

∥

∥

)]

,

‖U(In
r (t))−U(Im

r (t))‖ ≤ L −1
[

(1−ϖ)ν+ϖ
ϖ L

(∥

∥

∥
α3(E

n
r −Em

r

∥

∥

∥
+
∥

∥

∥
− (µr + δr)(I

n
r − Im

r )
∥

∥

∥

)]

.

(61)

Given that the discovered solutions take on a comparable role, we assume that

‖Sn
h(t)− Sm

h (t)‖= ‖En
h(t)−Em

h (t)‖= ‖In
h (t)− Im

h (t)‖= ‖Qn
h(t)−Qm

h (t)‖

= ‖Rn
h(t)−Rm

h (t)‖= ‖Sn
r (t)− Sm

r (t)‖= ‖En
r (t)−Em

r (t)‖= ‖In
r (t)− Im

r (t)‖ .
(62)
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By changing this in (62), we get the connection shown below.























































































































































∥

∥U(Sn
h(t))−U(Sm

h (t))
∥

∥≤ L −1
[

(1−ϖ)ν+ϖ
ϖ L

(∥

∥

∥
− β1In

r
Nh

(Sn
h − Sm

h )
∥

∥

∥
+
∥

∥

∥
−

β1Sm
h

Nh
(Sn

h − Sm
h )
∥

∥

∥

+
∥

∥

∥
−

β2In
h

Nh
(Sn

h − Sm
h )
∥

∥

∥
+
∥

∥

∥
−

β2Sm
h

Nh
(Sn

h − Sm
h )
∥

∥

∥
+
∥

∥

∥
− µh(S

n
h − Sm

h )
∥

∥

∥
+
∥

∥

∥
ϕ(Sn

h − Sm
h )
∥

∥

∥

)]

,

∥

∥U(En
h (t))−U(Em

h (t))
∥

∥≤ L −1
[

(1−ϖ)ν+ϖ
ϖ L

(∥

∥

∥

β1In
r

Nh
(En

h −Em
h )

∥

∥

∥
+
∥

∥

∥
−

β1Sm
h

Nh
(En

h −Em
h )

∥

∥

∥

+
∥

∥

∥

β2In
h

Nh
(En

h −Em
h )

∥

∥

∥
+
∥

∥

∥
−

β2Sm
h

Nh
(En

h −Em
h )

∥

∥

∥
+
∥

∥

∥
− (α1 +α2 + µh)(E

n
h −Em

h )
∥

∥

∥

)]

,

∥

∥U(In
h (t))−U(Im

h (t))
∥

∥≤ L −1
[

(1−ϖ)ν+ϖ
ϖ L

(∥

∥

∥
α1(I

n
h − Im

h )
∥

∥

∥
+
∥

∥

∥
− (µh + δh + γ)(In

h − Im
h )

∥

∥

∥

)]

,

∥

∥U(Qn
h(t))−U(Qm

h (t))
∥

∥≤ L −1
[

(1−ϖ)ν+ϖ
ϖ L

(∥

∥

∥
α2(Q

n
h −Qm

h )
∥

∥

∥

+
∥

∥

∥
− (ϕ + τ + δh + µh)(Q

n
h −Qm

h )
∥

∥

∥

)]

,

∥

∥U(Rn
h(t))−U(Rm

h (t))
∥

∥≤ L −1
[

(1−ϖ)ν+ϖ
ϖ L

(∥

∥

∥
γ(Rn

h −Rm
h )
∥

∥

∥
+
∥

∥

∥
τ(Rn

h −Rm
h

∥

∥

∥

+
∥

∥

∥
− µh(R

n
h −Rm

h )
∥

∥

∥

)]

,

‖U(Sn
r (t))−U(Sm

r (t))‖ ≤ L −1
[

(1−ϖ)ν+ϖ
ϖ L

(∥

∥

∥
− β3Sn

r
Nr

(Sn
r − Sm

r )
∥

∥

∥
+
∥

∥

∥
− β3Im

r
Nr

(Sn
r − Sm

r )
∥

∥

∥

+
∥

∥

∥
− µr(S

n
r − Sm

r )
∥

∥

∥

)]

,

‖U(En
r (t))−U(Em

r (t))‖ ≤ L −1
[

(1−ϖ)ν+ϖ
ϖ L

(∥

∥

∥

β3Sn
r

Nr
(En

r −Em
r )

∥

∥

∥
+
∥

∥

∥

β3Im
r

Nr
(En

r −Em
r )

∥

∥

∥

+
∥

∥

∥
− (µr +α3)(E

n
r −Em

r )
∥

∥

∥

)]

,

‖U(In
r (t))−U(Im

r (t))‖ ≤ L −1
[

(1−ϖ)ν+ϖ
ϖ L

(∥

∥

∥
α3(I

n
r − Im

r

∥

∥

∥
+
∥

∥

∥
− (µr + δr)(I

n
r − Im

r )
∥

∥

∥

)]

.

(63)

Also Sm
h , Sn

r , In
r , In

h and Im
r are convergent sequence, We can acquire three different positive constants since they are

bounded Ξ1, Ξ2, Ξ3, Ξ4 and Ξ5 for all t such as

‖Sm
h ‖< Ξ1, ‖Sn

r‖< Ξ2, ‖In
r ‖< Ξ3,‖In

h‖< Ξ4, ‖Im
r ‖< Ξ5. (64)

Next consider Equations (63) and (64), we get







































































































∥

∥U(Sn
h(t))−U(Sm

h (t))
∥

∥≤
(

β1Ξ3
Nh

h1(ν)+
β1Ξ1

Nh
h2(ν)+

β2Ξ4
Nh

h3(ν)+
β2Ξ1

Nh
h4(ν)

+µhh5(ν)+ϕh6(ν)
)

,

∥

∥U(En
h (t))−U(Em

h (t))
∥

∥≤
(

β1Ξ3
Nh

h7(ν)+
β1Ξ1

Nh
h8(ν)+

β2Ξ4
Nh

h9(ν)+
β2Ξ1

Nh
h10(ν)

+(α1 +α2 + µh)h11(ν)
)

,

∥

∥U(In
h (t))−U(Im

h (t))
∥

∥≤
(

α1h12(ν)+ (µh + δh + γ)h13(ν)
)

,

∥

∥U(Qn
h(t))−U(Qm

h (t))
∥

∥≤
(

α2h14(ν)+ (ϕ + τ + δh + µh)h15(ν)
)

,

∥

∥U(Rn
h(t))−U(Rm

h (t))
∥

∥≤
(

γh16(ν)+ τh17(ν)+ µhh18(ν)
)

,

‖U(Sn
r (t))−U(Sm

r (t))‖ ≤
(

β3Ξ2
Nr

h19(ν)+
β3Ξ5

Nr
h20(ν)+ µrh21(ν)

)

,

‖U(En
r (t))−U(Em

r (t))‖ ≤
(

β3Ξ2

Nr
h22(ν)+

β3Ξ5
Nr

h23(ν)+ (µr +α3)h24(ν)
)

,

‖U(In
r (t))−U(Im

r (t))‖ ≤
(

(δr + µr)h26(ν)+ h25(ν)α3

)

.

(65)

where hi(ν), i = 1,2,3, · · · ,26 are functions from L −1
[

L (1−ϖ)ν+ϖ
ϖ

]

.

As a result, the mapping Y has a fixed point. We then show that Y satisfies each condition in the aforementioned
Theorem 4. Provided that equations (64) and (65) are correct.

ℵ = (0,0,0,0,0,0,0,0,0,0),
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ℵ =



























































































(

β1Ξ3

Nh
h1(ν)+

β1Ξ1

Nh
h2(ν)+

β2Ξ4

Nh
h3(ν)+

β2Ξ1

Nh
h4(ν)+ µhh5(ν)+ϕh6(ν)

)

< 1,
(

β1Ξ3
Nh

h7(ν)+
β1Ξ1

Nh
h8(ν)+

β2Ξ4
Nh

h9(ν)+
β2Ξ1

Nh
h10(ν)+ (α1 +α2 + µh)h11(ν)

)

< 1,
(

α1h12(ν)+ (µh + δh + γ)h13(ν)
)

< 1,
(

α2h14(ν)+ (ϕ + τ + δh + µh)h15(ν)
)

< 1,
(

γh16(ν)+ τh17(ν)+ µhh18(ν)
)

< 1,
(

β3Ξ2
Nr

h19(ν)+
β3Ξ5

Nr
h20(ν)+ µrh21(ν)

)

< 1,
(

β3Ξ2
Nr

h22(ν)+
β3Ξ5

Nr
h23(ν)

+(µr +α3)h24(ν)
)

< 1,
(

α3h25(ν)+ (µr + δr)h26(ν)
)

< 1.

(66)

all the conditions in Theorem 5 are satisfied by U. Therefore, U is Picard U stable.

6 Results and discussion

The Caputo Fabrizio Monkeypox model (6) is numerically simulated in the current part for various values of the
fractional order ν ∈ (0,1). The pertinent physical parameters are listed along with their values. Figures (1-8) display the
numerical simulations for the vulnerable individuals category. Sh(t) for the population that exposed humans, see Eh(t)
for the population that was infected by humans, see Ih(t). Qh(t) represents the collective of the separated persons, Using
the Iterative Laplace transform method of the fractional Monkeypox model, symptom free values of Rh(t) for the group
of recovered humans, Sr(t) for the group of susceptible rodents, Er(t) for the exposed rodents, and Ir(t) for the infected
rodents group have been obtained. This shows that the approach of Iterative Laplace Transform can forecast stated
behaviour. The simulations show that the dynamics of the model are influenced by esteem differences. Non-integer order
barely affects the Monkeypox model’s transmission dynamics.

As shown in Figure 1, the vulnerable human population that is unvaccinated Sh(t) first exhibits some expansion
before experiencing a sharp decline at different fractional levels. Figure 2’s graph of Ih(t) for the population exposed to
humans demonstrates that it grows quickly in the first few years and subsequently dramatically drops at various fractional
levels. According to figure 3, the population of Ih(t) for the infected population is declining with time and growing as
the equilibrium point converges to integer and noninteger values of ν . Figure 4 demonstrates that for both integer and
non-integer values of ν , the population of Qh(t), which represents the group of solitary monkeypox patients who are
asymptomatic, rises with equilibrium point convergence to non zero. Figure 5 demonstrates that for both integer and non
integer values of order ν , the population of Rh(t) for the set of people who have recovered rises as the equilibrium point
converges to non-zero. Figure 6 demonstrates that for both integer and non-integer values of ν , the population of Sr(t) for
the group of sensitive rats with severe symptoms rises as the equilibrium point converges to non-zero. The population of
Er(t) increases for exposed rodent circumstances as the equilibrium point approaches non-zero for both integer and non-
integer values of ν , as shown by Figure 7. Figure 8 shows that the population of Ir(t) the infected rodent cases increases
as the equilibrium point converges to non zero for both integer and non-integer values of ν . This demonstrates that a
certain fractional operator, such as the CF operator, adds to precise forecasts and is less noisy. As an added bonus, Caputo
Fabrizio’s hybrid features enable him to accurately capture complex patterns and make insightful forecasts.
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Fig. 1: Simulation Sh(t) population at different fractional order values.
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Fig. 2: Simulation Eh(t) population at different fractional order values.
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Fig. 3: Simulation Ih(t) population at different fractional order values.
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Fig. 4: Simulation Qh(t) population at different fractional order values.
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Fig. 5: Simulation Rh(t) population at different fractional order values.
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Fig. 6: Simulation Sr(t) population at different fractional order values.
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Fig. 7: Simulation Er(t) population at different fractional order values.
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Fig. 8: Simulation Ir(t) population at different fractional order values.

7 Conclusion

In this research, we observe the transmission Monkeypox virus in society by using the Caputo Fabrizio fractional
operator. The Banach theory results are used for existence, singularity and stability for steady solutions. The progression
of outcomes produced by this effective strategy demonstrates a accurate agreement to restrict the terrible consequences
of Mokeypox for the various time period in specific time. It is predicted that reducing the fractional values rather than the
classical derivative would lead to a more successful solution since the behavior in all figures is predicted to be close to a
steady state by using laplace transform with Adomian decomposition method. These simulations demonstrate how
variations in value have an effect on the model’s behaviour having better convergence approach for such epidemic model.
Future simulations with different parameter combinations may be utilized to produce a sample of possible dynamical
framework behaviour. The techniques outlined in this article ought to be applicable to epidemic models other than the
Monkeypox model as well. The simulations’ findings support the accuracy and effectiveness of the Caputo Fabrizio
non-integer derivative in estimating the dynamics of the Brucellosis illness and other issues of a similar nature.
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