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Abstract: This research paper focuses on investigating the existence and uniqueness of solutions in fractional boundary value problems

related to implicit impulsive fractional differential equations, which encompass both fractional derivatives and integrals. The application

of the fixed point theorem is pivotal in exploring the primary outcomes, while the uniqueness of solutions is further explored using the

Banach contraction mapping principle. Concrete examples are presented to elucidate and demonstrate the obtained results.
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1 Introduction

The foundations of fractional calculus and fractional differential equations have emerged as essential models in
numerous fields, including engineering, chemistry, physics, economics, signal processing, cancer treatment, mechanics,
aerodynamics, complex media electrodynamics, and mathematical biology. For a comprehensive understanding of this
theory and its practical applications, interested readers can refer to the following references [1,2,3,4]. These sources
delve into the intricacies of the theory and provide in-depth insights into its wide-ranging applications.

Impulsive differential equations have laid the groundwork for understanding the microscopic realm of biology,
prompting a reevaluation of nature. They hold significant relevance in various applications in bioinformatics and find
practical utility in biotechnologies. For more detailed information on this subject and its applications, the following
references can be consulted [5,7]. These sources delve into the significance of impulsive differential equations in
advancing our understanding of biological systems and highlight their practical implications in the fields of
bioinformatics and biotechnology.

In recent years, fractional differential equations have seen significant progress. Key developments in this area are
documented in the monographs cited in the references. For instance, M. Benchohra and J.E. Lazreg have focused on
implicit fractional differential equations, as noted in [10]. Moreover, K.D. Kucche, J.J. Nieto, and V. Venktesh have
delved into the nonlinear aspects of these equations, with particular attention to their continuous dependence properties,
as discussed in [13]. These works offer a thorough understanding of the advancements in fractional differential equations,
especially regarding implicit formulations.

The investigation of hybrid fractional differential equations has attracted the attention of various researchers. These
equations encompass a combination of a fractional derivative of an unknown function with a nonlinearity that depends
on it. Recent advancements in the field of hybrid differential equations can be found in a series of papers referenced as
[8]-[11].
This paper focuses on the study of fractional boundary value problems for implicit impulsive hybrid fractional differential
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equations of the form:

cDν
( ϑ̂(κ̂)

ϖ(κ̂, ϑ̂(κ̂))

)

= ξ̂ (κ̂, ϑ̂(κ̂)), κ̂ ∈ J := [0,T], 1 < ν ≤ 2 (1)

ϑ̂(κ̂+
k ) = ϑ̂(κ̂−

k )+ yk, k = 1,2, ...,m yk ∈R,
ϑ̂(0)

ϖ(0, ˆ̂ϑ(0))
= 0, (2)

subject to the boundary conditions

λ Dτ1

( ϑ̂(T)

ϖ(T, ϑ̂ (T))

)

+(1−λ )Dτ2

( ϑ̂(T)

ϖ(T, ϑ̂ (T))

)

= τ3, (3)

µIσ1

( ϑ̂(T)

ϖ(T, ϑ̂ (T))

)

+(1− µ)Iσ2

( ϑ̂(T)

ϖ(T, ϑ̂ (T))

)

= σ3, (4)

µDτ1

( ϑ̂(T)

ϖ(T, ϑ̂ (T))

)

+(1− µ)Iσ2

( ϑ̂(T)

ϖ(T, ϑ̂ (T))

)

= τ3. (5)

where Dφ is the Caputo fractional derivative of order φ ∈ {ν,τ1,τ2} such that 1 < ν ≤ 2, 0 < τ1,τ2 < ν , τ3,σ3 ∈R, Iχ is
the Riemann-Liouville fractional integral of order χ ∈ {σ1,σ2}, 0 ≤ λ ,µ ≤ 1 is given constant and

ϖ : J ×R→ R\ {0} and ξ̂ : J ×R→R is given continuous functions.

By a solution of the peoblem (1)-(2)-(3) we mean a function ϑ̂ ∈ C (J ,R) such that

(i) the function κ̂ 7→ ϑ̂
ϖ(κ̂,ϑ̂ ))

is continuous for each ϑ ∈R, and

(ii) ϑ satisfies the equations in (1)-(2)-(3).

The fractional boundary value problem (1)-(2)-(3) is equivalent to the integral equation:

ϑ̂(κ̂) = ϖ(κ̂, ϑ̂(κ̂))
[ m

∑
i=1

yi + Iνg(κ̂)+
κ̂

Λ1

[

τ3 − Iν−τ1g1(κ̂)− Iν−τ2g2(κ̂)
]

]

, for κ̂ ∈ (κ̂m,T], (6)

where the non zero constant Λ1 is defined by

Λ1 =
λ T 1−τ1

Γ (2− τ1)
+

(1−λ )T1−τ2

Γ (2− τ2)
. (7)

and g,g1,g2 ∈ C (J ,R) satisfies the functional equation where

Iνg(κ̂) =
1

Γ (ν)

∫

κ̂

0
(κ̂− s)ν−1ξ̂ (s, ϑ̂(s))ds,

Iν−τ1g1(κ̂) =
λ

Γ (ν − τ1)

∫ T

0
(T − s)ν−τ1+1ξ̂ (s, ϑ̂(s))ds,

Iν−τ2g2(κ̂) =
(1−λ )

Γ (ν − τ2)

∫ T

0
(T − s)ν−τ2+1ξ̂ (s, ϑ̂(s))ds.

The remaining sections of this paper are structured as follows. Section 2 provides a concise overview of the
fundamental tools associated with fractional calculus. In Section 3, we present the main result of our study. The
conclusions are drawn in Section 4. Finally, Section 5 is dedicated to a concrete application.

2 Preliminary Results

In this section, we present the notations, definitions, and preliminary results that will be used throughout the paper
Throughout this paper denotes J0 = [0, κ̂1], J1 = (κ̂1, κ̂2], . . . , Jn−1 = (κ̂n−1, κ̂n], Jn = (κ̂n,1], and we introduce
the spaces: For κ̂i ∈ (0,1) such that κ̂1 < κ̂2 < .. . < κ̂n, and I′ = I \ {κ̂1, κ̂2, ..., κ̂n} and denote by

C = {ϑ : [0,1]−→ R : ϑ ∈C(I′) and left ϑ(κ̂+
i ) and right limit ϑ(κ̂−

i )) exist and u(κ̂−
i ) = u(κ̂i),1 ≤ i ≤ n}.

the Banach space with the norm ||ϑ̂ ||= sup
κ̂∈J

{|ϑ̂(κ̂)|, ϑ̂ ∈ C (J ,R)}.
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Definition 1.The derivative of fractional order ν > 0 of a function y : (0,∞)→ R is given by

Dν
0+y(κ̂) =

1

Γ (n−ν)

( d

dt

)n
∫

κ̂

0

y(s)

(κ̂− s)ν−n+1
ds,

where n = [ν]+ 1, provided the right side is pointwise defined on (0,∞).

Definition 2.The fractional order integral of the function h ∈ L1([0,T ],R+) of order ν ∈ R+ is defined by

Iν h(κ̂) =
1

Γ (ν)

∫

κ̂

0
(κ̂− s)ν−1h(s)ds,

where Γ is the Euler’s gamma function defined by Γ (ν) =
∫ ∞

0 κ̂
ν−1e−κ̂dκ̂,ν > 0.

Definition 3.For a function h ∈ ACn(J ), the Caputo’s fractional-order derivative of order ν is defined by

cDν
0 h(κ̂) =

1

Γ (n−ν)

∫

κ̂

0
(κ̂− s)n−ν−1h(n)(s)ds,

where n = [ν]+ 1 and [ν] denotes the integer part of the real number ν .

Lemma 1.For ν > 0, the general solution of the FDE’s cDν ϑ̂(κ̂) = 0 is given by

ϑ̂(κ̂) = c0 + c1κ̂+ . . .+ cn−1κ̂
n−1,

where ci ∈ R, i = 0,1,2, . . . ,n− 1 (n = [ν]+ 1).

In view of Lemma 1, it follows that

Iν cDν ϑ̂(κ̂) = ϑ̂(κ̂)+ c0 + c1κ̂+ . . .+ cn−1κ̂
n−1, (8)

for some ci ∈ R, i = 0,1,2, . . . ,n− 1 (n = [ν]+ 1).

Lemma 2.The boundary value problem

Dν
( ϑ̂(κ̂)

ϖ(κ̂, ϑ̂(κ̂))

)

= ω(κ̂), κ̂ ∈ (0,T),

ϑ̂(0)

ϖ(0, ϑ̂(0))
= 0, λ Dτ1

( ϑ̂(T )

ϖ(T, ϑ̂ (T))

)

+(1−λ )Dτ2

( ϑ̂(T)

ϖ(T, ϑ̂(T))

)

= τ3,

(9)

is equivalent to the integral equation

ϑ̂(κ̂) = ϖ(κ̂, ϑ̂(κ̂))
[ 1

Γ (ν)

∫

κ̂

0
(κ̂− s)ν−1ω(s)ds

+
κ̂

Λ1

(

τ3 −
λ

Γ (ν − τ1)

∫ T

0
(T − s)ν−τ1+1ω(s)ds

−
1−λ

Γ (ν − τ2)

∫ T

0
(T − s)ν−τ2+1ω(s)ds

)]

, κ̂ ∈ J := [0,T],

(10)

where the non zero constant Λ1 is defined by

Λ1 =
λ T 1−τ1

Γ (2− τ1)
+

(1−λ )T1−τ2

Γ (2− τ2)
. (11)

Proof:
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From the first equation of (9), we have

Dν
( ϑ̂(κ̂)

ϖ(κ̂, ϑ̂ (κ̂))

)

= ω(κ̂), κ̂ ∈ J . (12)

we obtain
ϑ̂(κ̂)

ϖ(κ̂, ϑ̂(κ̂))
= 1

Γ (ν)

∫

κ̂

0 (κ̂− s)ν−1ω(s)ds+C1 +C2κ̂, for C1, C2 ∈ R.

The first boundary condition of (9) implies that C1 = 0. Hence

ϑ̂(κ̂)

ϖ(κ̂, ϑ̂ (κ̂))
=

1

Γ (ν)

∫

κ̂

0
(κ̂− s)ν−1ω(s)ds+C2κ̂. (13)

Applying the Caputo fractional derivative of order ψ ∈ {τ1,τ2} such that 0 < ψ < ν − τ to (13), we have

Dψ
( ϑ̂(κ̂)

ϖ(κ̂, ϑ̂(κ̂))

)

=
1

Γ (ν −ψ)

∫

κ̂

0
(κ̂− s)ν−ψ+1ω(s)ds+C2

1

Γ (2−ψ)
κ̂

1−ψ .

Substituting the values ψ = τ1 and ψ = τ2 to the above relation and using the second condition of (9), we obtain

τ3 =
λ

Γ (ν − τ1)

∫ T

0
(T− s)ν−τ1+1ω(s)ds+

λ T1−τ1

Γ (2− τ1)
C2

+
1−λ

Γ (ν − τ2)

∫ T

0
(T− s)ν−τ2+1ω(s)ds+

(1−λ )T1−τ2

Γ (2− τ2)
C2,

which leads to

C2 =
1

Λ1

[

τ3 −
λ

Γ (ν − τ1)

∫ T

0
(T− s)ν−τ1+1ω(s)ds

−
1−λ

Γ (ν − τ2)

∫ T

0
(T− s)ν−τ2+1ω(s)ds

]

.

Substituting the value of the constant C2 in (13), we deduce the integral equation (10). The converse follows by direct
computation. This completes the proof.

Theorem 1.[9] Let Ŝ be a nonempty, closed convex and bounded subset of a Banach algebra X̂ and let ˆA , Ĉ : X̂ −→
X̂ and B̂ : Ŝ −→ X̂ be three operators satisfying:

(a1) ˆA is Lipschitzian with Lipschitz constants δ ,

(b1) B̂ is compact and continuous,

(c1) x = ˆA xB̂y =⇒ x ∈ Ŝ for all y ∈,Ŝ

(d1) δM̂ +ρ < 1, where M̂ = ‖B̂(Ŝ )‖.

Then the operator equation x = ˆA xB̂y has a solution.

3 Main Results

In the following sections of this paper, we will base our analysis on the following assumptions:
(A1) The function ϖ : J = [0,T]×R→R\ {0} be a continuous function.
(A2) There exists constants q0,q1 > 0 such that

|ϖ(κ̂, û)−ϖ(κ̂, v̂)| ≤ q0|û− v̂|, for any û, v̂ ∈ R, κ̂ ∈ J ,

|ξ̂ (κ̂, û)− ξ̂(κ̂, v̂)| ≤ q1|û− v̂|, for any û, v̂ ∈ R, κ̂ ∈ J .

(A3) There exists a continuous nondecreasing functions m,ϕ on [0,∞)→ (0,∞) such that

|ϖ(κ̂,u)| ≤ m(κ̂),
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|ξ (κ̂,u)| ≤ ϕ(κ̂).

(A4) There exist a function p(κ̂) ∈ C 1([0,T],R+) such that

|ϖ(κ̂,0)|< p(κ̂), κ̂ ∈ [0,T].

Theorem 2.Assume that (A1)− (A3) are holds. If

q0

[

q1

( T ν

Γ (ν + 1)
−

T ν+1|λ |

Λ1Γ (ν + τ1 + 1)
+

T ν+1|1−λ |

Λ1Γ (ν + τ2 + 1)

)

+
m

∑
i=1

|yi|+
T ν+1

Λ1

|τ3|
]

< 1,

then there exists a on solution for (1)− (2)− (3) on J .

Proof:

We defined a subset Ŝ of Ĉ by be a closed bounded and convex subset of Ŝ of X̂ where r is a fixed constant by:

Ŝ = {ϑ ∈ Ĉ /‖ϑ‖ ≤ r},

where,

r ≥

M0

[ Tν

Γ (ν + 1)
− Tν+1|λ |

Λ1Γ (ν+τ1+1)
+ Tν+1|1−λ |

Λ1Γ (ν+τ2+1)

]

+
m

∑
i=1

|yi|+
Tν+1

Λ1

|τ3|
]

1− q1

[ T ν

Γ (ν + 1)
− Tν+1|λ |

Λ1Γ (ν+τ1+1) +
Tν+1|1−λ |

Λ1Γ (ν+τ2+1)

]

+
m

∑
i=1

|yi|+
Tν+1

Λ1

|τ3|
]

,

and therefor Ŝ satisfies hypothesis of theorem 1 . Define three operators ˆA : Ĉ −→ Ĉ , B̂ : Ŝ −→ Ĉ by:

ˆA ϑ̂(κ̂) = ϖ(κ̂, ϑ̂(κ̂)), κ̂ ∈ J (14)

and

B̂ϑ̂(κ̂) = Iν ξ̂ (κ̂, ϑ̂(κ̂))+
m

∑
i=1

yi +
κ̂

Λ1

[

γ3 − Iν−τ1 ξ̂ (κ̂, ϑ̂(κ̂))− Iν−τ2 ξ̂ (κ̂,ϑ(κ̂))
]

, for κ̂ ∈ (κ̂m,T] (15)

Now with this data we can transform the hybrid integral equation 10 into the operator equation as

ϑ̂(κ̂) = A ϑ̂(κ̂)Bϑ̂ (κ̂) , κ̂ ∈ [0,T] (16)

Clearly, the fixed points of operator 16 is solution of problem (1)− (2)− (3).

First let us show that the operators ˆA ,B̂ satisfy all the conditions of Theorem 1.

Claim 1: let ϑ̂ ,ε ∈ Ĉ then by hypothesis (H1),

| ˆA ϑ̂(κ̂)− ˆA ε(κ̂)|= |ϖ(κ̂, ϑ̂(κ̂))−ϖ(κ̂,ε(κ̂))| ≤ q0|ϑ̂(κ̂)− ε(κ̂)| ≤ q0‖ϑ̂ − ε‖,

for all κ̂ ∈ J .
Taking supremum over κ̂, we obtain

‖ ˆA ϑ̂ − ˆA ε‖ ≤ q0‖ϑ̂ − ε‖ for all ϑ̂ ,ε ∈ Ĉ .

Claim 2: second let us show that B̂ is continuous in Ŝ .
Let (ϑ̂n)n be a sequence in Ŝ converging to a point ϑ̂ ∈ Ŝ . Then by Lebesgue dominated convergence theorem, Then
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lim
n→∞

B̂ϑ̂n(κ̂) = limn→∞

[ m

∑
i=1

yi +
1

Γ (ν)

∫

κ̂

0
(κ̂− s)ν−1ξ̂ (s, ϑ̂n(s))ds

+ κ̂

Λ1

(

|τ3|−
|λ |

Γ (ν−τ1)

∫ T
0 (T− s)ν−τ1+1ξ̂ (s, ϑ̂n(s))ds

]

− |(1−λ )|
Γ (ν−τ2)

∫ T
0 (T− s)ν−τ2+1ξ̂ (s, ϑ̂n(s))ds

)

=
m

∑
i=1

yi +
1

Γ (ν)

∫

κ̂

0
(κ̂− s)ν−1 lim

n→∞
ξ̂ (s, ϑ̂n(s))ds

+ κ̂

Λ1

(

|τ3|−
|λ |

Γ (ν−τ1)

∫ T
0 (T− s)ν−τ1+1 lim

n→∞
ξ̂ (s, ϑ̂n(s))ds

− |(1−λ )|
Γ (ν−τ2)

∫ T
0 (T− s)ν−τ2+1 lim

n→∞
ξ̂ (s, ϑ̂n(s))ds

)

=
m

∑
i=1

yi +
1

Γ (ν)

∫

κ̂

0
(κ̂− s)ν−1ξ̂ (s, ϑ̂ (s))ds

+ κ̂

Λ1

(

|τ3|−
|λ |

Γ (τ−τ1)

∫ T
0 (T− s)ν−τ1+1ξ̂ (s, ϑ̂ (s))ds

− |(1−λ )|
Γ (ν−τ2)

∫ T
0 (T− s)ν−τ2+1ξ̂ (s, ϑ̂ (s))ds

)

= B̂ϑ̂(κ̂),

for all κ̂ ∈ [0,T]. Therefore the B̂ is a continuous operator on Ŝ .

Claim 3: To show that the B̂ is compact operator on Ŝ .
Let ϑ̂ ∈ Ŝ , for all κ̂ ∈ J define

sup
0≤κ̂≤1

|ξ̂ (κ̂,0)|= M0,

where

r = |m|
[

|ϕ |
[ Tν

Γ (ν + 1)
− Tν+1|λ |

Λ1Γ (ν+τ1+1) +
Tν+1|1−λ |

Λ1Γ (ν+τ2+1)

]

+
m

∑
i=1

|yi|+
Tν+1

Λ1

|τ3|
]

,

First, we show that B̂(Ŝ ) is a uniformly bounded set in Ŝ .

For ϑ̂ ∈ Ŝ , κ̂ ∈ [0,T], we have:

|B̂ϑ̂(κ̂)| ≤
m

∑
i=1

|yi|+
1

Γ (ν)

∫

κ̂

0
(κ̂− s)ν−1|ξ̂ (s, ϑ̂ (s))− ξ̂ (s,0)+ ξ̂(s,0)|ds

+ κ̂

Λ1

(

|τ3|−
|λ |

Γ (ν−τ1)

∫ T
0 (T− s)h−τ1+1|ξ (s,ϑ(s))− ξ̂ (s,0)+ ξ̂(s,0)|ds

− |(1−λ )|
Γ (ν−τ2)

∫ T
0 (T− s)ν−τ2+1|ξ (s,ϑ(s))− ξ̂ (s,0)+ ξ̂(s,0)|ds

)

.

Consequently,

‖B̂ϑ̂‖ ≤
m

∑
i=1

|yi|+
T ν

Γ (ν + 1)

(

q1‖ϑ̂‖+M0

)

+
Tν+1

Λ1

(

|τ3|−
|λ |

Γ (ν + τ1 + 1)

(

q1‖ϑ̂‖+M0

)

+
|1−λ |

Γ (ν + τ2 + 1)

(

q1‖ϑ̂‖+M0

)

)

≤
(

q1‖ϑ̂‖+M0

)

[ Tν

Γ (ν + 1)
− T ν+1|λ |

Λ1Γ (ν+τ1+1) +
T ν+1|1−λ |

Λ1Γ (ν+τ2+1)

]

+
m

∑
i=1

|yi|+
Tν+1

Λ1

|τ3|.

Thus

‖B̂ϑ̂‖ ≤
(

q1‖ϑ̂‖+M0

)

[ Tν

Γ (ν + 1)
− Tν+1|λ |

Λ1Γ (ν+τ1+1) +
Tν+1|1−λ |

Λ1Γ (ν+τ2+1)

]

+
m

∑
i=1

|yi|+
Tν+1

Λ1

|τ3|
]

.

for all ϑ̂ ∈ Ŝ .
This shows that B̂ is uniformly bounded on Ŝ .

Next, we show that B̂(Ŝ ) is an equi-continuous set on Ŝ .

Let κ̂1, κ̂2 ∈ J , then for any ϑ̂ ∈ Ŝ

|B̂ϑ̂(κ̂2)− B̂ϑ̂(κ̂1)| ≤
m

∑
i=1

|yi|+
1

Γ (ν)

(

∫

κ̂2

0
(κ̂2 − s)ν−1|ξ̂ (s, ϑ̂ (s))|−

∫

κ̂1

0
(κ̂1 − s)ν−1|ξ̂ (s, ϑ̂ (s))|ds

)

+ (κ̂2−κ̂1)
Λ1

(

|τ3|−
|λ |

Γ (ν−τ1)

∫ T
0 (T− s)ν−τ1+1|ξ̂ (s, ϑ̂ (s)|ds

≤
m

∑
i=1

|yi|+
1

Γ (ν)

∫

κ̂2

κ̂1

|ξ̂ (s, ϑ̂ (s))|ds

+ (κ̂2−κ̂1)
Λ1

(

|τ3|−
|λ |

Γ (ν−τ1)

∫ T
0 (T− s)ν−τ1+1|ξ̂ (s, ϑ̂ (s)|ds.
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Hence
∀ε > 0, ∃η > 0 : |κ̂1 − κ̂2|< η =⇒ |B̂ϑ̂(κ̂1)− B̂ϑ̂(κ̂2)|< ε

for all κ̂1, κ̂2 ∈ J and for all ϑ̂ ∈ Ĉ .

Therefore the operator B̂(Ŝ ) is equicontinuous set in Ĉ .

Then by Arzelá-Ascoli theorem, B̂ is a continuous and compact operator on Ŝ .
Claim 4: Next we prove that (c) of theorem 1 .

Let ϑ̂ ∈ C and ε ∈ Ŝ be arbitrary such that ϑ̂ = ˆA ϑ̂B̂ε .
Then,

|ϑ̂(κ̂)| = | ˆA ϑ̂(κ̂)||B̂ε(κ̂)|

≤ |ϖ(κ̂, ϑ̂ (κ̂))|
[ m

∑
i=1

|yi|+
1

Γ (ν)

∫

κ̂

0
(κ̂− s)ν−1|ξ̂ (s,ε(s))|ds

+ κ̂

Λ1

(

|τ3|−
|λ |

Γ (ν−τ1)

∫ T
0 (T− s)ν−τ1+1|ξ̂ (s,ε(s))|ds

− |(1−λ )|

Γ (ϑ̂−τ2)

∫ T
0 (T− s)ν−τ2+1|ξ̂ (s, ϑ̂ (s))|ds

)]

≤ |m(κ̂)|
[ m

∑
i=1

|yi|+
1

Γ (ν)

∫

κ̂

0
(κ̂− s)ν−1φ(κ̂)ds

+ κ̂

Λ1

(

|τ3|−
|λ |

Γ (ν−τ1)

∫ T
0 (T− s)ν−τ1+1|φ(κ̂)ds

− |(1−λ )|
Γ (ϑ−τ2)

∫ T
0 (T− s)ν−τ2+1φ(κ̂)ds

)]

≤ |m|
[

|φ |
[ Tν

Γ (ν + 1)
− Tν+1|λ |

Λ1Γ (ν+τ1+1) +
Tν+1|1−λ |

Λ1Γ (ν+τ2+1)

]

+
m

∑
i=1

|yi|+
Tν+1

Λ1

|τ3|
]

.

Further, we obtain

‖ϑ̂‖ ≤ r.

Then ϑ̂ ∈ Ŝ and hence the hypothesis (c1) of theorem 1 is satisfied.
Finally, we have

M = ‖B̂(Ŝ )‖ = sup{|B̂ϑ̂ | : ϑ̂ ∈ Ŝ } ≤ q1

[ Tν

Γ (ν + 1)
− Tν+1|λ |

Λ1Γ (ν+τ1+1) +
Tν+1|1−λ |

Λ1Γ (ν+τ2+1)

]

+
m

∑
i=1

|yi|+
Tν+1

Λ1

|τ3|
]

.

and so,

q0M ≤ q0

[

q1

( Tν

Γ (ν + 1)
− Tν+1|λ |

Λ1Γ (ν+τ1+1) +
Tν+1|1−λ |

Λ1Γ (ν+τ2+1)

)

+
m

∑
i=1

|yi|+
Tν+1

Λ1

|τ3|
]

< 1.

Ttherefore by Theorem of Theorem 1 are satisfied and hence the operator equation A ϑBϑ = ϑ has a solution in
S . As a result, the problem (1)-(2)-(3) has a solution defined on J . This completes the proof. The following theorems
concerning the Boundary value problems (1)− (2)− (4) and (1)− (2)− (5), are similar to that of theorem 2, we omit the
proofs.

Theorem 3.Assume that (A1)−A3) are holds. If

q0

[

q1

( Tν

Γ (ν + 1)
−

Tν+1|λ |

Λ2Γ (ν +σ1 + 1)
+

Tν+1|1−λ |

Λ1Γ (ν +σ2 + 1)

)

+
m

∑
i=1

|yi|+
Tν+1

Λ1

|τ3|
]

< 1

then there exists a on solution for (1)− (2)− (4) on J .

Theorem 4.Assume that (A1)− (A3) are holds. If

q0

[

q1

( Tν

Γ (ν + 1)
−

Tν+1|λ |

Λ3Γ (ν + τ1 + 1)
+

Tν+1|1−λ |

Λ1Γ (ν +σ2 + 1)

)

+
m

∑
i=1

|yi|+
Tν+1

Λ1

|τ3|
]

< 1

then there exists a on solution for (1)− (2)− (5) on J .

4 Uniqueness Results via Lipschitz Integral Conditions

In this section, to prove the uniqueness results of solution for problem (1)− (2)− (3), we define the operator ⊖ : Ĉ → Ĉ ,
we have

⊖ϑ̂(κ̂) = ϖ(κ̂,ϑ(κ̂))
[

Iν(ξ̂ϑ̂ )(κ̂)+
m

∑
i=1

yi +
κ̂

Λ1

(

γ3 − Iν−τ1(ξx)(T )− Iν−τ2(ξ̂ϑ̂ )(T)
)]

, (17)

c© 2025 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


70 M. Hannabou et al. : Impulsive Hybrid Fractional Differential Equations...

where ξ̂ϑ̂ = ξ̂ (s, ϑ̂ (s))

Iν (ξ̂ϑ̂ )(κ̂) =
1

Γ (ν)

∫ T

0
(κ̂− s)ν−1ξ̂ϑ̂ ds,

Iν−τ1(ξ̂ϑ̂ )(T) =
λ

Γ (ν − τ1)

∫ T

0
(T− s)h−τ1+1ξ̂ϑ̂ ds,

Iν−τ2(ξ̂ϑ̂ )(T) =
(1−λ )

Γ (ν − τ2)

∫ T

0
(T− s)ν−τ2+1ξ̂ϑ̂ ds.

Let

Λ3 = Iν(1)(T)+
m

∑
i=1

|yi|+
κ̂

Λ1

[

γ3 − Iν−τ1(1)(T)− Iν−τ2(1)(T)
]

.

Theorem 5.Assume that (A4) and (A5) are holds. If |m|Λ3q1 < 1, then there exists a unique solution for (1)− (2)− (3) on

J .

Proof:

Let Br = {ϑ ∈ C : ‖ϑ‖ ≤ r} be a closed bounded and convex subset of C , where the fixed constant r satisfies

r ≥
pΛ3

1−|m|q1Λ3

. (18)

First we will prove that ⊖Br ⊂ Br and by using the triangle inequality |ξ̂ϑ̂ | ≤ |ξ̂ϑ̂ − ξ̂0|+ |ξ̂0|, where ξ̂0 = (κ̂,0) for
κ̂ ∈ (κ̂m,T].

|⊖ϑ̂(κ̂)| ≤ |m|
[

Iν(|ξ̂ϑ̂ |)(κ̂)+
m

∑
i=1

|yi|+
|κ̂|

Λ1

(

τ3 − Iν−τ1(|ξ̂ϑ̂ |)(T)− Iν−τ2(|ξ̂ϑ̂ |)(T)
)]

≤ |m|
[

Iν
[

|ξ̂ϑ̂ − ξ̂0|+ |ξ̂0|
]

(κ̂)+
m

∑
i=1

|yi|

+
|κ̂|

Λ1

(

τ3 − Iν−β1
[

|ξ̂ϑ̂ − ξ̂0|+ |ξ0|
]

(T )− Iν−τ2
[

|ξ̂ϑ̂ − ξ̂0|+ |ξ̂0|
]

(T)
)]

≤ |m|
[

Ih
(

q1r+p

)

(T)+
m

∑
i=1

|yi|

+
κ̂

Λ1

(

τ3 − Iν−τ1
[

q1r+p

]

(T)− Iν−τ2
[

q1r+p

]

(T)
)]

= |m|
(

q1rΛ3 +pΛ3

)

≤ r.

Therefore, ⊖Br ⊂ Br. Let ϑ̂1, ϑ̂2 ∈ Br, we have

|⊖ϑ̂1(κ̂)−⊖ϑ̂2(κ̂)| ≤ |m|
[

Iν(|ξ̂ϑ̂11
− ξ̂ϑ̂2

|)(κ̂)+
m

∑
i=1

|yi|

+
κ̂

Λ1

(

γ3 − Iν−τ1(|ξ̂ϑ̂11
− ξ̂ϑ̂12

|)(T)− Iν−τ2(|ξ̂ϑ̂11
− ξ̂ϑ̂12

|)(T)
)]

≤ |m|
[

Iν(q1||ϑ̂1 − ϑ̂2||)(T)+
m

∑
i=1

|yi|

+
κ̂

Λ1

(

γ3 − Iν−τ1(q1||ϑ̂1 − ϑ̂2||)(T)− Iν−τ2(q1||ϑ̂1 − ϑ̂2||)(T)
)]

= |m|q1Λ3||ϑ̂1 − ϑ̂2||,

since |m|q1Λ3 < 1, the operator ⊖ is a contraction. By Banach contraction mapping principle the operator ⊖ has unique
fixed point, which leads that problem (1)-(2)-(3) has a unique solution on J .
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5 Examples

5.1 Example

Consider the impulsive FDE’s with boundary conditions involving two fractional derivatives of the form

cD
10
7

(

ϑ̂(κ̂)

(κ̂+ 1)2

100

(

sin ϑ̂(κ̂)+
|ϑ̂(κ̂)|

1+ | ˆ̂ϑ(κ̂)|
+ 3
)

)

=
1

10(1+ |ϑ̂(κ̂))
, κ̂ ∈ (0,T), 1 < ν ≤ 2 (19)

ϑ̂(κ̂+
k ) = ϑ̂(κ̂−

k )+
1

6
, (20)

ϑ̂(0)

ϖ(0, ϑ̂(0))
,

8

20
D

6
14

( ϑ̂(π)

ϖ(π , ϑ̂(π))

)

+
3

5
D

4
17

( ϑ̂(π)

ϖ(π , ˆ̂ϑ(π))

)

=
1

11
, (21)

here ν = 10
7

, ξ̂ (κ̂, ϑ̂ (κ̂)) = 1

10(1+|ϑ̂(κ̂)|)
, λ = 8

20
,τ1 =

6
14
,τ2 =

4
17
,τ3 =

1
11
,T = π , observe that 0 < τ1,τ2 <

10
7

.

Hence the hypothesis (Assumption : 2) is hold with q0 =
1

100
,q1 =

1
10

and we shall check that

q0

[

q1

( T ν

Γ (ν + 1)
−

T ν+1|λ |

Λ1Γ (ν + τ1 + 1)
+

T ν+1|1−λ |

Λ1Γ (ν + τ2 + 1)

)

+
m

∑
i=1

|yi|+
T ν+1

Λ1

|τ3|
]

≈ 0.12758496< 1.

Thus, the theorem 2, the fractional boundary value problem (19)-(21) has a on solution on J .

5.2 Example

Consider the implicit impulsive FDE’s with boundary conditions involving two fractional integrals of the form

cD
10
7

(

ϑ̂(κ̂)

(κ̂+ 1)2

100

(

sin ϑ̂(κ̂)+
|ϑ̂(κ̂)|

1+ |ϑ̂(κ̂)|
+ 3
)

)

=
1

10(1+ |ϑ̂(κ̂))
, κ̂ ∈ (0,T ), 1 < ν ≤ 2 (22)

ϑ̂(κ̂+
k ) = ϑ̂(t−k )+

1

3
, (23)

ϑ̂(0)

ϖ(0, ϑ̂(0))
,

8

20
I

6
14

( ϑ̂(π)

ϖ(π , ϑ̂(π))

)

+
3

5
I

4
17

( ϑ̂(π)

ϖ(π , ϑ̂(π))

)

=
1

11
, (24)

here ν = 10
7
,ξ (κ̂, ϑ̂(κ̂)) = 1

10(1+|ϑ̂(κ̂)|)
,µ = 8

20
,τ1 =

6
14
,τ2 =

4
17
,τ3 =

1
11
,T = π , observe that 0 < τ1,τ2 <

10
7

. Hence the

hypothesis (A2) is hold with q1 =
1

100
,q0 =

1
10

and we shall check that

q0

[

q1

( T ν

Γ (ν + 1)
−

T ν+1|λ |

Λ1Γ (ν + τ1 + 1)
+

T ν+1|1−λ |

Λ1Γ (ν + τ2 + 1)

)

+
m

∑
i=1

|yi|+
T ν+1

Λ1

|τ3|
]

≈ 0.1457896451< 1

Thus, the theorem 3, the fractional boundary value problem (22)-(24) has a on solution on J .

5.3 Example

Consider the implicit impulsive fractional differential equations with boundary conditions involving one fractional
derivative and one fractional integral of the following form:

cD
10
7

(

ϑ̂(κ̂)

(κ̂+ 1)2

100

(

sin ϑ̂(κ̂)+
|ϑ̂(κ̂)|

1+ |ϑ̂(κ̂)|
+ 3
)

)

=
1

10(1+ |ϑ̂(κ̂))
, κ̂ ∈ (0,T ), 1 < ν ≤ 2 (25)

ϑ̂(κ̂+
k ) = ϑ̂(κ̂−

k )+
1

4
(26)

ϑ̂(0)

ϖ(0, ϑ̂(0))
,

8

20
D

6
14

( ϑ̂(π)

ϖ(π , ϑ̂(π))

)

+
3

5
I

4
17

( ϑ̂(π)

ϖ(π , ϑ̂(π))

)

=
1

11
, (27)
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here ν = 10
7
, ξ̂ (κ̂, ϑ̂(κ̂)) = 1

10(1+|ϑ̂(κ̂)|)
,µ = 8

20
,σ1 =

6
14
,σ2 =

4
17
,σ3 =

1
11
,T = 1, observe that 0 < τ1,τ2 <

10
7

. Hence the

hypothesis (A2) is hold with q0 =
1

100
,q1 =

1
10

and we shall check that

q0

[

q1

( T ν

Γ (ν + 1)
−

T ν+1|λ |

Λ1Γ (ν + τ1 + 1)
+

T ν+1|1−λ |

Λ1Γ (ν + τ2 + 1)

)

+
m

∑
i=1

|yi|+
T ν+1

Λ1

|τ3|
]

≈ 0.31245678< 1.

Thus, according to Theorem 4, the fractional boundary value problem (25)-(27) has one solution on J .

6 Conclusion

In this paper, we have investigated the existence and uniqueness results concerning fractional boundary value problems
related to implicit impulsive fractional differential equations, which involve fractional derivatives and integrals. We have
also explored uniqueness results using the Banach contraction mapping principle and Lipschitz integral conditions.
Furthermore, we have extended these results to include new categories of fractional boundary conditions, specifically the
Caputo-Hadamard and Hadamard-Caputo sequential fractional differential equations. This extension was accomplished
by employing fixed-point theorems and Lipschitz integral conditions.
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