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Abstract: To solve the generalised Burgers equation, the most recent operator in fractional calculus, is introduced in this research work.
A more manageable form of problem can be obtained by reducing general fractional derivative into three well-known operators. We
use the effective analytical method known as the homotopy perturbation method (HPM) to get generalised Burgers equation’s solution.
A real-world example is used to demonstrate the findings, and we also analyzed all three reduced operators. A graphical analysis is also
supplied to demonstrate how the solution functions. By demonstrating how to solve generalised Burgers problem using this approach
and general fractional derivative, this study makes a contribution in field of nonlinear differential equations.
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1 Origination

Fractional calculus is an obvious next step after classical calculus. It has grown in recognition and importance during the
last few decades in a number of scientific disciplines. Applications of fractional calculus are increasing, which shows
that it provides better mathematical representations of everyday items. Any natural or physical phenomena whose outline
is useful in the understanding of the issue is sketched using a simulation model. The fractional calculus literature is fast
growing as a result of global research activities. Fractional calculus has had an influence on a wide range of fields in
literature, including as biology, engineering, fluid, heat conduction, control theory, image processing, visco-elasticity,
astronomy, and electricity. ([1]-[13]). As a result, the calculus of fractional order has an impact on every area of
technology and study.

Fractional differential equations, which may be linear or nonlinear, are used to solve many scientific concepts. There are
several differential equations of fractional order that lack definite solutions. In order to solve such problems, several
unique numerical and analytical techniques are defined. HPM approach is a useful way to solve nonlinear equations
because of its easy methodology and speedier convergence. This technique was developed by the renowned
mathematician He. (see [14]-[16]). The key benefit of this approach is how rapidly the answer discovered in series form.
Least repetitions are often necessary to give the most accurate results.

Burgers citebur later reviewed Bateman citebat’s first 1915 presentation of the Burgers equation ([17]-[23]). Burger
equation is present in its conventional form

v v 2%y
FrARCF Pkt v

In this case, a may be any constant at all. Fractional calculus is a fascinating branch of mathematics, it handles integrals
and derivatives of arbitrary order ([24]-[31]). Fractional integrals and derivatives of order £ > 0 have a range of
interpretations contrary to conventional definitions for derivatives and integrals. The theory of singular kernels in
fractional calculus was greatly influenced by many people, including Samko, Riemann, Caputo, Kilbas, and others.
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Researchers Miller-Ross, Atangana-Baleanu, Wiman, Yang and others investigated integrals and derivatives ([32]-[36])
with kernels without singularity. General fractional derivative is believed to be the most effective way to explain the
models of complicated processes. The development of fractional calculus has led to several improvements in a wide
range of disciplines, including chemical science, physical science, medical research, and many others.

In fractional calculus, the behaviour of non-smooth functions is described by Caputo and generic fractional derivative,
two distinct forms of fractional derivatives, were found in study. In Caputo derivative, we consider a function’s initial
conditions and is used to represent processes where initial conditions are unknown/unimportant. On other side, a more
modern operator, general derivative, offers more freedom in modelling non-smooth systems. Since the function is
supposed to be of order & which can be broken further into different operators. The beginning conditions of a function
are not taken into consideration by the generic fractional derivative, in contrast to the Caputo derivative. We shall
examine a generalised Burgers equation by applying generalised fractional derivative:

CRyé ﬁ _ 8_2"
ODt v+af(v) ap - Capz (2)
with
v(p,0)=g(p), p € L (3)

where OCDf represents generalized derivative of order & € (0, 1] with respect to 7. p € Q is arbitrary. Generalised derivative
is a type of differential operator used in fractional calculus. A more manageable form of the problem can be obtained
by reducing general fractional derivative into different operators, further. The generalised Burgers equation is shown in
Equation eq (2). We solve equation (2) using the familiar homotopy perturbation technique to get a roughly solution with
condition (3).

2 Preliminaries

This section provides some background on recently established generic fractional operator. Its Caputo and Riemann-
Liouville derivatives of fractional exponent are provided by researchers, per [37], denoted by

D £( / F()Vi(t—s)d )

: _
oD} £(1) = 4 / F($)Ve(t —s)ds, )

here & € (0,1) is exponent of derivative, f : [0,+o0) — R is a continuous function with f € L} (0,+0),0 <t < T < +oo,
V, is known as kernel. The operator is made to adhere to the linear condition,

SDE(jf (1) +ke(t)) = jSDE (1) +KSDF g (1), ©6)

oDF (jf (1) +kg(1)) = joDf £(t) +koDF g (7). %)

It is evident that for any # > 0 as long as certain requirements of V,(¢) are met, a completely function of monotone type
3, (1) occurs. [38],

V(1) # Su() = /val ()30 (1 —s)ds = 1, @®)

further, for f € LloC (0,4-e0), we can rewrite above like
oD; * [§DF 1(6)] = £ (1) - £(0), ©)
here oD, ¢ denotes general Riemann-Liouville integral of fractional order, given as

oD; S £ (1) /f (1 —s)d (10)
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Right side Caputo and Riemann-Liouville fractional derivatives are

“pS£( /f J(s—1)d (11)

Dif dt/ FS)Vr(s—1)d (12)
and

D7° £ (1) /f (s—1)d (13)

Based on the findings in [39], the integration by component formula is therefore satisfied by the above-mentioned
fractional order operators such

T
| fs)niets)as = / 2(s):CDE £(s)d (14)
0

[ rsnCDigsras= [ 5505 ris)as. 13
0 0

By incorporating the various kernels into the various general operator definitions, we may derive 3 specific cases of

general operator. In first case when kernel is V, (1) = F(’;—fé); so we have power function 3, () = % reforms integral

operator’s associated kernel (10).
In next condition, take kernel V,(¢) = 117—5 ( 5t‘g) where Eg and M(§) are Mittag-Leffler and normalization

functions. We also have

3= 117<§>5(‘”M<5>§r<5>‘51' {6

So, Equations (4) and (5) may be used to get the derivatives of AB-Caputo and AB-Riemann-Liouville. The AB type
integral is [27],

& 1 -¢ 2 /’ E-1
D t)= 1)+ t—s s)ds (17)
Now, at the last situation, CF derivative ([38,40]) is found by taking kernel V. (1) = & exp (1 =t )

The seven sections that make up this article’s structure are as follows: The pre-requisites are defined in Section 2. We go
into the symmetry solution’s existence and uniqueness in Section 3 of this article. We go through the HPM’s stages and
how to apply them to the generalised Burgers problem in segment 4. The convergence analysis is covered in portion 5. In
part 6, the HPM was illustrated using a simple example. In addition, we examine how this article ends in Section 7.

3 Existence and Uniqueness of Result

Here, consider 7, a constant as 0 < T' < o, also (p,t) € E x (0,T]. Now we will verify existence and uniqueness of result
by Banach fixed point. For this, consider Banach space of continuous functions defined on  x [0, 7] (C(£2 x [0,T])) with

= 1)|.
vli=, max (e

Below are the defined notations for sake of convenience

»_,
dap v
Pv_
ap?
d 9?
f(v(p,r>, Vg’;"), ;;”;”)av’"(p,r>v’<p,r>+cv”<p,r>, (1)

= f(pvt;v(pvt))av,(pvt)av”(pvt))'
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Here f (v(p,t), a%l;’[), %) be the functional, p € Q and a are any arbitrary constants.
Leema Consider that £ lies between 0 and 1, hence following equation fulfill integral equation

théV(p,l) :f(p,t,v(p,t)),v'(p,t),v"(p,t)),

with
v(p,0) = ¢(p)-
here p €  and a be any constants.

Proof Above lemma can be demonstrated easily by using integral operator definition.

Theorem If (61 + 621 + 6302) Frepy T {5 1 < 1, then function f explained in (18) fulfil Lipschitz condition.

Proof We employ the generalised integral operator to determine the existence and uniqueness of the problem. Additionally,
these operators decrease in three specific situations, and for each of these situations, we may analyse the problem’s
existence and unity independently. In such scenario, we first take into account the first case of kernel then

t

V(p,t)zg(p)Jré (t—P)* ' F(p.Pv(p.P):V (p,P):v" (p, P))dP.

Suppose Hu(p,t) = v(p,t), and demonstrate the contraction of H. Now, by Banach fixed point theorem, we show that a
fixed point belongs to H . It denotes the existence of a one fixed point.

IHV(p t)—Hu(p,1)|

£
e Ji (6= P)
| (P Pv(p,p); ' (p, PV (p,P)) = f(p, Pu(p, p)s ' (p, P (p, P))| 4P,
< ) kaf p)?
(61 | g o~ u(p:1)]+ 8 (p,1) —u(p,1)] + O (p,1) = u(p,1)]) P,
sLiﬁ%giﬁwwfvwgofPﬁ*da
(01467146
< 5 ( 1?(?2;; ¥6) lu—v].
Therefore, using the assumption (6; + 6,1 + 632) #il) < 1, we find that H is a contraction.
Further, when kernel is V, () = (? Ee ( % 5) then generalized operator reduces to Atangana Baleanu operator, so
integral equation becomes
¢
Y1) = 5 ( )+ MErE
f( 'f(p.Pv(p,P):V (p.P);V" (p, P))dP.

Again, suppose Hu(p,t) = v(p,t), and demonstrate the contraction of H. In the same previous way, we have

|HV(PJ)*HH( )] 1
< s Jo (= P)E
| (g’ v(p, ),V'(ng:);V"(P,P))*f(p,Pu(p,P) ' (p,P);u"(p,P))| dP,
. "
< M(é)r(é [0 (t P) ! ! 1! I
(91|V(6 9) (g )|+ 6l (p,t) =i (p,t)|+ 6]V (p,t) —u" (p,t)]) dP,
ey T ol 5 e )
1S E(61+6:x1+6312) llu—v|
MET(E+D) N4=Y
EE(6+6:21+6320) <1
M) (E+1) ’

IN

<

1580140114030

Again, using the assumption METCED) < 1, we again get that H is a contraction. Similarly, we can do for Caputo-

Fabrizio operator.

© 2024 NSP
Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 10, No. 4, 523-535 (2024) / www.naturalspublishing.com/Journals.asp NS e 527

4 Homotopy Perturbation Method

We see that there are several strategies that are occasionally offered by researchers for tackling linear or non-linear issues.
Among these, the iteration technique HPM ([41]-[44]) is a potent tool for solving linear or non-linear issues. Here, we
provide examples of the HPM. We wish to use the HPM to solve the above equations (eqs. 2 and 3). As a result, we define
v like
v(p,t;q) : E x[0,T] x [0,1]] = R
S.t.
H(v(p;t:q),q) = (1—q) [SD§V(P,t;q) *oCDtéuo(p,t)} +

q [gDzéV(p,t;q) +af(v)(p.1:q) 55 (p.13q) - C%(P,t;q)} =0 )
here g is embedding parameter and uo(p,?) is starting approximation. Now, we get
Cpé C C LT
0D v(p,t:q) = g Druo(p,t) —q [th uo(pvt)+af(V)(p7t,q)$(p,t,q)—ca—pz(pvt,q)] (20)
Now expanding the f(v) by using the Taylor series, we have
§DFv(p.1:9) = §DFuo(p,1) — g [§Duo(p.r) +a{ £(0) +v'(0) + 5 £(0) + .} o
X (,1:0) 35 (p.139) — c35(pitq)|
or,
§DFv(p,1:9) = §DFuo(p1) — g {oDéuo(p, )+am20f ")(0) 7 )

2
x(p.1:9) 52 (po13q) — C%(P,t;q)}

Now, putting v(p,t;9) = Y5 ¢*vi(p,t) in above equation, we get

o (m) m
CD& kZOq vk—OCDéuo(p, t)—q [oDéuo(p, )+a X LA (kZOq Vk>

m=0 (23)
< (Ben) —eis (£

Now, we compare coefficients of similar powers of ¢ in Equation 23, we get derivatives of various terms so we get the v,
v1, v2 and so on. Further using those values we get v as

v:vo+qv1+q2vz+q31)3+... (24)

5 Convergence of Solution
We will examine the convergence of solution given by HPM for generalised Burgers problem in this section.

Theorem Consider v, (p,) and u(p,t) are the functions in Banach space C(£2 x [0,T]) defined in (24). Further suppose
that there exists a p, lies in (0,1) as v,(p,t) < pv,_1(p,t) V n € N. Hence we get series Y.;” , v;(p,t) converges to u(p,t).
Proof Suppose that partial sum of series Y.;” ,v;(p,t) is U,. Now atfirst we will prove that U, is Cauchy sequence in
Banach space C(Q2 x [0,T]). Hence

|Us(p7t U(p, )l =
[(Us(p,t) = Us—1(p,t)) + (Us—1(p,t) — (P 1))+ ...+ Ut (p,t) = Ur(p,1))]

< [pvo(p.t) +p vo(pi) + ]+p’*‘ 1)] (25)
= prtl (1+(p+p .4+ D vo(pot)

r P

A0 ),
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Since p lies between 0 and 1 so

r+1

p
(1 —P)(pz)rengf[or]wo(p’t)" (26)

||U5'(pat) - Uf(pat)” S
Again, since v is bounded,

lim [|Us(p,1) = Ur(p,1)|| =0

§,F—ro0

Hence by using the concept of Cauchy sequence, we get our expected result.

6 Examples

HPM, which is previously discussed, will be applied as a mathematical technique in this section to solve particular case of

generalised Burgers equation. Equations (2) and (3), which reflect this particular case of the generalised Burgers equation,
may be simply solved roughly by using the HPM.

Consider (p,t) € (0,1) x (0,T], & € (0, 1] and following Burger equation
v(p,t o%v(p,t
(pt) , 97v(p:1)

BD7v(p1) = —af () (p.) =5 o5 5 @7)
with the initial condition

vy = Uy = pz. (28)

if we take f(v) = 1 then the Burger equation becomes

2
C é a a v

oDy —=c= 29
+a p =c Py (29)

Now applying the same methodology as above, we get

2 [ &
CD5 75 p, <Z q Vk) ap <Z quk>‘| (30)
k=0

Further, comparing the like powers of g both sides in above equation, we have

gDzé Y dvie= SDFug(p,t) — g
=0

¢ ngvo = nguo(l% t)

8v0 82\10
ql :gD;:v] =— {OCD,éuo(p,t)Jra—ap] +cap2
2
2.cpé 9 9
q 'OD A% __aﬁ—i_ca—pz

and so on.
Now using generalized integral operator flé, we obtain

vy = I,5 (OCD,éuo(p,t))

Y | P
n=1 [— (SD?uo@, )+a£) + ﬂ]

dp?
5 8v1 82v1
v2=1 o Tar

and so on.
Once these values have been established, they can be substituted into the power series (24) to produce the resultant value
v, yielding the desired result. We will now outline each of the three possible solutions to the aforementioned issue.
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6.1 Case I

We may construct three unique examples of the general operator by using different kernels to accepted definitions of
operator. In the first of these three scenarios, we take general kernel as V,(¢) = %; s0, associated power function is

3.(t) = 1’_5(—2) It is capable of producing the type I integral operator with ease. Equation (2) is reduced to type I derivative

operator. Consequently, we can simply solve the problem being investigated by applying the above described technique;
the stages are shown below

Vo = Uo = pZ,
On using the above relation defined above, we get
d
9, 0Pt =2p
also 5
d
a—szO(pat )=2,

using aforementioned values, we can write

13
V1=(2—€)(C—ap)<1—§+1i—§> (31)
similarly, we found the value of v,, we have
2 e\?
Y e e B
n=20-¢ (1 §+F§> (32)

Consequently, it is simple to derive the remaining terms, and utilising relation (24), we can quickly determine the nearby
answer.

— 212 ] A Py ) 33
v=r -8 e—an) (1-6+ 1 |+ S -8 (1-6+ £ )+ 3

We now pick a = 0.5 and ¢ = 1 to plot numerical results for outcomes. The graphs for £= 0.5, 0.8, and 1 have been
displayed.

Fig. 1: Demonstration of v in first case for £ =0.5,a =0.5,c = 1.
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Fig. 2: Representation of v in first case for £ =0.8,a =0.5,¢ = 1.

Fig. 3: Figure of v in first case for £ = 1,a =0.5,c = 1.

6.2 Case Il

Now take kernel for general operator like V, (1) = Af%%)exp (%t), where M(&) is normalization function. Further,
proceed according to steps explained above, we obtain

2
Vo=upg=p- .

Now use homotopy method and relation expressed in (28), we obtain

d
%VO(pvt) =2p

and 2
ﬁVO(PJ) =2,
we get
vi=2(c—ap)(1-&+&r) (34)
© 2024 NSP
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Fig. 5: Graph of v in second case for £ =0.8,a =0.5,c = 1.
Next, v», we have 5
vy =2a%(1—E+&r) (35)

Hence, in second case, the approximate solution is
v=p>4+2(c—ap) (1 —E+E)+2a* (1 —E+E1)* + ... (36)

Again, We take a = 0.5 and ¢ = 1 to plot numerical results for outcomes. The graphs for £= 0.5, 0.8, and 1 have been
displayed.

6.3 Case 111

In this scenario, we take kernel’s value for general operator V,(r) = %?Eg (%t‘ﬁ), where Eg denote Mittag-Leffler

function and M(&) represents normalization function. On solving in the same way, we have
2
Vo=Uyp=p .
Again using homotopy method and relation expressed in (28), we have

2]
a—pw(p,t) =2p
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Fig. 7: Graph of v in third case for £ = 0.5,a =0.5,c = 1.

and
92
ﬁvo (p,t) = 27
we get
~ (2c¢—2ap) 15
Vi="TF R (37)
Similarly, we can easily find v, as
2a%1%%
by 2 (38)
(r'+1)
Hence, estimated result is
¢ 28
v=pP2(c—ap) — 22— (39)
re¢+1 (C(E+1))°

One last time, We take a = 0.5 and ¢ = 1 to plot numerical results for outcomes. The graphs of v for £= 0.5, 0.8, and 1
have been displayed.
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Fig. 9: Graph of v in third case for £ = 1,a = 0.5,c = 1.

7 Conclusion

In this work, we used a generalised fractional operator to analyse the generalised Burgers equation. We solve several
well-known instances using the HPM. We determine the defined problem’s outcomes and talk about its three distinct
outcomes as well. Finally, we exhibit the graph of those cases (figure 1-9) to demonstrate the effectiveness of the
generalised operator. Since we already have fractional calculus, dealing with mathematical modelling is made easier. It
gives us more accurate outcomes to characterise the physical models. We employ a generalised operator that gives us
three specific instances of the renowned fractional operator. We have found the numerical outcomes of the conclusions
reached in example. For this, we took @ = 0.5 and ¢ = 1 and made graphs of v for = 0.5, 0.8 and 0.9.
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