

*Corresponding author e-mail: esraa.hasi@uobabylon.edu.iq
 © 2023 NSP

Natural Sciences Publishing Cor.

Inf. Sci. Lett. 12, No. 6, 2207-2213 (2023) 2207

Information Sciences Letters
 An International Journal

http://dx.doi.org/10.18576/isl/120601

Optimizing Program Efficiency with Loop Unroll Factor
Prediction
E. Alwan *and R. Al Baity

Department of Computer Science, Collage of Science for Women, University of Babylon, Iraq
Received: 22 Feb. 2023, Revised: 26 Feb. 2023, Accepted: 17 Mar. 2023.
Published online: 1 Jun. 2023.

Abstract: Loop unrolling is a well-established code transformation technique that can improve the performance of a
program at runtime. The key benefit of unrolling a loop is that it often requires fewer instruction executions than the
original loop. However, determining the optimal number of loop unrolling is a critical concern. This paper presents a
novel method for predicting the optimal unroll factor for a given program. Specifically, a dataset is constructed that
includes the execution times of several programs with varying loop unroll factors. The programs are sourced from
different benchmarks, such as Ploybench, Shooutout, and other programs. Similarity measures between the unseen
program and the existing programs are computed, and the three most similar programs are identified. The unroll factor
that led to the greatest reduction in execution time for the most similar programs is selected as the candidate for the unseen
program. Experimental results demonstrate that the proposed method can enhance the performance of training programs
for unroll factors of 2, 4, 6, and 8 by approximately 13%, 18%, 19%, and 21%, respectively. For the unseen programs,
the speedup rate is approximately 37.7% for five programs.

Keywords: loop unroll, compiler optimization, execution time.

1 Introduction

The execution time of programs is significantly allocated to a small proportion of their code, which is primarily located
within loop constructs. It has been observed that programs expend approximately 90% of their execution time in 10% of
the code. Therefore, directing efforts towards enhancing the frequently executed portions of the code can have a
substantial impact on the overall program execution time. [1,2] As a result, code optimization techniques that accelerate
loop execution are essential. [3,4]

One technique for improving program execution time is loop unrolling. This technique involves replicating the loop body
multiple times while adjusting the loop termination code. By decreasing the overhead of loop termination, loop unrolling
can improve code execution time. This is achieved by reducing the number of branch instructions needed at the end of
the loop body. [5,2]

Loop unrolling is essential for certain optimizations, particularly those aimed at improving the memory system. Enabling
loops unroll, generates numerous static memory instructions that can be rescheduled to take advantage of memory locality.
In practice, loop unrolling enhances performance in nearly every scenario in which it is applied. However, if used
improperly, loop unrolling can negatively affect other critical optimizations and decrease overall speed. Additionally,
selecting the appropriate unrolling factor is crucial. An optimal unrolling factor reduces execution time while enhancing
overall performance. [6] Although loop unrolling has numerous advantages, there are also several potential disadvantages
that should be considered:

• The most well-known disadvantage of unrolling is that it can reduce the performance of the instruction cache.

• Additional scheduling freedom can lead to a rise in variable live ranges, resulting in extra register pressure. [7],8,9]

Based on the aforementioned, this study aims to create a model that can predict the optimal unrolling factor. The remaining
sections of this paper are organized as follows: Section 2 provides an overview of related research on loop unrolling.
Section 3 outlines the proposed approach for loop unrolling. Section 4 presents the results obtained from benchmark
programs. Finally, Section 5 summarizes our conclusions and provides closing remarks.

2208 E. Alwan, R. Al Baity: Optimizing Program Efficiency…

© 2023 NSP
Natural Sciences Publishing Cor.

2 Literature Review:

This section discusses related work that is relevant to this research. We emphasize relevant work in this area because our
study focuses on applying learning techniques to compilation.

Meisam Booshehri et al [10] emphasized on the loop unrolling approach and its impacts on power consumption, energy
usage, and program speed by obtaining ILP (Instruction-level parallelism) (Instruction-level parallelism). Concentrating
on superscalar processors, they studied J.C. Hang and T. Leng's idea of generalized loop unrolling and then presented a
novel way to traverse a linked list to acquire a better outcome of loop unrolling in that circumstance. They ran their
experiments using a Pentium 4 CPU (as an instance of super scalar architecture). In addition, the findings of some other
experiments carried out on a supercomputer (the Alliat FX/2800 System) with superscalar node processors. These
investigations demonstrated that loop unrolling had a minor detectable influence on energy and power consumption.
However, it could be an efficient approach to speed up the program. Mark Stephenson and Saman Amarasinghe [7]
demonstrated how machine learning methodologies may help compiler designers design complex systems. They focused
on loop unrolling, a well-known approach for detecting instruction-level parallelism. They explained how to utilize the
Open Research Compiler as a testbed to determine the effectiveness of loop unrolling using supervised learning methods.
Over 2,500 loops from 72 benchmarks were utilized to train two separate learning algorithms to estimate unroll factors
(the length of time a loop should be unrolled) for each new loop. The method accurately predicts the unroll factor for 65%
of the loops in our sample, resulting in a 5% improvement in the overall performance of the SPEC 2000 benchmark suite.

Liu and Guo [8] employ a machine learning model to enhance the compiler's loop unrolling optimization capabilities. To
begin, weighting and unbalanced dataset processing are applied to the basic random forest model. The training set is then
constructed in order to train the model. According to the results of the experiment, the model can deliver the optimal or
sub-optimal unrolling factor within 81% of the time after training. It is also put through numerous SPEC2006 test sets.
The built-in loop unrolling model in Open64 can only increase program performance by 5% on average, however the
technique suggested in this research for predicting loop unrolling components using weighted decision forest can enhance
program performance by 12% on average. In [1], a loop unrolling approach based on enhanced random decision forest
was developed in order to increase the accuracy of the compiler's loop unrolling factor. First, they enhanced the standard
random choice forest by introducing weight values. Second, to address the issue of unbalanced data sets, a BSC approach
based on the SMOTE algorithm was proposed. Almost 1000 loops were chosen from various benchmarks, and the features
retrieved from these loops provide the training set for the loop unrolling factor prediction model. The model has an
unrolling factor prediction accuracy of 81%, whereas the present Open64 compiler only has a 36% forecast accuracy.

3 Methodologies

As shown in Figure 1, the proposed model comprises four stages.

Fig. 1: Illustrates the proposed methods which consist of four stages

• Building Dataset

For this stage, a total of forty programs from diverse benchmarks are collected. The execution time for each program
is measured using several loop factors. Four loop factors are chosen, as previous experiments have demonstrated that they
have the most significant impact on program performance (2, 4, 6, 8). Each program is executed multiple times (more
than five) with each one of these factors, and the average execution time is calculated.

Building
Dataset

Unseen
programs

Features
extraction

Compute
similarity

Predicting
unroll factor

 Inf. Sci. Lett. 12, No. 6, 2207-2213 (2023) / http://www.naturalspublishing.com/Journals.asp 2209

 © 2023 NSP
 Natural Sciences Publishing Cor.

• Features extraction using LLVM

The features of C or C++ programs are extracted from their LLVM Intermediate Representations using the LLVM analysis
pass -instcount, which tallies the different types of instructions present in the function. Table (1) displays the LLVM
features that are gathered for each program. These features provide insight into the program's static behavior. A total of
39 features are distributed across various programs.

• Computing similarity

This stage consists of two steps as shwon below.

- Extract features for unseen program.

- Compute the similarity between the unseen program and the set of programs in the dataset. There are several scales
for computing similarity. Cosine scale is used to compute the similarity as shown in equation 1:

Sim(p,pi)= ∑ "#∗"%#!
"#$

&∑ "#%!
"#$ ∗&∑ "%#%!

"#$

 (1)

Table 1: program static features
Add
instructions

FAdd
instructions

GetElementPtr
instructions

Ret instructions SRem
instructions

ZExt
instructions

Alloca
instructions

FCmp
instructions

ICmp
instructions

SDiv
instructions

Shl instructions basic blocks

And
instructions

FDiv
instructions

Load
instructions

Sub
instructions

Store
instructions

memory
instructions

AShr
instructions

FMul
instructions

Mul
instructions

Switch
instructions

Trunc
instructions

non-external
functions

BitCast
instructions

FPExt
instructions

or instructions SExt
instructions

URem
instructions

Br instructions FPToSI
instructions

PHI
instructions

Select
instructions

Unreachable
instructions

Call
instructions

FSub
instructions

PtrToInt
instructions

SIToFP
instructions

Xor instructions

Where p represents the main program (unseen program) and pi represents the other programs (training
programs).[2,11,12]

• Predicting loop unroll factor

- To begin, we select the three most similar programs to the unseen one and place them in the similarity set.

- Next, we rearrange these programs based on their potential benefits from the loop unroll factor. To do this, we
examine the dataset of these programs to identify the loop factor that offers the greatest performance improvement
for all three programs. This loop factor, which results in a high score, is presented as a potential candidate for the
unseen program. Essentially, we choose the loop unroll factor that can reduce the execution time for the majority of
similar programs. In summary, the objective is to select the optimal loop unrolling factor for a given set of programs
to minimize their execution time. To achieve this goal, we analyze the dataset and determine the highest factor that
can be applied to most of the programs. For instance, if a factor of 2 is effective for a majority of the programs, we
evaluate the performance of a factor of 4. If this factor provides an improvement in execution time for most of the
programs, we then examine a factor of 6. However, if the factor of 4 remains the most efficient option for a significant
number of the programs, we consider it as a suitable candidate for unrolling loops in any future unseen program. On
the other hand, if the factor of 4 is not appropriate for the majority of the programs, we revert to the initial factor of
2 for further analysis.

4 Performance Evaluation

This section aims to investigate whether a well-prepared dataset for loop unrolling factors can lead to faster program
execution. To achieve this objective, we employ the acquired dataset from various benchmarks, including Polybench,
Shootout, Stanford, and others to predict an appropriate unroll factor for each loop and compile the benchmark program
accordingly. Notably, the dataset employed in this study comprises more than fifty programs, of which forty-one yielded
satisfactory results with varying loop unroll factors, excluding those from the benchmark program used for evaluating the
results. This enabled us to assess the effectiveness of the learned dataset on previously unseen loops.

2210 E. Alwan, R. Al Baity: Optimizing Program Efficiency…

© 2023 NSP
Natural Sciences Publishing Cor.

4.1. Training set programs
In this study, we compiled the programs using four different loop unroll factors, namely 2, 4, 6, and 8. To compute the
entire runtimes, we employed the UNIX time command and performed five trials to obtain an average. Figure (2)
illustrates the training set programs, or dataset, and displays the effects of these factors on program execution time
compared to the normal case, i.e., no loop unrolling. The programs achieved speedups of 13%, 18%, 19%, and 21% for
loop unroll factors of 2, 4, 6, and 8, respectively. It is noteworthy that all programs experienced a reduction in execution
time with loop unroll factors of 2 and 4. However, few programs derived benefits from loop unroll factors of 6 and 8,
respectively.

Fig. 2: training set programs

4.2 Results of unseen programs
In these experiments, five unseen programs are used to validate the proposed method. For each unseen program we
computer its similarity with the data set and extract the three of most similar programs and candidate high loop unroll
factor that most of the similar programs get benefit from it (speed up their execution times).

Symmat.c

We compute the similarity between this program and the programs in the dataset and we extract the most similar three
programs which are loop3.c, strmm.c, dct.c. Then we scan the dataset and we get two similar programs benefit from the
highest factor 8. Figure (3) illustrates the effect of the loop unroll factors on the program execution time where factor 8
is the best.

ar
y3

.c
m

at
rix

.c
Si

ev
e.

c
lo

op
1.

c
lo

op
2.

c
lo

op
3.

c
fd

td
-1

d.
c

ar
r.c

In
tM

M
.c

flo
yd

.c
st

rm
m

.c
st

rs
m

.c
ds

yr
k.

c
p3

4.
c

Fl
oa

tM
M

.c
cr

oc
ol

.c
lo

op
5.

c
tc

e-
4i

nd
ex

.c
fd

td
-2

d.
c

ja
co

bi
-2

d
dy

np
ro

g.
c

pu
zz

le
.c

rc
4.

c
dc

t.c
tr

m
m

.c
ds

yr
2k

.c
lu

.c
p3

6.
c

p3
7.

c
p1

7.
c

ge
m

ve
r.c

0

5

10

15

20

25

30

no loop unroll Factor 2 Factor 4 Factor 6 Factor 8

 Inf. Sci. Lett. 12, No. 6, 2207-2213 (2023) / http://www.naturalspublishing.com/Journals.asp 2211

 © 2023 NSP
 Natural Sciences Publishing Cor.

Fig. 3: illustrates the predicted factor for symmat.c program

syrk.c

The second unseen program is syrk.c. We find the most similar three programs are ary3.c, floatMM.c, trim.c and the
predicted factor is 4 as illustrated in the figure below.

Fig. 4: illustrates the predicted factor for syrk.c program

convariance.c

The third unseen program is convariance.c. We find the most similar three programs are strmm.c.c , p34.c ,dct.c and the
predicted factor is 8 as illustrated in figure (5)

Fig. 5: illustrates the predicted factor for convariance.c program

Jacobi-1d-imper.c

The fourth unseen program is Jacobi-1d-imper.c. We find the most similar three programs are floy.c , fdtd.c ,dct.c and

0

0.05

0.1

0.15

0.2

no loop
unroll

2 4 6 8

ex
ec

ut
io

n
tim

e
loop factors

symmat.c

0
0.5

1
1.5

2
2.5

no loop
unroll

2 4 6 8

ex
ec

ut
io

n
tim

e

unroll factors

syrk.c

0

0.05

0.1

0.15

0.2

no loop unroll 2 4 6 8

ex
ec

ut
io

n
tim

e

loop unroll factors

convariance.c

2212 E. Alwan, R. Al Baity: Optimizing Program Efficiency…

© 2023 NSP
Natural Sciences Publishing Cor.

the predicted factor is 4 as illustrated in figure (6)

Fig. 6: illustrates the predicted factor for jacobi-1d-imper.c program

Doitgen.c

The fifth unseen program is Doitgen.c. We find most similar three programs are dct.c , Jacob-2d-imper.c , strmm.c and
the predicted factor is 8 as illustrated in figure(7)

Fig. 7: illustrates the predicted factor for doitgen.c program

4.3 Discussion of the results
Our study has revealed that for various benchmark programs, approximately 40-50% of all loops could not be unrolled
using the loop unroll LLVM opt command line due to one or more of the subsequent causes: (1) the initial loop induction
variable value is not a high value, (2) the loop comprises conditional control. Additionally, we found that the highest loop
unroll factor that can yield a speedup for very few programs was eight, and the speedup remains the same even with the
highest factor, such as 16. However, for some programs, their performance was degraded.

A noteworthy observation is that a loop with a high unroll factor, such as eight, is already performing well with a small
unroll factor, such as two, whereas the opposite is not necessarily true. Moreover, the findings indicate that no single
unrolling factor significantly outperforms others.

5 Conclusions

In order to enhance program speed, the compiler applies various LLVM transformation passes with

loop unrolling. This study proposes a method to improve the loop unrolling optimization ability of the compiler. First, a
dataset comprising the execution time of a set of programs with varying loop unroll factors is constructed. Then, the
similarity with unseen programs is computed, and the similar programs are reordered based on their potential benefits
from loop unroll factors. The highest loop unroll factor that can reduce the execution time for most of the similar programs

0.17
0.18
0.19

0.2
0.21
0.22
0.23
0.24

no loop unroll 2 4

ex
ec

ut
io

n
tim

e

unroll factors

jacobi-1d-imper.c

0

0.05

0.1

0.15

0.2

0.25

no loop
unroll

2 4 6 8

ex
ec

ut
io

nt
im

e

loop factors

doitgen.c

 Inf. Sci. Lett. 12, No. 6, 2207-2213 (2023) / http://www.naturalspublishing.com/Journals.asp 2213

 © 2023 NSP
 Natural Sciences Publishing Cor.

is selected. The experimental results demonstrate that the proposed method can accelerate the training programs with
varying factors by approximately 17%, while the speedup for unseen programs with different candidate factors is
approximately 37.7%.

Conflict of interest

The authors declare that there is no conflict regarding the publication of this paper.

References

[1] S. Singh, R. Singh and S. Kumar, "Efficient Loop Unrolling Factor Prediction Algorithm using Machine Learning
Models," in Proc.INCET, 1-8, (2022).

[2] M. Almohammed, A. Fanfakh, and E. Alwan, “Parallel genetic algorithm for optimizing compiler sequences
ordering,” in Proc.CCIS, 128-138, (2020).

[3] G. Zacharopoulos, A. Barbon, G. Ansaloni and L. Pozzi, "Machine Learning Approach for Loop Unrolling Factor
Prediction in High Level Synthesis," in Proc. HPCS, 91-97, (2018).

[4] P. R. Panda, N. Sharma, S. Kurra, K. A. Bhartia and N. K. Singh, "Exploration of Loop Unroll Factors in High
Level Synthesis," in Proc. VLSID, 465-466, (2018).

[5] J. C. Huang and T. Leng, "Generalized loop-unrolling: a method for program speedup," in Proc. ASSET'99,244-
248, (1999)

[6] L. Domagała, D. V. Amstel, F. Amstel, P. Sadayappan, “Register allocation and promotion through combined
instruction scheduling and loop unrolling”. In Proc CC, 143-151, (2016).

[7] M. Stephenson and S. Amarasinghe, "Predicting unroll factors using supervised classification," in Proc. CGO,123-
134, (2005).

[8] H. Liu and Z. Guo, “A loop unrolling method based on machine learning,” in Prdc. Vibroengineering PROCEDIA,
215–221, (2018).

[9] M., Hall, J., Chame, C., Chen, J., Shin, G., Rudy, M.M Khan. Loop Transformation Recipes for Code Generation
and Auto-Tuning. In: Gao, G.R., Pollock, L.L., Cavazos, J., Li, X. (eds) Languages and Compilers for Parallel
Computing. LCPC 2009. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg vol 5898, (2010)

[10] M. Booshehri, A. Malekpour, and P. Luksch, “An improving method for loop unrolling”, International Journal of
Computer Science and Information Security,vol. 11,No. 5,(2013).

[11] J. W Davidson and S. Jinturkar. Aggressive loop unrolling in a retargetable, optimizing compiler. In International
Conference on Compiler Construction. In: Gyimóthy, T. (eds) Compiler Construction. CC 1996. Lecture Notes in
Computer Science, Springer, Berlin, Heidelberg., vol 1060, 59–73. (1996).

[12] L. H. Alhasnawy, E. H. Alwan, and A. B. M. Fanfakh, “Using machine learning to predict the sequences of
optimization passes,” in Proc. CCIS,139-156, (2020).

