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Abstract: Loop unrolling is a well-established code transformation technique that can improve the performance of a 
program at runtime. The key benefit of unrolling a loop is that it often requires fewer instruction executions than the 
original loop. However, determining the optimal number of loop unrolling is a critical concern.  This paper presents a 
novel method for predicting the optimal unroll factor for a given program. Specifically, a dataset is constructed that 
includes the execution times of several programs with varying loop unroll factors. The programs are sourced from 
different benchmarks, such as Ploybench, Shooutout, and other programs. Similarity measures between the unseen 
program and the existing programs are computed, and the three most similar programs are identified. The unroll factor 
that led to the greatest reduction in execution time for the most similar programs is selected as the candidate for the unseen 
program. Experimental results demonstrate that the proposed method can enhance the performance of training programs 
for unroll factors of 2, 4, 6, and 8 by approximately 13%, 18%, 19%, and 21%, respectively. For the unseen programs, 
the speedup rate is approximately 37.7% for five programs. 
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1 Introduction 

The execution time of programs is significantly allocated to a small proportion of their code, which is primarily located 
within loop constructs. It has been observed that programs expend approximately 90% of their execution time in 10% of 
the code. Therefore, directing efforts towards enhancing the frequently executed portions of the code can have a 
substantial impact on the overall program execution time. [1,2] As a result, code optimization techniques that accelerate 
loop execution are essential. [3,4] 

One technique for improving program execution time is loop unrolling. This technique involves replicating the loop body 
multiple times while adjusting the loop termination code. By decreasing the overhead of loop termination, loop unrolling 
can improve code execution time. This is achieved by reducing the number of branch instructions needed at the end of 
the loop body. [5,2] 

Loop unrolling is essential for certain optimizations, particularly those aimed at improving the memory system. Enabling 
loops unroll, generates numerous static memory instructions that can be rescheduled to take advantage of memory locality. 
In practice, loop unrolling enhances performance in nearly every scenario in which it is applied. However, if used 
improperly, loop unrolling can negatively affect other critical optimizations and decrease overall speed. Additionally, 
selecting the appropriate unrolling factor is crucial. An optimal unrolling factor reduces execution time while enhancing 
overall performance. [6] Although loop unrolling has numerous advantages, there are also several potential disadvantages 
that should be considered: 

• The most well-known disadvantage of unrolling is that it can reduce the performance of the instruction cache. 

• Additional scheduling freedom can lead to a rise in variable live ranges, resulting in extra register pressure. [7],8,9] 

Based on the aforementioned, this study aims to create a model that can predict the optimal unrolling factor. The remaining 
sections of this paper are organized as follows: Section 2 provides an overview of related research on loop unrolling. 
Section 3 outlines the proposed approach for loop unrolling. Section 4 presents the results obtained from benchmark 
programs. Finally, Section 5 summarizes our conclusions and provides closing remarks. 
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2 Literature Review: 

This section discusses related work that is relevant to this research. We emphasize relevant work in this area because our 
study focuses on applying learning techniques to compilation. 

Meisam Booshehri et al [10] emphasized on the loop unrolling approach and its impacts on power consumption, energy 
usage, and program speed by obtaining ILP (Instruction-level parallelism) (Instruction-level parallelism). Concentrating 
on superscalar processors, they studied J.C. Hang and T. Leng's idea of generalized loop unrolling and then presented a 
novel way to traverse a linked list to acquire a better outcome of loop unrolling in that circumstance. They ran their 
experiments using a Pentium 4 CPU (as an instance of super scalar architecture). In addition, the findings of some other 
experiments carried out on a supercomputer (the Alliat FX/2800 System) with superscalar node processors. These 
investigations demonstrated that loop unrolling had a minor detectable influence on energy and power consumption. 
However, it could be an efficient approach to speed up the program. Mark Stephenson and Saman Amarasinghe [7] 
demonstrated how machine learning methodologies may help compiler designers design complex systems. They focused 
on loop unrolling, a well-known approach for detecting instruction-level parallelism. They explained how to utilize the 
Open Research Compiler as a testbed to determine the effectiveness of loop unrolling using supervised learning methods. 
Over 2,500 loops from 72 benchmarks were utilized to train two separate learning algorithms to estimate unroll factors 
(the length of time a loop should be unrolled) for each new loop. The method accurately predicts the unroll factor for 65% 
of the loops in our sample, resulting in a 5% improvement in the overall performance of the SPEC 2000 benchmark suite. 

Liu and Guo [8] employ a machine learning model to enhance the compiler's loop unrolling optimization capabilities. To 
begin, weighting and unbalanced dataset processing are applied to the basic random forest model. The training set is then 
constructed in order to train the model. According to the results of the experiment, the model can deliver the optimal or 
sub-optimal unrolling factor within 81% of the time after training. It is also put through numerous SPEC2006 test sets. 
The built-in loop unrolling model in Open64 can only increase program performance by 5% on average, however the 
technique suggested in this research for predicting loop unrolling components using weighted decision forest can enhance 
program performance by 12% on average. In [1], a loop unrolling approach based on enhanced random decision forest 
was developed in order to increase the accuracy of the compiler's loop unrolling factor. First, they enhanced the standard 
random choice forest by introducing weight values. Second, to address the issue of unbalanced data sets, a BSC approach 
based on the SMOTE algorithm was proposed. Almost 1000 loops were chosen from various benchmarks, and the features 
retrieved from these loops provide the training set for the loop unrolling factor prediction model. The model has an 
unrolling factor prediction accuracy of 81%, whereas the present Open64 compiler only has a 36% forecast accuracy. 

3 Methodologies  

As shown in Figure 1, the proposed model comprises four stages. 

 
Fig. 1: Illustrates the proposed methods which consist of four stages 

• Building Dataset 

For this stage, a total of forty programs from diverse benchmarks are collected. The      execution time for each program 
is measured using several loop factors. Four loop factors are chosen, as previous experiments have demonstrated that they 
have the most significant impact on program performance (2, 4, 6, 8). Each program is executed multiple times (more 
than five) with each one of these factors, and the average execution time is calculated. 
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• Features extraction using LLVM 

The features of C or C++ programs are extracted from their LLVM Intermediate Representations using the LLVM analysis 
pass -instcount, which tallies the different types of instructions present in the function. Table (1) displays the LLVM 
features that are gathered for each program. These features provide insight into the program's static behavior. A total of 
39 features are distributed across various programs.  

• Computing similarity 

This stage consists of two steps as shwon below. 

- Extract features for unseen program.  

- Compute the similarity between the unseen program and the set of programs in the dataset. There are several scales 
for computing similarity. Cosine scale is used to compute the similarity as shown in equation 1:  

Sim(p,pi )= ∑ "#∗"%#!
"#$

&∑ "#%!
"#$ ∗&∑ "%#%!

"#$

                                            (1) 

Table 1:  program static features 
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Where p represents the main program (unseen program) and pi represents the other programs (training 
programs).[2,11,12] 

• Predicting loop unroll factor  

- To begin, we select the three most similar programs to the unseen one and place them in the similarity set.  

- Next, we rearrange these programs based on their potential benefits from the loop unroll factor. To do this, we 
examine the dataset of these programs to identify the loop factor that offers the greatest performance improvement 
for all three programs. This loop factor, which results in a high score, is presented as a potential candidate for the 
unseen program. Essentially, we choose the loop unroll factor that can reduce the execution time for the majority of 
similar programs. In summary, the objective is to select the optimal loop unrolling factor for a given set of programs 
to minimize their execution time. To achieve this goal, we analyze the dataset and determine the highest factor that 
can be applied to most of the programs. For instance, if a factor of 2 is effective for a majority of the programs, we 
evaluate the performance of a factor of 4. If this factor provides an improvement in execution time for most of the 
programs, we then examine a factor of 6. However, if the factor of 4 remains the most efficient option for a significant 
number of the programs, we consider it as a suitable candidate for unrolling loops in any future unseen program. On 
the other hand, if the factor of 4 is not appropriate for the majority of the programs, we revert to the initial factor of 
2 for further analysis. 

4 Performance Evaluation 

This section aims to investigate whether a well-prepared dataset for loop unrolling factors can lead to faster program 
execution. To achieve this objective, we employ the acquired dataset from various benchmarks, including Polybench, 
Shootout, Stanford, and others to predict an appropriate unroll factor for each loop and compile the benchmark program 
accordingly. Notably, the dataset employed in this study comprises more than fifty programs, of which forty-one yielded 
satisfactory results with varying loop unroll factors, excluding those from the benchmark program used for evaluating the 
results. This enabled us to assess the effectiveness of the learned dataset on previously unseen loops. 
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4.1. Training set programs  
In this study, we compiled the programs using four different loop unroll factors, namely 2, 4, 6, and 8. To compute the 
entire runtimes, we employed the UNIX time command and performed five trials to obtain an average. Figure (2) 
illustrates the training set programs, or dataset, and displays the effects of these factors on program execution time 
compared to the normal case, i.e., no loop unrolling. The programs achieved speedups of 13%, 18%, 19%, and 21% for 
loop unroll factors of 2, 4, 6, and 8, respectively. It is noteworthy that all programs experienced a reduction in execution 
time with loop unroll factors of 2 and 4. However, few programs derived benefits from loop unroll factors of 6 and 8, 
respectively. 

 
Fig. 2: training set programs 

4.2 Results of unseen programs 
In these experiments, five unseen programs are used to validate the proposed method. For each unseen program we 
computer its similarity with the data set and extract the three of most similar programs and candidate high loop unroll 
factor that most of the similar programs get benefit from it (speed up their execution times). 

Symmat.c  

We compute the similarity between this program and the programs in the dataset and we extract the most similar three 
programs which are loop3.c, strmm.c, dct.c. Then we scan the dataset and we get two similar programs benefit from the 
highest factor 8.  Figure (3) illustrates the effect of the loop unroll factors on the program execution time where factor 8 
is the best. 
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Fig. 3: illustrates the predicted factor for symmat.c program 

syrk.c  

The second unseen program is syrk.c. We find the most similar three programs are ary3.c, floatMM.c, trim.c and the 
predicted factor is 4 as illustrated in the figure below. 

 
Fig. 4: illustrates the predicted factor for syrk.c program 

convariance.c  

The third unseen program is convariance.c. We find the most similar three programs are strmm.c.c , p34.c ,dct.c and the 
predicted factor is 8 as illustrated in figure (5)  

 
Fig. 5: illustrates the predicted factor for convariance.c program 
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the predicted factor is 4 as illustrated in figure (6) 

 
Fig. 6: illustrates the predicted factor for jacobi-1d-imper.c program 

Doitgen.c  

The fifth unseen program is Doitgen.c. We find most similar three programs are dct.c , Jacob-2d-imper.c , strmm.c and 
the predicted factor is 8 as illustrated in figure(7) 

 
Fig. 7: illustrates the predicted factor for doitgen.c program 

4.3 Discussion of the results 
Our study has revealed that for various benchmark programs, approximately 40-50% of all loops could not be unrolled 
using the loop unroll LLVM opt command line due to one or more of the subsequent causes: (1) the initial loop induction 
variable value is not a high value, (2) the loop comprises conditional control. Additionally, we found that the highest loop 
unroll factor that can yield a speedup for very few programs was eight, and the speedup remains the same even with the 
highest factor, such as 16. However, for some programs, their performance was degraded. 

A noteworthy observation is that a loop with a high unroll factor, such as eight, is already performing well with a small 
unroll factor, such as two, whereas the opposite is not necessarily true. Moreover, the findings indicate that no single 
unrolling factor significantly outperforms others. 

5 Conclusions 

In order to enhance program speed, the compiler applies various LLVM transformation passes with      

loop unrolling. This study proposes a method to improve the loop unrolling optimization ability of the compiler. First, a 
dataset comprising the execution time of a set of programs with varying loop unroll factors is constructed. Then, the 
similarity with unseen programs is computed, and the similar     programs are reordered based on their potential benefits 
from loop unroll factors. The highest loop unroll factor that can reduce the execution time for most of the similar programs 
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is selected. The experimental results demonstrate that the proposed method can accelerate the training programs with 
varying factors by approximately 17%, while the speedup for unseen programs with different     candidate factors is 
approximately 37.7%. 
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