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The setting of this work is the de Sitter 3-space S3
1 and the study of space-like sur-

faces based on space-like curves. Moreover, a study of Bertrand curves in S3
1 , will be

explored, as well as, developable and normal surfaces of a space-like curve. Further,
singularities of these surfaces are discussed.

Keywords: Space-like ruled surfaces, de Sitter 3-space, Bertrand curve, singularities.

2000 Mathematics Subject Classification: 53A25, 53A05.

1 Introduction

Let R4
1 denote the 4-dimensional Minkowski space-time, i.e., the Euclidean space R4

with the standard flat metric given by [6]

g = dx2
1 + dx2

2 + dx2
3 − dx2

4,

where (x1, . . . , x4) is a rectangular coordinate system of R4
1.

For any a = (a1, a2, a3, a4), b = (b1, b2, b3, b4) ∈ R4, the Lorentz metric on R4 is
defined as

< a, b >= a1b1 + a2b2 + a3b3 − a4b4.

The representation of < > in the matrix form with respect to the standard basis of R4
1

is µ = diag(1, 1, 1,−1).
Since g is indefinite metric, nonzero vectors x in R4

1 are classified as one of three causal
characters space-like, time-like and null (light-like) according to whether [9] g(x, x) > 0
or x = 0, g(x, x) < 0 and g(x, x) = 0.

For simplicity, we take the vector 0 to be space-like.
The norm of a vector x is given by ‖x‖ =

√
| g(x, x) |. Therefore, x is a unit vector

if g(x, x) = ±1. The definition of norm is valid only for space-like vectors because <

x, x >< 0 for a time-like vector x.
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In physics, for a time-like vector x the norm ‖x‖ can be also defined as ‖x‖ =√− < x, x >. This actually has a physical meaning. If x(t) is a time-like curve in S3
1 ,

then ‖x(t)′‖ =
√
− < x′(t), x′(t) > is the actual time elapsed by the moving particle.

This is called proper time in relativity. Here after, vectors a and b are said to be orthogonal
if g(a, b) = 0.

For any three vectors a = (a1, a2, a3, a4), b = (b1, b2, b3, b4), c = (c1, c2, c3, c4) ∈
R4, the Lorentzian vector product is defined by [1, 4]

a× b× c =

∣∣∣∣∣∣∣∣∣

i j k −l

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

∣∣∣∣∣∣∣∣∣

where × is the cross-product of S3
1 and (i, j, k, l) is the canonical basis of R4

1.
In this case, it is easy to check that (< e, < a× b× c >) = det(e, a, b, c) for any vector

e in R4
1.

Now, it is important to note the following definitions:

Definition 1.1. A surface in S3
1 is called a time-like surface if the induced metric on the

surface is a Lorentz metric, i.e., the normal on the surface is a space-like vector [8].

Definition 1.2. A surface in S3
1 is called a space-like surface if the induced metric on the

surface is a Riemannian metric. This is equivalent to the condition that the tangent plane
TpM of M is a space-like plane (i.e., consists of space-like vectors) for any point p ∈ M .
In this case, the normal space NpM is a time-like plane ( i.e., Lorentz plane).

2 Basic Facts on Geometry of Space-Like Curves in Minkowski S3
1-

Space

It is well-known that the Lorentzian space form with a positive curvature, more pre-
cisely, a positive sectional curvature is called de Sitter space. We define de Sitter 3-space
by

S3
1 = {x ∈ R4

1 |< x, x >= 1}.
In this section, we study space-like, Bertrand curves as curves on space-like surfaces.

So, we introduce the basic geometrical tools and some definitions, theorems which we need
for this study. A detailed description can be found in [6].

Let η : I ⊂ R → S3
1 , t → η(t) = (η1(t), η2(t), η3(t)) be a smooth regular curve in

the space S3
1 ( i.e., η′(t) > 0 for any t ∈ I), where I is an open interval. It can locally be

space-like, time-like or null, if respectively the tangent vector at every point of the curve η

satisfies < η′, η′ >> 0, < η′, η′ >< 0 or < η′, η′ >= 0.
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The arc-length of a space-like curve η, measured from η(t0), t0 ∈ I is

S(t) =
∫ t

t0

‖η′(t)‖dt. (2.1)

and it is determined such that ‖η′(s)‖ = 1, where η′(s) = dη/ds. Therefore, we say that a
space-like curve η is parameterized by arc-length if it satisfies‖η′(s)‖ = 1. Moreover, η is
a unit speed curve if g(η′(s), η′(s)) = ±1.

It is well-known that to each unit speed space-like curve η : I → S3
1 , one can associate

a pseudo orthonormal frame {η(s), T (s), N(s), B(s)}. Denote by T (s), N(s), B(s) the
space-like tangent vector, the space-like principal normal vector, and the time-like binomial
vector, respectively.

In this situation, the Frenet-Serret equations satisfied by the Frenet vectors T,N,B

formally given by [7]

η′(s) = T (s),

T ′(s) = −η(s) + k(s)N(s),

N ′(s) = k(s)δ(η(s))T (s) + τ(s)B(s),

B′(s) = τ(s)N(s),

(2.2)

where δ(η(s)) = −sign(N(s)), k(s), τ(s) are the curvature and the torsion of a curve η at
s respectively and given by

k(s) = ‖T ′(s) + η(s)‖, (2.3)

τ(s) =
δ(η(s))
K2(s)

det(η(s), η′(s), η′′(s), η′′′(s)) (2.4)

with K(s) 6= 0
The vectors T, N , and B satisfy the equations

g(T, T ) = g(N, N) = 1, g(B, B) = −1.

Since B(s) is the unique time-like unit vector perpendicular to {T, N}, it follows

B =
η(s)× T ×N

‖η × T ×N‖ ,

where ‖η × T ×N‖ = − < η(s)× T (s)×N(s), η(s)× T (s)×N(s) >, and T (s) = η′

is the tangent.
In the case of < T ′(s), T ′(s) >> 1, we have a unit vector

N(s) =
T ′(s) + η(s)
‖T ′(s) + η‖ .

Here, it is easy to see that

η(s) ∧ η′(s) ∧ η′′(s) = η(s)ΛT (s) ∧ (−η(s) + k(s)N(s))
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= k(s)η(s) ∧ T (s) ∧N(s))

= k(s)B(s).

Definition 2.1. Let η1 and η2 be two regular curves with k1(s) 6= 0, k2(s) 6= 0, s ∈ I .
Let (T1, N1, B1) and (T2, N2, B2) be the Frenet frames of Tη1(s)S

3
1 , Tη2(s)S

3
1 , the tangent

space of S3
1 at η1(s) and the tangent space of S3

1 at η2(s) respectively. If the principal
normal lines of η1 and η2 at s ∈ I are equal, then the curve η1 is called a Bertrand curve.
In this case, the other curve η2 is called Bertrand mate of η1 and it writes

η2(s) =
1
α

η1(s) + λN1(s),∀s ∈ I, α is constant , α 6= 0, 1. (2.5)

The mate of Bertrand curve is denoted by (η1, η2) [2].

Under the above definition, one can give the following theorems.

Theorem 2.1. [2] If (η1, η2) is a mate of Bertrand curve in S3
1 . Then λ is a constant and

is defined by Eq. (2.5).

Theorem 2.2. [2] Let η1 and η2 be two regular curves of S3
1 . Then (η1, η2) is a mate of

Bertrand curve if and only if there exists a linear relation in the form of

pk1(s) + qτ1(s) = 1, (2.6)

where p, q are nonzero constants and k1(s) and τ1(s) are the curvature and the torsion of
η1, respectively.

Theorem 2.3. [2] Consider (η1, η2) be a mate of Bertrand curve in S3
1 . Then the product

of torsions τ1 and τ2 at the corresponding points of the Bertrand curve is constant, where
τ1 and τ2 are the torsions of the curves η1 and η2, respectively.

Now, consider the following corollary

Corollary 2.1. Consider η1 : I ⊂ R → S3
1 be a space-like curve with k1(s) 6= 0 and

τ1(s) 6= 0. Then η1 is a Bertrand curve if and only if there exists a real number p 6= 0 such
that

p(τ ′1(s)k1(s)− k′1(s)τ1(s))− τ ′1(s) = 0.

The Bertrand mate of η1 is then given by

η2(s) =
1
α

η1(s) + pN1(s), α 6= 0, 1

Proof. By the use of Theorems 2.2 and 2.3, it follows that a space-like curve η1 is
a Bertrand curve if and only if there exists a real number p 6= 0 and q such that
pk1(s) + qτ1(s) = 1. In other words, it means that there exists a real number p 6= 0
such that (1− pk1(s))/τ1(s) is constant.
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Differentiating both sides of the last equality, we have

p(τ ′1(s)k1(s)− k′1(s)τ1(s)) = τ ′1(s). (2.7)

The converse assertion is also true.

3 Special Space-Like Ruled Surfaces with Space-Like Curves

The study of space-like surfaces represents one of the interesting subjects in the extrin-
sic differential geometry and in the theory of relativity [6].

In this section, we give some geometric properties of new special space-like surfaces
associated to space-like curves. Singularities of these surfaces are discussed.

Let η : I → S3
1 be a unit speed differentiable space-like curve in S3

1 parameterized by
arc-length s.

In this case, when a director curve moves along the curve η, we get a 2-dimensional
space-like ruled surface M(s, v) : I ×R → S3

1 . it is parametrization as follows

M : φ(η,L)(s, v) = η(s) + vL(s), for all (s, v) ∈ I ×R, v ∈ R

We call a space-like curve η(s) the base curve and L the director curve [8].
Consider now the following definition:

Definition 3.1. A space-like surface φ(η,N)(s, v) defined by

φ(η,N)(s, v) = η(s) + vN(s) (3.1)

is called the principal normal surface of a space-like curve η.

Taking the derivatives of φ with respect to s and v, we have

φs = η′ + vN ′, φv = N(s).

Not that

rank[φs, φv] = rank[η′(s) + vN ′(s), N(s)].

In details

φs = (1 + vk(s)δ(η(s)))T (s) + vτ(s)B(s), (3.2)

φv = N(s). (3.3)

The vectors (3.2) and (3.3) are linearly dependent if and only if

(1 + vk(s)δ(η(s)) = 0. (3.4)
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From (3.4) we see that the wedge product (i.e., the oriented tangent plane generated by
tangent vectors φs and φv) is given by

∂φ

∂s
∧ ∂φ

∂v
= (1 + vk(s)δ(η(s))T (s) ∧N(s) + vτ(s)B(s) ∧N(s). (3.5)

By comparing with the equation (3.2), one can immediately see that

(i) if φ is cylindrical, then k(s0)(δη(s0)) = τ(s0) = 0 and if non-cylindrical then
k(s0)(δη(s0)) = τ(s0) 6= 0

The singular point of the surface (3.1) can be obtained by the use of Frenet-Serret
formula as

(1 + vk(s0)δ(η(s0)))T (s0) ∧N(s0) + vτ(s0)B(s0) ∧N(s0) = 0. (3.6)

In this case,
(ii) (s0, v0) is a singular point if and only if τ(s0) = 0.

So, the principal normal surface φ(η,N) is non-singular whenever τ(s0) 6= 0.
(iii) The singularities of φ is given by the set

{(s, v) : v = − 1
k(s)δ(η(s)))

, s ∈ I}, k(s) 6= 0. (3.7)

Now, for any unit speed space-like curve η : I → S3
1 , we can define two vector fields

E and E as
E = −τ(s)T + k(s)δ(η(s))B(s), (3.8)

E = −(
τ(s)

k(s)δ(η(s))
)T + B(s) (3.9)

along a space-like curve η(s) under the condition that k(s) 6= 0.
We call the vectors E and E the Darboux and the modified Darboux vector fields of

η(s) respectively [5].

Definition 3.2. A space-like surface ψ(η,E)(s, v) defined by

ψ : (s, v) = η(s) + vE(s)

is called a rectifying developable of space-like curve η(s) [3]. From Eq. (3.9), we get

E
′
(s) =

η

δ(η(s))
τ

k
− 1

δ(η(s))
(
τ

k
)′T.

Therefore (s0, v0) is a singular point of ψ(η,E) if and only if

1
δ(η(s0))

(
τ

k
)′(s0) 6= 0 (i.e.,

τk′ − kτ ′

k2δ(η(s0))
)(s0) 6= 0)

and it is equal to δ(η(s0)[(τ/k)′(s0)]−1.
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Under the above definition, one may consider the following proposition.

Proposition 3.1. For a space-like curve η : I → S3
1 with k(s) 6= 0, the following are

equivalent

(i) The rectifying developable ψ(η,Ē) : I × R → S3
1 of a space-like curve η is a non-

singular surface.
(ii) A space-like curve η is a cylindrical helix.

(iii) The rectifying developable ψ(η,Ē) of a space-like curve η is a cylindrical surface.

Proof. It is easy to see that ψ(η,Ē) is non-singular at any point in I ×R with the use of the
previous calculation if and only if

1
δ(η(s))

(
τ

k
)′(s0) = 0.

This means that a space-like curve η is a cylindrical helix. On the other hand, as we have
seen before

E′(s) =
η

δ(η(s))
(
τ

k
)− 1

δ(η(s))
(
τ

k
)′(s)T (s).

The rectifying developable ψ(η,Ē)(s, v) is cylindrical if and only if E′(s) = 0, so that
condition (ii) is equivalent to condition (iii), which completes the proof.

Consider now the following proposition

Proposition 3.2. Suppose that η : I → S3
1 is a space-like curve which is a Bertrand curve.

The principal normal surface φ(η,N) has a singular point if and only if η is a plane curve.
In this case the image of φ(η,N) is a plane in S3

1 .

Proof. If there exists a point s0 ∈ I such that τ(s0) = 0, then η is a plane curve. On the
other hand, the singular point of φ(η,N) corresponds to the point s0 ∈ I with τ(s0) = 0.
This completes the proof of the last assertion of the proposition.
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