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Abstract: Isolation with Migration model (IM), which jointly estimates divergence times and migration rates between two populations
from DNA sequence data, can capture many phenomena when one population splits into two. The parameters inferences for IM are
based on Markov Chain Monte Carlo method (MCMC). Standard implementations of MCMC are prone to fall into local optima.
Metropolis Coupled MCMC [(MC)3] as a variant of MCMC can more readily explore multiple peaks in posterior distribution of trees.
Expensive execution time has limited the application of (MC)3. This paper proposes a Parallel Metropolis Coupled Markov Chain
Monte Carlo for IM. The proposed parallel algorithm retains the ability of (MC)3 and maintains a fast execution time. Performance
results indicate nearly linear speed improvement. This paper provides researcher with rapider and more high-efficiency methods to
study population genetics and molecular ecology problems aided with super computer.
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1. Introduction

The analysis of population divergence is a major focus in
population genetics and molecular ecology. There are two
extreme assumptions for most models which are designed
to do population divergence. The migrations are at a
constant rate for an infinitely long time and the
populations are descended from a common ancestral
population and diverged without gene flow [1]. Most
models are different from the actual world because of
these two assumptions.

The aim of Isolation with Migration model (IM) is
jointly estimating divergence times and migration rates
between two populations from DNA sequence data. There
are six parameters in IM: the population sizes for the
ancestral population and two descended populations, two
different migration rates for two descended populations
and the time of population splitting [2]. With these six
parameters, IM can capture many phenomena that can
occur when one population splits into two. IM has been
successfully used for population genetics [2–4].

The parameters inferences for IM are based on
Markov Chain Monte Carlo method (MCMC). MCMC is
a sampling method with the probability distributions

based on a Markov chain that has the desired distribution
as its equilibrium distribution. The state of the chain is
used as a sample of the desired distribution [5]. MCMC
produces the correct distribution as the length of the
Markov chain increases [6]. MCMC has been
successfully used for gaining posterior probability
distribution for phylogenetic tree [7–11].

If the desired distribution for Markov chain has
multiple peaks which are separated by low valleys,
MCMC is prone to fall into local optima. Many strategies
have been proposed to solve this problem, among which
Metropolis coupled MCMC [(MC)3] is the successful
one. In (MC)3, multiple chains run simultaneously with
different stationary distributions. Only one is the target
chain called cold chain and the others are hot chains for
better mixing by swapping the state information of the
chains. The hot chains can more readily cross valleys in
the trees. If the cold chain successfully swaps state
information with a hot chain, it is likely to cross a valley
and find another peak in the tree [12].

The use of multiple chains incurs a significant
performance cost for (MC)3. Specifically, only the
posterior probability distribution for cold chain is the
desired distribution. In (MC)3, each chain requires the
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Figure 1 The isolation with migration model [2] .

same amount of computation per iteration and interacts to
the others only when swap happens, so it is ideally suited
for implementation on parallel machines. CPU and GPU
are two parallel ways now and widely used for parallel
computing [13,14]. OpenMP for shared memory system
and Message Passing Interface (MPI) for distributed
storage system are two important ways for parallel
computing for CPU [15,16]. MPI is used for parallel
processing in this article. MPI is an Application
Programming Interface (API) specification for parallel
program implementation based on processes. Processes
with local memory can not access the memory for the
other processes. Processes can only communicate with
the other processes by sending and receiving messages.
The critical costs for MPI are messages passing and
processes synchronization [17].

In this article, we proposed a Parallel Metropolis
Coupled Markov Chain Monte Carlo [P(MC)3] for IM,
which improves the performance of IM through the
parallel processing. Our proposed method achieved a
nearly linear speedup over the sequential version of IM.
P(MC)3 provided new opportunities to IM for population
genetics.

2. Model and Algorithm

2.1. Isolation with migration model

The IM model with two sets of parameters is shown in
Figure 1. The implement of IM is based on MCMC. The
state of the Markov chain is a genealogy (i.e. a gene tree)
for each locus in the data set. The length of the Markov
chain is measured by steps. Each step is the transfer of the
state for Markov chain which picks new values for
genealogies and parameters that are included in the state
space [2].

The posterior distribution f (Θ |X) is as follow:

f (Θ |X) = c f (Θ)
∫

G∈Γ
f (X |Θ ,G) f (G)dG (1)

Where Γ refers to the set of all possible gene
genealogies, Θ = {θ ,M1,M2,γ,α,T} is the set of
parameters θ = 4N1u, γ = N2/N1, α = NA/N1,
M1 = 2N1m1, M2 = 2N2m2, T = t/2N1 and X are
genomic sequences [1].

To improve mixing and convergence, metropolis
coupling are used for MCMC. Multiple chains can run
simultaneously. If the posterior probability density
distribution of the phylogenetic parameters for cold chain
is f (Θ |X), then for hot chain is f (Θ |X)β , where
β (0 < β < 1) is the heat parameter. When the Markov
chain with state Θ obtains a proposed new state Θ ′, the
probability of accepting Θ ′ for cold chain is

R = min
[
1,

f (X |Θ ′)

f (X |Θ)
× f (Θ ′)

f (Θ)
× q(Θ)

q(Θ ′)

]
(2)

The probability of accepting Θ ′ for hot chains is

R = min
[
1,
( f (X |Θ ′)

f (X |Θ)
× f (Θ ′)

f (Θ)

)β
× q(Θ)

q(Θ ′)

]
(3)

The heat parameter increases the acceptance
probability of new states for hot chains. In other words,
hot chains tend to accept more states than a cold chain
and more readily cross valleys in the trees [18]. So
successfully swapping between cold chain and hot chains
can make cold chain reach a new peak crossing valleys
and the cold chain can more easily traverse the space of
trees. The obvious disadvantage for IM is the execution
time, especially the Metropolis coupled IM. Multiple
chains run simultaneously and execution time multiply
increase.

2.2. Parallel Metropolis coupled Markov Chain
Monte Carlo for IM

In Metropolis coupled IM, multiple chains run
simultaneously. The chains require the same amount of
computation per iteration and are independent between
others only except when swap happens. So it is ideally
suited for implementation on parallel machines.

There are N processors used in P(MC)3, each
processor performs all computation associated with its
assigned chain(s). Processor N generates random
numbers in pairs and sends them to the other processors.
The random numbers are the labels of chains for swap.
Each processor performs MCMC for chain(s) in them and
checks the random numbers to determine whether it
involves in swap or not. The processors which are not
involved in swap continue to do the next step. If the
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chains for swap are in the same processor, they swap state
information. Otherwise, the processors have to
communicate to each other. The details of P(MC)3 are as
follows.

In each step, each processor p (p ∈ {1,2,3, ...N},
where N is the total number of processors used) does the
following:

1.Do MCMC for chain(s) based on parameter Θ . Where
Θ = {θ ,M1,M2,γ ,α ,T} is the set of parameters of IM.

2.Processor N generates random labels of chains in pairs
for swap and sends them to the other processors.

3.Checks the labels and determines if it involves in swap.
4.If processor involves in swap, it change the heat

parameter of the chains according to the labels,
otherwise it continues to do the next step.

5.Update parameter based on all the loci for chain(s) in
processor.

6.The processor involves the chain with heat parameter
β = 1 records information for final results according
to the statement information of the chain.

At the end of the run, gather the information from chains
with information recorded for final results and summarize
the results.

In optimum, we only need change the heat parameter.
But some other variables in specific for IM have to be
swapped for correct implement. Even so heat parameter is
better than the state information of chains for swap.

2.3. Heat parameter

When swap happens between different processors,
communication between processors is necessary. High
communication costs can severely degrade the
performance of P(MC)3. For IM, state information is tree
data structures and associated conditional likelihoods
account. Communication costs for such structures are
huge. The only difference between the cold chain and the
hot chains is the heat parameter. Different stationary
distributions are based on the heat parameter. So the heat
parameter is suit to communication rather than chain state
information and their associated data structures. Once
heat parameter is swapped, the chains will accept new
states based on their newly acquired heat parameter. Heat
parameter swapping is not only an efficient way but also
easy to implement [18]. There are also some variables for
communication in order to right implement of IM, e.g.
static variables. However, the heat parameters swap also
calls for communication. In P(MC)3, each processor
holds all the heat parameters and only need decide to use
one depending on the swap. The heat parameters swap
change to heat parameters and the communication is
needless.

2.4. Synchronization

Heat parameter swap calls for synchronization. Success or
failure of swap depends on the current state information
of chains for swap. If chains are in the same processor, it
is easy to decide. But if chains are in different processors,
because processor can not access the memory of other
processors, the current state information of chains has to
be communicated and the cost is huge. In P(MC)3 each
processor for swap does all the computation about itself
and only one processor receives the result from the other
one, makes a decision and informs the other one.

When the swap is successful, if all the processors
want to know it, the synchronization is necessary. If each
processor only knows the swap which is relative to it, the
synchronization is needless. But there is another problem,
if each processor does not know the labels of chains in the
other processors and the chains for swap are in different
processors, the swap can not happen. So a processor is
necessary which informs each other mutual label of
process as a middleman. Processors which are not
involved in swap can continue to do next step until they
are involved in swap. So the processors are selfish and
synchronization happens between the processors for
swap.

Some Information based on current state information
of cold chain is recorded for final results. When heat
parameters swap, the cold chain may be different
depending on the heat parameter. So the information is
dispersedly recorded in different processor and the gather
of the information calls for synchronization.

3. Results and Conclusion

We evaluate P(MC)3 on a server with 40 cores in 4 Intel
Xeon E7-4870 processors with frequency 2.4GHz
running Red Hat Enterprise Linux Server 6.0. The data
set includes a segment (ca. 970 bp) of the mitochondrial
gene NADH dehydrogenase 5 subunit (ND5) from 131
individuals of mudskipper (Periophthalmus modestus)
[19]. These sequences were deposited in GenBank with
the accession numbers HQ453212-HQ453269 and
AB257605-AB257625. The mutation model for IM is
HKY. The number of swap attempts per step is 1.
Duration of run is 1000 and duration of burn is 1000.
Population size and splitting parameter can change
through implement. The number of genealogy updates per
step is 10. The swap takes place in every step. We
measure speedup with 2, 4, 8, 16 and 32 processors for
32, 64 and 128 chains. We also ran IM with the same
configurations for comparisons.

The speedups are shown in Figure 2. All speedup
figures are based on execution times of the sequential
version of IM. P(MC)3 achieves nearly linear speedup for
both implementations. The best speedups are 17.42, 20.96
and 22.34 on 32 processors for 32, 64, and 128 chains
over the sequential version of IM. The speedup for
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Figure 2 The parallel speedup of P(MC)3 for different number
of chains .

P(MC)3 depends on the number of chains used. So for
larger number of chains, P(MC)3 can yield larger
performance improvement.

We also evaluate P(MC)3 on supercomputer Lenovo
DeepComp 7000 running Red Hat Enterprise Linux
Server release 5.1. It has 1140 blade server nodes with
Intel Xeon processors and 2 fat nodes with Intel Itanium2
processors. We use blade server nodes for evaluation.
Each blade server node has two quad-core Intel Xeon
E5450 processors with frequency 3.00GHz and share
memory 32GB. The cluster nodes were connected to
Infiniband with 1 Gbps Ethernet.

We only evaluate 128 chains for P(MC)3 on
supercomputer Lenovo DeepComp 7000 and the speedup
is shown in Figure 3. The speedup is nearly linear, but
slows down when we use 128 processors. The speedup
for 128 processors is not ideal.

Processor N need send random labels of chains for
swap to the other processors. When number of processors
increases, the communication cost increases meanwhile.
More chains are in the same processor, larger probability
of chains for swap is in the same processor. When chains
for swap are in different processors, the communication
cost increases. Heat parameter swap calls for
synchronization. The computational imbalance among the
chains for swap increases wait time for synchronization.
The communication cost and the wait time increase, the
speedup decreases definitely.

In this article, we proposed P(MC)3 of IM for
concurrency and to minimize communication costs. The
performance of implementations has been analyzed and
found to achieve nearly linear speedup. P(MC)3 opens up
the possibility of running a large number of chains for
better mixing. The reduction in time achieved by P(MC)3

provided new opportunities to IM for population genetics.

Figure 3 The parallel speedup of P(MC)3 .

4. Discussion

IM is very useful for population genetics and molecular
ecology. IM will provide further insight into evolution
with higher accuracy but will also consume more
computation time. Expensive execution time has limited
the application of IM. Current implementation of P(MC)3

only exploits chain level parallelism for (MC)3 of IM and
its parallelization is limited by the number of chains used
in the analysis. As a next step, we will exploit the
intra-chain level parallel model of IM for more speedup
such as PBPI [20].

If whole mitochondrial protein sequences are to be
analyzed, a single MCMC chain will require memory
beyond the capacity of a single CPU [21]. Such problems
are common when biologists want to analyze complex
models. So the parallel of data for IM is also the focus.
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