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Abstract: Describing the similarity of time series as distance is the basis for most of data mining research. Existing studies on similarity
distance is based on the ”point distance” without considering the geometric characteristics of time series, or is not a metric distance
which doesn’t meet the triangle inequality and can’t be directly used in indexing and searching process. A method for time series
approximation representation and similar measurement is proposed. Based on the subspace analysis representation, the time series are
represented approximately with an isomorphic transformation. The basic concepts and properties of the included isomorphism distance
are proposed and proved. This distance overcomes the problem when other non-metric distance is used as the similar measurement,
such as the poor robustness and ambiguous concepts. The proposed method is also invariant to translation and rotation. A new pruning
method for indexing in large time series databases is also proposed. Experimental results show that the proposed method is effective.
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1. Introduction

With the continuous development of the technical level,
there are lots of time series data in commerce[1],
science[2] and engineering[3]. Such as the sales of
commodities in retail, stock price, number of security
incidents detected by security facilities deployed in the
network, and so on. Analysis of those data will often be
relevant to an important issue: how to find the sequence
which is similar to the given query from the time series of
historical data. For example: In the financial field, people
can search the time series similar to the recent stock price
changes of one company in the historical time series data,
and then predict the future stock price changes according
to the historical time series data. Another example is in
the field of network security, by looking up the historical
time series records similar to recent network traffic and
security events, people can identify network security
posture and possible attacked events.

In 1993, Agralwal et al. first proposed a total
matching algorithm in time series similarity search [4].
Faloutsos et al. who proposed a subsequence matching
algorithm [5], promote the application of similarity
search. The traditional methods are one-dimensional
sequence similarity search, and achieve great success in
their respective fields of application [6,7]. However, with

the prevalence and popularity of audio and video
equipment and the internet, most of the one-dimensional
time series similarity search method does not apply to
new data format, so the multi-dimensional similarity
search is proposed.

Multidimensional time series, including graphics,
images, audio, video and other information, is composed
by a set of data vectors change over time. For example: In
the financial field, the timing data for Chinese stock index
recently points, can be searched not only in their own
historical data set, but also can be tried to search for
similar subsequence in other countries’ stock index
historical data set for policy making [8]. Searching
process of timing data in the field of network security,
which is formed by the number of hosts controlled by
some kinds of Trojan horse in a region, in addition to
concentrate in its own Trojan historical data, can also
refer to other regions or country to find the similar
behavior mode for further analysis and
decision-making[9].

Extending similar search to the multidimensional
scene can obtain the following two advantages: Firstly,
known by the research on the data stream, generally, the
recent data is more valuable than long time ago, so recent
similar sequence found in multiple dimensions may have
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more value than those obsolete sequence found in one
dimension. Secondly, with technology development, a
variety of time series data in recent years is gradually
increased. Because of this, there may not be sufficient
historical data to support applications of similarity search
in a single dimension. By searching in multi-dimensional
time series data, we can increase the scale of search space
to discover more valuable similar historical mode for
decision making.

Our contributions are as follows:
We propose a distance function which we call

isomorphism distance(ISO). This distance function
maintain the geometric characteristics of time series
through subspace isomorphic [10,11]. So it can support
local time shifting, and is a metric. We present benchmark
results showing that this distance function is natural for
time series data.

We propose a new pruning strategy for isomorphism
distance, which can be efficiently indexed with a standard
B+-tree or other data structure. Given that ISO is a metric
distance, we can use the triangle inequality in the pruning
process.

We also develop a k-nearest neighbor(k-NN)
algorithm that use the isomorphism distance. We give
extensive experimental results in Section 5 showing that
the algorithm gets the best of pruning power and
scalability.

The rest of the paper is organized as follows.In
Section 2 we introduce the related works about the
distance measuring similarity and its indexing structure.
In section 3 we present our isomorphism distance model
and prove it’s a metric distance. Because of its metric
measure, some indexing and pruning algorithm are
analyzed in Section 4. The experimental results are
presented in Section 5. We conclude our paper and
suggest some possible future directions in Section 6.

2. Related Work

Many researches focus on how to search similar sequence
fast and accurate in time series database, especially large
database once unable to load in memory. It includes how
to represent time series, how to measure the similarity
between sequences as well as how to index and search in
database. The major role of sequence represented is
dimensionality reduction and feature extraction, which
can resolve dimensionality curse [12]. There are many
commonly used methods in sequence represented field,
such as discrete Fourier transform(DFT)[4,13], discrete
wavelet transform(DWT)[14], singular value
decomposition(SVD)[15], piecewise method[16,17], and
so on. DFT can convert time series into the frequency
domain, take the first few strong Fourier coefficient as a
sequence represented in order to achieve dimensionality
reduction. DFT is suitable for those natrually occurring
sinusoidal signals, but not for discontinuous signal. Haar
wavelet transform is the most common one in all of the

DWT methods. However, for the basis function is not
smooth, Haar wavelet can only use staircase
approximation to the analog signal. Therefore, a
continuous function can not be well approximated by
only a small number of Haar wavelet transform
coefficients, so more wavelet coefficients are needed.
SVD is a dimensionality reduction method depends on
data content. By calculation of a given data set of
eigenvalues and eigenvectors, SVD converts data to make
the most of information in some dimension, then take the
data in the coordinates of those dimensions as
compression of the original data set. Main weakness of
SVD is the eigenvectors need to be recalculate when data
changes. Therefore, SVD is not suitable for dynamic
changes in database. Piecewise method uses piecewise
sequence and its feature(the extreme points and trends) to
represent original time series.

The motivation for seeking new similarity measures is
that the Euclidean distance can not effectively reflect the
shape and dynamic characteristics of time series. It is too
weak to handle noise and local time shifting. Berndt and
Clifford [18] introduced Dynamic time wraping(DTW) to
allow a time series to be ”stretched” to provide a better
match with another time series. Das et al. [19] and
Vlachos et al. [20] applied the LCSS measure to time
series matching. Chen et al. [21] applied EDR to
trajectories. However, none of DTW, LCSS and EDR is a
metric distance function for time series.

Most of the time sequence index is based on the
GEMINI framework. However, if the distance measure is
a metric, a large number of index structure and
technology for the measure can be used. For example, the
MVP-tree [22], the M-tree [23], the Sa-tree [24] and the
OMNI-family of access methods [25]. A survey of metric
space indexing is given in [26].

3. Isomorphism Distance

Existing time series similarity measure is based on two
major types of distance function. The first type consists of
the Lp-norms (e.g. Euclidean distance and edit
distance[27,28]), which are metric distance but cannot
support local time shifting. The second type consists of
distance functions which are capable of handling local
time shifting but are non-metric. Figure 3 compares the
nature of difference in these types of distance.

On this basis, assuming that multidimensional time
series lie in a linear manifold in the data space,we
propose a new distance function, which is called
isomorphism distance. This distance function maintain
the geometric characteristics of time series through
subspace isomorphic. So it can support local time
shifting, and is a metric. To begin with, for any two time
series [s1, . . . ,sm] and [t1, . . . , tn], consider them as two
linear subspaces S and T in Rd . Since discuss similarity
issue, we first assume that S and T have the same
dimensionality. Let s1, . . . ,sp and t1, . . . , tq be standard
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Figure 1 Comparing the Distance Functions: Euclidean Distance(D), Edit Distance(EDR), Dynamic Time Warping Distance(DTW)
and Isomorphism Distance(ISO)

orthogonal basis of S and T , respectively. Let d(si,T )
denote the so-called isomorphism distance from the end
point of vector si to subspace T . That is,

d(si,T ) = min
t∈T

||si − t|| (1)

We then define the subspace isomorphism distance
d(S,T ) for p-dimensional subspaces S and q-dimensional
subspaces T as

d(S,T ) =

√
p

∑
i=1

d2(si,T ) (2)

Since t1, t2, . . . , tq is a standard orthogonal basis of T , it is
easy to see that

d(S,T ) =

√√√√ p

∑
i=1

[
||si||2 −

q

∑
j=1

(sT
i t j)2

]
(3)

With the above-mentioned Distance, we need prove the
following properties:

Theorem 1.The isomorphism distance defined above is
invariant to the choice of standard orthogonal basis.

Proof.Let s1,s2, . . . ,sp and s̃1, s̃2, . . . , s̃p be two standard
orthogonal basis of S. Let t1, t2, . . . , tq be a standard
orthogonal basis of T . To prove the theorem, it suffices to
show that√√√√p−

p

∑
i=1

q

∑
j=1

(sT
i t j)2 =

√√√√p−
p

∑
i=1

q

∑
j=1

(s̃T
i t j)2 (4)

Let P
t j
S is the projection of t j onto subspace S. By the

Parseval equation and the uniqueness of projection,
following equality holds:

p

∑
i=1

(sT
i t j)

2 =
p

∑
i=1

(s̃T
i t j)

2 (5)

In fact, we can see that for every j, j = 1,2, . . . ,q, above
equality always holds. So it completes the proof.

Theorem 2.Non-negativity:0 ≤ d(S,T )≤
√

max(p,q)

The proof of Theorem 2 is immediate.

Theorem 3.Symmetry:d(S,T ) = d(T,S)

The proof of Theorem 3 is immediate.

Theorem 4.Triangle Inequality:

d(S,T )≤ d(S,Γ )+d(T,Γ )

Let S = (s1, . . . ,sp), T = (t1, . . . , tq), Γ = (γ1, . . . ,γr) be
the matrices composed by the orthogonal basis of arbitrary
subspaces S,T ,Γ , respectively.

Lemma 1.Let AH denote the conjugate transpose matrix
of A. The trace of Matrix AHA and AAH is equivalent, i.e.

tr(AHA) = tr(AAH) =
n

∑
i=1

n

∑
j=1

a∗i ja ji (6)

The proof of Lemma 1 is immediate according to the
properties of trace in [29]. With Lemma 1, we can rewrite
the Equation 3 in terms of matrix as follows:

d(S,T ) =
√

max(p,q)− tr(T T T SST ) (7)

Then Theorem 4 can be written as a matrix format.

Lemma 2.Denote Λp the diagonal matrix, which first p
diagonal elements are 1, and rest elements are 0, that
is,Λp = diag(1, . . . ,1,0, . . . ,0).

max(p,q) = tr(Λp +Λq −ΛpΛq)

The proof of Lemma 2 is immediate.

Lemma 3.If we denote S̃ = (s1, . . . ,sp, . . . ,sd) the
orthogonal basis matrix of Rd extended from s1, . . . ,sp,
then

(SST ) = S̃ΛpS̃T

The proof of Lemma 3 is immediate.
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Lemma 4.If we denote:

A = tr[(Λp −Λr)(Λq −Λr)+(M−Λr)(N −Λr)]

B = tr[(M−Λr)
2 +(Λp −Λr)

2]

C = tr[(N −Λr)
2 +(Λq −Λr)

2]

Suppose that matrices U,V meet the following
conditions:S̃ = Γ̃U; T̃ = Γ̃V , then Theorem 4 is
equivalent to :

A ≤
√

B ·C (9)

Proof.Let M =UΛpUT ,N =VΛqV T . According to Lemma
1 and the orthogonality of Γ̃ , we can obtain that:

tr(T T T SST ) = tr(Γ̃VΛqV T Γ̃ T Γ̃UΛpUT Γ̃ T )

= tr(Γ̃VΛqV TUΛpUT Γ̃ T )

= tr(VΛqV TUΛpUT Γ̃ T Γ̃ )

= tr(VΛqV TUΛpUT ) = tr(NM)

and similarly,

tr(T T T Γ Γ T ) = tr(Γ̃VΛqV T Γ̃ T Γ̃ ΛrΓ̃ T )

= tr(Γ̃VΛqV T ΛrΓ̃ T )

= tr(VΛqV T Λr) = tr(NΛr)

tr(SST Γ Γ T ) = tr(Γ̃UΛpUT Γ̃ T Γ̃ ΛrΓ̃ T )

= tr(Γ̃UΛpUT ΛrΓ̃ T )

= tr(UΛpUT Λr) = tr(MΛr)

According to Equation 7 and Lemma 1 we can obtain:

d(S,T ) =
√

tr(Λp +Λq −ΛpΛq −NM)

d(S,Γ ) =
√

tr(Λp +Λr −ΛpΛr −MΛr)

d(T,Γ ) =
√

tr(Λq +Λr −ΛqΛr −NΛr)

Therefore, Theorem 4 is equivalent to

d2(S,T )≤ d2(S,Γ )+d2(T,Γ )+2 ·d(S,Γ ) ·d(T,Γ )

That is

d2(S,T )−d2(S,Γ )−d2(T,Γ )≤ 2 ·d(S,Γ ) ·d(T,Γ )

Let left side of this inequality as LS:

LS = tr[(Λp +Λq −ΛpΛq −NM)− (Λp +Λr

−ΛpΛr −MΛr)− (Λq +Λr −ΛqΛr −NΛr)

= tr(−ΛpΛq −NM−Λr +ΛpΛr

+MΛr −Λr +ΛqΛr +NΛr)

= tr[(Λp −Λr)(Λq −Λr)+(S−Λr)(T −Λr)]

Let right side of this inequality as RS:

RS =
√

tr(2Λp +2Λr −2ΛpΛr −2MΛr)

·
√

tr(2Λq +2Λr −2ΛqΛr −2NΛr)

From A2 = A, Λ 2 = Λ , we get

tr(2Λp +2Λr −2ΛpΛr −2MΛr)

= tr(Λ 2
p +M2 +Λ 2

r +Λ 2
r −2ΛpΛr −2MΛr)

= tr[(M−Λr)
2 +(Λp −Λr)

2]

So

RS =
√

tr[(M−Λr)2 +(Λp −Λr)2]

·
√

tr[(N −Λr)2 +(Λq −Λr)2]

So Lemma 4 completes the proof. Now let’s proof the
Theorem 4: Set

a1 = vec(M−Λr) = tr[(M−Λr)
2];

a2 = vec(Λp −Λr) = tr[(Λp −Λr)
2];

a3 = vec(N −Λr) = tr[(N −Λr)
2];

a4 = vec(Λq −Λr) = tr[(Λq −Λr)
2];

where vec(A) indicates the vector that span with all of the
matrix A’s column vectors head to tail.According to
above lemmas and Cauchy-Schwarz inequality, Theorem
4 is equivalent to

(aT
1 a3 +aT

2 a4)
2 ≤ (∥a1∥∥a3∥+∥a2∥∥a4∥)2

≤ (∥a1∥2 +∥a2∥2)(∥a3∥2 +∥a4∥2)

The whole proof is completed.

As mentioned above, the symmetry and
non-negativity of isomorphism distance can be seen
easily. Particularly, together with matrix analysis
techniques, we show the triangular inequality of ISO.
Therefore, it is proved to be a metric distance
undoubtedly. The measure of the difference between
different time series is the basis of many machine learning
algorithm. Since it is proved to be distance, isomorphism
distance becomes a natural distance measure to
characterize the similarity between time series.

Specific solution of isomorphism distance is borrowed
from the implementation in [30,31]: Firstly, according to
solution idea of LDA algorithm, we can transform the
solution process into the following generalized linear
equation of eigenvalue and eigenvector problem.
Secondly, assumptions to obtain the eigenvalues in
ascending order, select the eigenvectors s1,s2, . . . ,sp
corresponding to the first p(generallyp < m), and then
carry out the Gram-schmidt orthogonalization on
s1,s2, . . . ,sp to meet the orthogonality.
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4. Indexing and Searching

Recall from Figure 3 that isomorphism distance has the
same computational behavior with EDR and DTW. it
takes O(mn) time to compute the distance for time series
S, T of length m, n respectively. For huge time series
database, it is important for a given query Q, we try to
minimize the computation of the true distance between Q
and S to measure the similarity of them for all sequence S
in the database. The topic explore here is indexing and
searching for k-NN(the k-Nearest Neighbor) query
algorithm. An extension to the range queries is rather
straightforward, so we omit its details. Given that
isomorphism distance is a metric distance function,one
obvious way to prune is to apply the triangle inequality.
Metric or not, another common way to prune is to apply
the GEMINI framework of Faloutsos et al. - that is, using
lower bounds to guarantee no false dismissals. In fact,
virtually all approaches to indexing time series under the
Euclidean distance do that[13,5,32,33]. In this section,
we can use a new solution to index and search similarity
time series with isomorphism distance. The beauty of
isomorphism distance is that it can be indexed by a simple
B+-tree or R-tree.

4.1. Pruning by the Triangle Inequality

The algorithm 1 shows a skeleton of how the Triangle
inequality is applied. S is the current time series, while Q
is the query time series. The two-dimensional array
matrix is used to stored the precomputed pairwise
distance between two time series. The array queue is the
array of time series with computed true distance to Q. It
means that if the isomorphism distance ISO(Q,Ri) of
time series {R1, . . . ,Rn} has been computed, it will be
stored in queue. For time series S which is currently being
evaluated, the triangle inequality ensures that
ISO(Q,S) ≥ ISO(Q,Ri)− ISO(Ri,S), for all 1 ≤ i ≤ n.
Thus, it is necessary that

ISO(Q,S)≥ max
1≤i≤n

{ISO(Q,Ri)− ISO(Ri,S)}

If the calculated result maxPruneDis is even worse than
the current k-NN distance stored in result, S can be
skipped entirely. Otherwise, the true distance ISO(Q,S) is
computed, and queue array is updated if necessary to
reflect the current k-nearest neighbors and distances in
stored order.

For large databases, the algorithm 1 makes two
assumptions. Firstly, the matrix matrix must be enough
small to complete be loaded in memory. This may not be
able to meet this condition for large databases. Secondly,
the larger the size of queue, the more time series can be
used for purning. In the next section, we’ll make a
detailed description of how to determine the specific size
of matrix and queue.

Algorithm 1: TrianglePruning(S,Q,k,queue,matrix)
Input: S,Q,k,queue,matrix
Output: result

1 maxPruneDist = 0;
2 for i = 1 to queue.length do
3 if queue[i].dist −matrix[i][S]> maxPruneDist then
4 maxPruneDist = queue[i]−matrix[i][S];
5 end
6 end
7 best = result[k].dist;
8 if maxPruneDist ≤ best then
9 dist = ISO(Q,S);

10 insert S and dist into queue;
11 if dist < best then
12 insert S and dist into result and sort in order to

ISO distance;
13 end
14 end

4.2. Multidimensional KNN Search

A number of similarity search speed-up techniques also
use indexing structures(e.g., R-trees in [34] or sequential
structures in [35]). As isomorphism distance is
independent of any underlying indexing approach, it can
get efficiency benefit from those data structures.
Algorithm 2 shows a skeleton of the algorithm for using
the B+-tree index for k-NN search. It first conduct a
standard search for ∥Q∥ISO in the tree which is structured
in B+-tree. The search result is a leaf node L. The first k
time series pointed to by L are used to initialize the result
array. Next we make a traverse operation in the tree. All
the data values bigger than ∥Q∥ISO are visited in
ascending order. Similarity, all the data values smaller
than ∥Q∥ISO are visited in descending order. If the current
computed distance is smaller than the best one stored, the
queue will be updated if necessary. Otherwise, the
remaining data values can be skipped entirely.

5. Experiments

In this section, we verify the validity of the proposed
approach with a comprehensive set of experiments. All
experiments were executed on AMD Athlon 64 PC 3600+
(2.09GHz), 1GB memory size, CentOS 6.4 operating
system and running JAVA implementations. We used
Euclidean distance, DTW, DTW with anticipatory
pruning (AP DTW) [36] as well as isomorphism distance
to measure the similarity search’s time cost and effect. If
using Euclidean distance, we can take advantage of the
multidimensional space index[5,37] to speed up the
search. Because the DTW distance does not meet the
triangle inequality, it is not possible to use a similar
indexing techniques. Here we use sequential scan and
sliding window to match the subsequence. The
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Algorithm 2: KNNSearch(Q,k, tree)
Input: Q,k, tree
Output: result

1 conduct a standard B+-tree search on tree using ∥Q∥ISO
and let L be the leaf node which the search ends up with;

2 pick the first k time series as initq to which are pointed by
L and initialize result with those sequences’ isomorphism
distance;

3 let v1, . . . ,vh be the data values in all leaf nodes larger
than initq. v1, . . . ,vh are sorted in ascending order;

4 initialize queue,matrix;
5 for i = 1 to h do
6 pick all l time series as array S to which are pointed

by vi;
7 TrianglePruning(S,Q,k,queue,matrix);
8 end
9 let w1, . . . ,w j be the data values in all leaf nodes larger

than initq. w1, . . . ,wh are sorted in ascending order;
10 for i = 1 to j do
11 best = result[k].dist;
12 if (wi −∥Q∥ISO > best) then
13 pick all l time series as array S to which are

pointed by wi;
14 for j = 1 to l do
15 dist = ISO(Q,S[ j]);
16 if dist < best then
17 insert S[ j] and dist into result that is

sorted in descending order of
isomorphism distance;

18 best = result[k].dist
19 end
20 end
21 end
22 else
23 break;
24 end
25 end
26 return result;

experimental data is an earthquake data sets provided by
eamonn(http://www.stat.pitt.edu/stoffer/tsa3/).

5.1. Pruning Power

Given a k-NN query Q, the pruning power is defined to be
the fraction of the time series S in the data set that can be
skipped. Follow [34,38], we measure pruning power(P)
because this is an indicator nothing to do with
implementation details. To compare the pruning power of
those four distance under consideration, we measure P as
follow:

P =
Nskipped

Nall
(17)

The results shows the pruning power of Euclidean
distance, AP DTW and isomorphism distance on the 16
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Figure 2 The Mean value of P(pruning power) for the four
distance under consideration for 16 data sets when k=1.
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Figure 3 The Mean value of P(pruning power) for the four
distance under consideration for 16 data sets when k=5.

benchmark data sets for k =1,5,20. All metric distance
such as Euclidean and isomorphism distance is more
efficient at pruning than other DTW-like algorithm. This
is due to the DTW-like distances don’t meet the triangle
inequality. On average, it was able to prune 1.31 times
when k=1, 1.95 times when k=5 and 1.96 times when
k=20. Once again, however the most obvious result is the
dominance of ISO distance. It wins on most data sets and
is able to prune 1.39 times as many items as Euclidean,
2.52 times as many items as DTW and 1.59 times as
many items as AP DTW.

5.2. Database Size

In order to verify the algorithm scalability on massive
data sets, we’ll expect the fraction of pruned sequences to
increase on larger data sets. The reason is because the
larger the data set, the greater the chance there is of a
good match being found, and we are able to prune a larger
fraction of the data. To demonstrate this effect, we run the
same experiment above on increasingly larger time series
data set. The results are shown in Figure 5.
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Figure 4 The Mean value of P(pruning power) for the four
distance under consideration for 16 data sets when k=20.
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Figure 5 The effect of database size on pruning power.
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Figure 6 The effect of length of time series on pruning power.

5.3. Length of Time Series

Our next study empirically validates the scalability of
isomorphism pruning with respect to the length of time
series. Figure 6 shows algorithm’s performance gains
scale very well with the length of the time series.

5.4. Number of Nearest Neighbors

During the experiment, we also evaluate the number of
nearest neighbors which have a influence on pruning. The
facts show that, with the increase of parameters k values,
the pruning effect of the algorithm is not a significant
drop. This result is consistent with the performance of
another metric distance, Euclidean distance.

6. Conclusion and Outlook

Distance measure between time series is the basis for
further study of the time series data mining tasks.
Looking for a good distance measure has a crucial
importance for improving the efficiency and accuracy of
these data mining tasks. We propose a isomorphism
distance measure which can remain the geometric
features in high-dimensional space to study the similarity
of time series. Our approach is particularly attractive
because it is a true metric distance in similarity search. Be
compare with Dynamic time warping distance, our
approach does not degrade performance, at the same time,
the search pruning effect is greatly improved. And
compared to the Euclidean distance, our method can
better describe the geometric shape of high-dimensional
space time series. In the future work, we will attempt to
explain the geometric meaning of the time series
low-dimensional manifold, research effectively
isomorphic transform, compare with other similar
distance, and extend it to the multivariate time sequence
flow.
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