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Abstract: In this paper, a unified fuzzy H∞ control approach is proposed to deal with the problem of synchronization of two different
hyperchaotic systems. The T–S fuzzy models with a small number of fuzzy IF-THEN rules are employed to represent many typical
hyperchaotic systems exactly. Based on the T–S fuzzy hyperchaotic models, a fuzzy H∞ synchronization controller is designed via
parallel distributed compensation (PDC) techniques. The sufficient condition for the H∞ synchronization of two different hyperchaotic
systems is derived by applying Lyapunov stability theory. The results are expressed in terms of LMIs, and therefore it is very convenient
to check in practice. This method is a universal one for synchronization of two different hyperchaotic systems. Numerical examples are
given to demonstrate the validity of the proposed fuzzy modeling and hyperchaotic synchronization scheme.
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1. Introduction

Since the pioneering work of Carroll and Pecora [1],
synchronization of two chaotic dynamical systems has
been paid more and more attention due to its potential
applications in many fields. Recently, many new
hyperchaotic systems have been found or created by
researchers continually [2-5]. Moreover, synchronization
of two hyperchaotic systems has been studied extensively
in the last few years. Various control methods have been
applied to synchronize two hyperchaotic (or chaotic)
systems, such as robust control [6], adaptive control
[7-11], linear feedback control [12], delayed feedback
control [13], impulsive control [14-19], fuzzy control
[20-21], etc. Among these synchronization methods,
some only focus on the synchronization of two identical
hyperchaotic systems. Others only dealt with one or two
kinds of specified hyperchaotic systems. There are few
unified methods suitable for synchronization of two
different hyperchaotic systems.

At present, the Takagi–Sugeno (T–S) fuzzy model
proposed in [22] is widely applied to many fields because
of its simple structure with local dynamics [23-27].
Tanaka et al [28] established the accurate T–S fuzzy
representation for many kinds of typical chaotic systems

and Lian et al [29] presented a synthesis approach for
synchronization of chaotic systems based on T–S fuzzy
models. But for hyperchaotic systems, to the best
knowledge of authors, there are few results about this
work. Therefore, in this paper, we will give a systematic
scheme to represent many classes of well-known
hyperchaotic systems by the T–S fuzzy models exactly
and then we design a general fuzzy controller to realize
the H∞ synchronization of two different hyperchaotic
systems by parallel distributed compensation (PDC) and
LMI techniques.

2. T–S fuzzy modeling of hyperchaotic
systems

2.1. T–S fuzzy model

Consider the continuous-time T–S fuzzy rule base
described as follows:

Ri: IF p1(t) is Mi1, . . . , and pq(t) is Miq, THEN

ẋ(t) = Aix(t)+Biu(t)+b,

where i = 1,2, . . . ,r (r is the number of fuzzy rules),
x(t) ∈ Rn and u(t) ∈ Rm denote the state vector and the
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input vector, respectively, Ai ∈ Rn×n and Bi ∈ Rn×m are
known system matrix and input matrix with appropriate
dimensions, respectively, p1(t), p2(t), . . . , pq(t) are
premise variables, Mi j is a fuzzy set ( j = 1,2, . . . ,q), b is
a constant vector. By taking a standard fuzzy inference
strategy, i.e., using a singleton fuzzifier, product fuzzy
inference and center average defuzzifier, the final
continuous-time fuzzy T–S system is inferred as follows:

ẋ(t) =
∑r

i=1 ωi(p(t))(Aix(t)+Biu(t)+b)
∑r

i=1 ωi(p(t))
, (1)

where

ωi(p(t)) =
q

∏
j=1

Mi j(p j(t)),

in which Mi j(p j(t)) is the degree of membership of p j(t)
in Mi j, with

r
∑

i=1
ωi(p(t))> 0,

ωi(p(t))≥ 0,
i = 1,2, . . . ,r.

By using µi(p(t))(= ωi(p(t))
/

∑r
i=1 ωi(p(t))) instead of

ωi(p(t)), Eq. (1) is rewritten as:

ẋ(t) =
r

∑
i=1

µi(p(t))(Aix(t)+Biu(t)+b). (2)

Note that 
r
∑

i=1
µi(p(t)) = 1,

µi(p(t))≥ 0,
i = 1,2, . . . ,r,

in which µi(p(t)) can be regarded as the firing strength of
the ith IF-THEN rules.

2.2. Fuzzy modeling of hyperchaotic systems

In this subsection, we present a systematic T–S fuzzy
modeling method for many typical hyperchaotic systems.

Note that most of hyperchaotic systems can be
expressed as follows:

ẋ(t) = Ãx(t)+g(x(t))+ b̃, (3)

where x(t) = (x1(t),x2(t),x3(t),x4(t))T, the linear term
Ãx(t) and the nonlinear term g(x(t)) represent the linear
part and the nonlinear part of the hyperchaotic systems
respectively, b̃ is the constant vector of the hyperchaotic
systems. According to the boundedness of hyperchaotic
systems, one can assume that xi(t) ∈ [c̃i − d̃i, c̃i + d̃i],
where d̃i > 0. Next, According to various forms of the
nonlinear part g(x(t)), the following T–S fuzzy modeling
method for hyperchaotic systems is given below. First, we
assume that there is a common factor in g(x(t)) of

hyperchaotic systems. In this situation, one can choose
the common factor occurred in g(x(t)) as the premise
variable of T–S fuzzy rules. For example, in the following
hyperchaotic system [25], the nonlinear terms include
x1(t)x2(t) and x1(t)x3(t). Among these two nonlinear
terms, the common factor is x1(t). Therefore we can
choose x1(t) as the premise variable.

ẋ1(t) = a(x2(t)− x1(t)),
ẋ2(t) = dx1(t)+ cx2(t)− x1(t)x3(t)− x4(t),
ẋ3(t) = x1(t)x2(t)− lx3(t),
ẋ4(t) = x1(t)+ k.

(4)

The membership functions are chosen as

F11(x1(t)) =
1
2

(
1− c̃1 − x1(t)

d̃1

)
,

F21(x1(t)) =
1
2

(
1+

c̃1 − x1(t)
d̃1

)
.

And the fuzzy IF-THEN rules are defined as:
R1: IF x1(t) is F11, THEN ẋ(t) = A1x(t)+b,
R2: IF x1(t) is F21, THEN ẋ(t) = A2x(t)+b,

where x(t) = (x1(t),x2(t),x3(t),x4(t))T. For the above
fuzzy rule base, by taking standard fuzzy inference
strategy, i.e., using a singleton fuzzifier, product fuzzy
inference and center average defuzzifier, we can get the
following T–S fuzzy system:

ẋ(t) =
∑2

i=1 Fi1(x1(t))(Aix(t)+b)

∑2
i=1 Fi1(x1(t))

. (5)

The rest work is to determine A1, A2 and b such that
Eqs. (5) and (3) are equivalent completely. For the above
hyperchaotic system 4, each part of (3) is presented below:

Ã =

−a a 0 0
d c 0 −1
0 0 − l 0
1 0 0 0

 ,

g(x(t)) =

 0
−x1(t)x3(t)
x1(t)x2(t)

0

 , b̃ =

0
0
0
k

 .

it is easy to see that Eq. (5) is equal to (3) as long as
A1, A2(t) and b are chosen as follows:

A1 =


−a a 0 0
d c − (c̃1 + d̃1) −1
0 c̃1 + d̃1 − l 0
1 0 0 0

 ,

A2 =


−a a 0 0
d c − (c̃1 − d̃1) −1
0 c̃1 − d̃1 − l 0
1 0 0 0

 ,
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b = (0 0 0 k)T .

Consequently, the exact T–S fuzzy models of the above
hyperchaotic system is obtained as (5).

If there is no common factor in the nonlinear part
g(x(t)), we need to choose any two state variables
occurring in g(x(t)) as the premise variables. The rest
modeling process is similar to the above, and therefore is
omitted.

To summarize, most existing hyperchaotic systems can
be represented by the following T–S fuzzy models exactly:

Ri: IF p1(t) is Fi1 and . . . and pq(t) is Fiq, THEN
ẋ(t) = Aix(t)+b,
where i = 1,2, . . . ,r, r is the number of fuzzy IF-THEN
rules, the premise variable p j(t) is a proper state variable
and b is a constant vector. Then, applying the
product-inference rule, singleton fuzzifier, and the center
of gravity defuzzifier to the above fuzzy rule base, the
overall fuzzy hyperchaotic system can be inferred as:

ẋ(t) =
r

∑
i=1

µi(p(t))(Aix(t)+b), (6)

where µi(p(t)) =
q
∏
j=1

Fi j(p j(t))

/
r
∑

i=1

(
q
∏
j=1

Fi j(p j(t))

)
.

3. Fuzzy H∞ synchronization of two different
hyperchaotic systems

In this section, we will investigate the synchronization of
two different hyperchaotic systems based on the T–S fuzzy
models. Firstly, an assumption is given as follows.

Assumption 3.1: The numbers of fuzzy rules of two
different fuzzy hyperchaotic systems to synchronize are
identical.

Consider the fuzzy hyperchaotic system (6) as the drive
system, and the following fuzzy hyperchaotic system as
the response system:

˙̂x(t) =
r

∑
i=1

µ̂i (p̂(t))
(
Âix̂(t)+ b̂

)
+u(t). (7)

Based on PDC technique, a fuzzy controller can be
designed to realize the synchronization as follows:
Subcontroller ud(t):

Ri: IF p1(t) is Fi1 and . . . and pq(t) is Fiq, THEN ud(t)=
Kix(t), i = 1,2, . . . ,r.
Subcontroller ur(t):

Ri: IF p̂1(t) is F̂i1 and . . . and p̂q(t) is F̂iq, THEN ur(t) =
−K̂ix̂(t), i = 1,2, . . . ,r.
The overall fuzzy controller is constructed by the parallel
connection, i.e.,

u(t) =ud(t)+ur(t) =
r

∑
i=1

µi(p(t))Kix(t)−
r

∑
i=1

µ̂i (p̂(t)) K̂ix̂(t).
(8)

Denote the error signal as e(t)= x(t)− x̂(t). Substituting
(8) into (7), we can derive the closed-loop synchronization
error system as follows:

ė(t) =
r

∑
i=1

µi(p(t))(Ai −Ki)e(t)+

r

∑
i=1

µ̂i (p̂(t))
(
Âi − K̂i

)
e(t)+ϖ ,

(9)

where
ϖ(t) = ϖ1(t)+ϖ2(t)+(b− b̂),

ϖ1(t) =
r

∑
i=1

µi(p(t))(Ai −Ki)x̂(t),

ϖ2(t) =
r

∑
i=1

µ̂i (p̂(t))
(
Âi − K̂i

)
x(t).

For the synchronization error system (9), consider the
following H∞ performance index:∫ t f

0
eT(t)e(t)dt <

1
2

eT(0)Pe(0)+

γ2
1 + γ2

2
2

∫ t f

0
ϖT(t)ϖ(t)dt,

(10)

where γ1 and γ2 are prescribed attenuation level, t f is
terminal time.

Theorem 3.1: Considering the fuzzy error system (9),
for the given constants γ1 and γ2, if there exist a matrix
P = PT > 0, and real matrices Mi, Ni with appropriate
dimensions, such that the following LMIs are satisfied:(

PAi +AT
i P−MT

i −Mi + I 1
2 P

1
2 P −γ2

1 I

)
< 0, (11)

and (
PÂi + Âi

T
P−NT

i −Ni + I 1
2 P

1
2 P −γ2

2 I

)
< 0, (12)

where i = 1,2, . . . ,r. Then we can choose Ki = P−1Mi,
K̂i = P−1Ni in (8), such that the robust performance (10)
is guaranteed.

Proof: Now, we select the Lyapunov function as:

V (t) = eT(t)Pe(t),

where P is a positive definite matrix. The time derivative
of V (t) along the trajectory of (9) is given by

V̇ (t) =ėT(t)Pe(t)+ eT(t)Pė(t)

=eT(t)(X +Y )T Pe(t)+ eT(t)P(X +Y )e(t)

+ϖT(t)Pe(t)+ eT(t)Pϖ(t)

=

(
e(t)
ϖ(t)

)T

Ψ
(

e(t)
ϖ(t)

)
,
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where

Ψ =

(
XTP+PX +Y TP+PY P

P 0

)
,

X =
r

∑
i=1

µi(p(t))(Ai −Ki),

Y =
r

∑
i=1

µ̂i (p̂(t))
(
Âi − K̂i

)
.

Based on (10), define

J =
∫ t f

0

(
2eT(t)e(t)− (γ2

1 + γ2
2 )ϖT(t)ϖ(t)+V̇ (t)

)
dt

−
∫ t f

0
V̇ (t)dt.

And we have

J =
∫ t f

0

(
2eT(t)e(t)− (γ2

1 + γ2
2 )ϖT(t)ϖ(t)+V̇ (t)

)
dt

−V (t f )+V (0)

≤
∫ t f

0

{
r

∑
i=1

µi(p(t))
(

e(t)
ϖ(t)

)T

Ξ
(

e(t)
ϖ(t)

)

+
r

∑
i=1

µ̂i(p̂(t))
(

e(t)
ϖ(t)

)T

Γ
(

e(t)
ϖ(t)

)}
dt

+V (0),

where Ξ =

(
G 1

2 P
1
2 P −γ2

1 I

)
, Γ =

(
H 1

2 P
1
2 P −γ2

2 I

)
, G = (Ai −

Ki)
TP+P(Ai−Ki)+I, H =

(
Âi − K̂i

)T
P+P

(
Âi − K̂i

)
+I.

It is easy to see that if the following inequalities hold:(
G 1

2 P
1
2 P −γ2

1 I

)
< 0, (13)

and (
H 1

2 P
1
2 P −γ2

2 I

)
< 0, (14)

then we have

J =
∫ t f

0

(
2eT(t)e(t)− (γ2

1 + γ2
2 )ϖT(t)ϖ(t)

)
dt

≤V (0).
(15)

From (15), it is obvious that the H∞ performance index
(10) is guaranteed. Denoting Mi =PKi, Ni =PK̂i, then (13)
and (14) are equivalent to the LMIs (11) and (12). This
completes the proof.

Remark 3.1: If the numbers of fuzzy rules of two
different hyperchaotic systems to synchronize are not
identical, there is another method we can adopt in [23] to
solve the synchronization problem. The authors in [23]
developed a switching controller to synchronize the two
different fuzzy chaotic systems with the non-identical
numbers of fuzzy rules.

4. Simulation study

To visualize the effectiveness of the theoretical analysis
and design, some examples are included for illustration.
Firstly, we investigate the T–S fuzzy modeling of Liu
hyperchaotic system and Lorenz hyperchaotic system.

Liu hyperchaotic system [2]:
ẋ1(t) = a(x2(t)− x1(t)),
ẋ2(t) = lx1(t)− kx1(t)x3(t)+ x4(t),
ẋ3(t) =−cx3(t)+gx2

1(t),
ẋ4(t) =−dx1(t),

(16)

where a = 10, l = 40, c = 2.5, d = 10.6, k = 1 and g = 4.
Here, Liu hyperchaotic system has two positive Lyapunov
exponents λ1 = 1.1491 and λ2 = 0.12688. The attractor of
Liu hyperchaotic system is shown in Fig. 1 and Fig. 2. The
initial state vector is chosen as x(0) = (1,1,−1,0)T. From
the simulation we can get x1 ∈ [c̃1 − d̃1, c̃1 + d̃1], where
c̃1 = 1.2347, d̃1 = 18.6833. Obviously, the nonlinear terms
are −kx1(t)x3(t) and gx2

1(t) in (16). there exists a common
factor x1(t) in the nonlinear terms. Then we can derive the
T–S fuzzy models of Liu hyperchaotic system as follows:

R1: IF x1(t) is F1, THEN ẋ(t) = A1x(t)+b1,
R2: IF x1(t) is F2, THEN ẋ(t) = A2x(t)+b2,

where x(t) = (x1(t),x2(t),x3(t),x4(t))T,

A1 =

 −10 10 0 0
40 0 −19.9180 1

79.6720 0 −2.5 0
−10.6 0 0 0

 ,

A2 =

 −10 10 0 0
40 0 17.4486 1

−69.7944 0 −2.5 0
−10.6 0 0 0

 ,

b1 = b2 = (0 0 0 0)T .

The membership functions are chosen as:

F1(x1(t)) =
1
2

(
1− 1.2347− x1(t)

18.6833

)
,

F2(x1(t)) =
1
2

(
1+

1.2347− x1(t)
18.6833

)
.

Lorenz hyperchaotic system [3]:
˙̂x1(t) =−a(x̂1(t)− x̂2(t))+ x̂4(t),
˙̂x2(t) = lx̂1(t)− x̂2(t)− x̂1(t)x̂3(t),
˙̂x3(t) = x̂1(t)x̂2(t)− kx̂3(t),
˙̂x4(t) =−x̂1(t)x̂3(t)+dx̂4(t),

(17)

where a = 10, l = 28, k = 8/3 and d = 1.3. Here, Lorenz
hyperchaotic system has two positive Lyapunov exponents
λ1 = 0.39854 and λ2 = 0.24805. The attractor of Lorenz
hyperchaotic system is shown in Fig. 3 and Fig. 4. The
initial state vector is chosen as x̂(0) = (1,2,1,2)T. From
the simulation we can get x̂1 ∈ [c̃1 − d̃1, c̃1 + d̃1], where
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Figure 1 Projection of Liu hyperchaotic attractor on x1−x2−x3

c̃1 =−1.4366, d̃1 = 28.4241. Then we can derive the T–S
fuzzy models of Lorenz hyperchaotic system as follows:

R1: IF x̂1(t) is F̂1, THEN ˙̂x(t) = Â1x̂(t)+ b̂1,
R2: IF x̂1(t) is F̂2, THEN ˙̂x(t) = Â2x̂(t)+ b̂2,

where x̂(t) = (x̂1(t), x̂2(t), x̂3(t), x̂4(t))T,

Â1 =

−10 10 0 1
28 −1 −26.9875 0
0 26.9875 −8/3 0
0 0 −26.9875 1.3

 ,

Â2 =

−10 10 0 1
28 −1 29.8607 0
0 −29.8607 −8/3 0
0 0 29.8607 1.3

 ,

b̂1 = b̂2 = (0 0 0 0)T .

The membership functions are chosen as:

F̂1(x̂1(t)) =
1
2

(
1− −1.4366− x̂1(t)

28.4241

)
,

F̂2(x̂1(t)) =
1
2

(
1+

−1.4366− x̂1(t)
28.4241

)
.

In the following, based on the above T–S fuzzy
hyperchaotic models, we investigate the synchronization
between Liu hyperchaotic system and Lorenz
hyperchaotic system. We consider Liu hyperchaotic
system as the drive system, and Lorenz hyperchaotic
system as the response system. The initial conditions for
the drive system and the response system are

x(0) = (15,25,100,0)T,

x̂(0) = (−25,−20,30,100)T.

According to Theorem 1, choosing γ1 = γ2 = 0.1, we can
get the positive definite matrix P and feedback gains Ki,
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Figure 2 Projection of Liu hyperchaotic attractor on x1−x2−x4
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Figure 3 Projection of Lorenz hyperchaotic attractor on x1 −
x2 − x3
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Figure 4 Projection of Lorenz hyperchaotic attractor on x1 −
x2 − x4
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Figure 5 Synchronization error e(t) between Liu hyperchaotic
system and Lorenz hyperchaotic system

K̂i (i = 1,2) computed by LMI toolbox in Matlab 7.0 as
follows:

P =

 1.6093 −0.0410 −0.0022 −0.3284
−0.0410 0.3789 −0.0044 0.0092
−0.0022 −0.0044 0.1059 −0.0003
−0.3284 0.0092 −0.0003 0.2155

 ,

K1 =

39.3794 13.5798 −0.2381 76.9472
40.6736 142.2773 −1.6448 −6.2164
29.4006 −22.1059 516.3327 −25.0879
68.0431 5.3914 −13.0605 371.6015

 ,

K2 =

 38.9603 14.2497 2.9000 77.1718
40.6733 143.8961 14.6389 −5.0789
−27.7512 37.8918 514.4715 31.3370
66.1391 7.3065 18.7104 372.9590

 ,

K̂1 =

35.7096 13.3922 2.1372 72.7527
39.6357 134.9720 −3.9529 −5.4449
51.7616 −29.9640 487.2763 −22.7680
62.5319 6.6327 −8.1879 350.9440

 ,

K̂2 =

 35.3859 13.8039 0.4756 72.9124
38.7566 136.4886 16.1391 −4.6764
−50.9872 44.6941 485.6173 29.9071
61.7018 7.5811 14.2738 351.4143

 .

The synchronization control signals are imposed when
t = 20sec. The synchronization error curves are presented
in Fig. 5. From Fig. 5, we can see that H∞ synchronization
between the above two different hyperchaotic systems is
derived rapidly.

Remark 4.1: If a pair of smaller γ1 and γ2 are chosen,
then we can derive more satisfactory synchronization
results. But the higher gains of the controller are needed
at the same time.

5. Conclusions

In this work, a T–S-fuzzy-model-based synchronization
method for two different hyperchaotic systems is
proposed. Based on the exact fuzzy hyperchaotic models,
a universal fuzzy H∞ synchronization controller is
designed via the Lyapunov stability theory and PDC
technique. The relevant results are presented in the form
of LMIs. Numerical simulation results are given to
demonstrate the effectiveness of the proposed scheme.
This implies that fuzzy-model-based synchronization
approach for two different hyperchaotic systems is very
flexible and useful in practical applications.
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