
Appl. Math. Inf. Sci. 7, No. 1L, 185-191 (2013) 185

Applied Mathematics & Information Sciences
An International Journal

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

A Flexible Approach for Function-Consistent
Service-Oriented Systems

Yuyu Yin1, Li Zhou1, Xingjian Lu2 and Ying Li2

1College of Computer, Hangzhou Dianzi University, P.R.China
2College of Computer Science and Technology, Zhejiang University, P.R.China

Received: 28 Jul. 2012, Revised: 14 Oct. 2012, Accepted: 20 Oct. 2012
Published online: 1 Feb. 2013

Abstract: Service-oriented systems can be composed by different services from different providers. If one or more constitutes of
services-oriented systems become fault at runtime, service-oriented systems cannot continue to serve their business function effectively.
We propose an effective recovery approach for services based systems. The approach tries to replace each faulty service firstly. If some
faulty services have not the candidate services with similar function, we will construct for each faulty service and tries to replace the
region. Algorithm DRRank is designed to search for a substitution region that have a small number of replaceable services, some faulty
and some healthy. Using our proposed approach, services-oriented systems can be recovered by replacing services in these selected
regions rather than the whole service-oriented systems. As a result, we can reduce the computational complexity and the recovery
overheads. At last, case study is given to show that how our approach works.

Keywords: Service-oriented Systems, Reconfiguration Region

1. Introduction

Service-Oriented Architecture(SOA) offers a powerful
approach to build complex distributed systems by
assembling many independently developed Web services
in many applications[1]. As it is now adopted widely,
great progress has been made in the research about
service composition. Presently, service composition has
become an increasingly important way for IT enterprises
to rapidly develop their applications that not only satisfy
customer business requirements but also deliver an
expectable QoS[2,3].

With an increasing number of Web services,
developing various service based systems(for short,
SBSs) is not the only critical step of SOA
implementation. Due to highly dynamic environments
(e.g. in a clouding environment) and fast changing
business requirements, one or more constituents of the
SBS may become fault after a SBS assembled from a
repository of component services has been deployed. In
the event of faulty services, it is not desirable always stop
and recompose the entire SBSs. Moreover, most
enterprises would like to recover their applications with
lower cost and better efficiency, so that their customers

may not undergo as few unexpected business shutdowns
as possible. Hence there arises an urgent need to provide
function consistent SBSs to [4–10].

Up to now, although there existed many valuable
works which focus on maintaining the overall
functionality of SBSs in the presence of runtime
environment changes[6]. Considering the recovery
overheads, some researchers are considered that service
substitution is the promising way[13,17]. However, it
needs a necessary premise as follows: faulty services
should have the candidate substitutions that offer the
similar functionality. Once the premise is not satisfied, it
is an additional problem of recovery of SBSs with lower
overheads.

In order to address the problem, we present a dynamic
recovery approach to handle multiple services failures
and provide function consistent service-oriented systems.
Inspired by our previous work[12], we introduce the
notion of the substitution region to reduce the recovery
overheads. The substitution regions are built for every
faulty service. It includes faulty services and their
neighbors. If two substitution regions overlap, they are
combined into one. Then only the part of a SBS in the

∗ Corresponding author e-mail: yinyuyu@hdu.edu.cn
c⃝ 2013 NSP

Natural Sciences Publishing Cor.

186 Y. Yin, L. Zhou, X. Lu, Y. Li: A Flexible Approach for Function-Consistent...

substitution region is replaced. In this way, the recovery
process only involves a few component services.

The rest of this paper is organized as follows. Section
2 introduces our proposed recovery method and gives its
algorithm. Section 3 gives the definition and the
identification algorithm of the dynamic reconfiguration
region. Section 4 gives the case study of our method and
shows that how to get the dynamic reconfiguration region
using the DRRank method. Section 5 surveys the related
works. Section 6 gives the conclusions and future work.

2. Outline of Recovery Method for SBSs

The faulty services occurring in SBSs can trigger a
recovery process. Firstly, we want to find the substitution
services for all faulty services. If some faulty services
have not any substitution, we construct and identify
regions for each of them, and recompose the regions.
Then, any region contains too many services, the whole
service process will be recomposed. Figure 1 gives the
process of our method.

For the clarity of the research, we found the
candidates service with similar function by
substitutability of services which studied in our previous
work[12]. And Region recomposition use our proposed
method reported in [23].

Faulty servcie

Faulty servcie

Find the substitution of each faulty

service and Replace

Still have faulty services

Construct substitution regions

Recompose the regions

Successful

Recovery

Completed

Region is too big

Recompose the

whole SBS

Figure 1 The process of our recovery method

3. Recovery Algorithm

The algorithm RecSBS gives the process of the recovery
for SBSs. The algorithm would be triggered when the
faulty services occurred in the systems. It firstly try to
find the replacement for every faulty service(Step 2). If
the replacement for some faulty services cannot be found,
then we will construct substitution regions for these faulty
services (step 6 to 10). The identification of substitution
region will be discussed in session 3. After that, it will
determine the size of the regions. If the size of the region

is smaller than the threshold
N
α

(n is the number of
components in a SBS, c is an overhead factor), the region
will be recomposed using our previous method[23](step
17), else the whole SBS will be recomposed (step 11 to
15). If some regions still cannot find the compositions, the
algorithm will increase the size of the regions, which
means more nearby services will be added into the region.

Algorithm 1 RecSBS
Input: faulty services S f = {si}
Output: Failure or Success
1: for each si ∈ S f do
2: if Find the replacement for each Si then
3: S f = S f − si;
4: end if
5: end for
6: SET c = 0; // c is the region bound
7: if S f ̸=∅ then
8: c++;
9: f r = RegIden(S f ,c); //Call the Algorithm RegIden in

section 3 to identify the substitution region
10: while f r = {ri} ̸=∅ do

11: if the size of ri >
N
α

then
12: Recompose the whole SBS;
13: if no composition can be found then
14: return Failure;
15: end if
16: else
17: Recompose ri;
18: f r = f r− ri;
19: if composition can be found then
20: S f = S f − s′i; // s′i is the faulty service in ri;
21: end if
22: end if
23: end while
24: if S f ̸=∅ then
25: GOTO 8;
26: else
27: return Success;
28: end if
29: else
30: return Success;
31: end if

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 7, No. 1L, 185-191 (2013) / www.naturalspublishing.com/Journals.asp 187

The complexity of the algorithm depends on the while
”loop” and the identification algorithm of the substitution
region (discussed in session 3).

4. Identify Substitution Region

In this section, the region identification algorithm is
presented to identify the part of a SBS that should be
replaced to recover SBS. By identifying a small
substitution region, the number of the replaceable
services will be reduced.

4.1. Definition of Substitution Region

A SBS may contain some different flow structure. The
following four types of flow structures are considered in
our study[12,14]: Sequence structure, Parallel structure,
Selection structure, and Loop structure, as Figure 2. A
substitution region is built for a faulty service and cannot
cross the flow structures. Here, we give the definition of
substitution region.

S1 S2 Sn......(a)

S1

S2

Sn

......
(b)(b)

S1

S2

Sn

......

(c) S

p1

pp2p2

pn

+ S1 S2(d)

k

SequenceSequence

LoopLoop

ParallelParallel

SelectionSelection

+ Sn+1

S Sn+1

Figure 2 Structure Pattern

Definition 1. A substitution region ri of service si is
defined as a six tuples ri = SN,NB,SZ,Max Reg,Fb,Fe,
where:

(1). SN is the faulty service in ri;
(2). NB a set of the services in ri;
(3). SZ represents the size of ri and SZ ≤ Max.
(4). Max Reg represents the max size of the region of

the faulty service.
(5). Fb represents the start node of the flow structure

which involves the faulty service.
(6). Fe represents the end node of the flow structure

which involves the faulty service.
Definition 2. Maximum size Max of a substitution regions
ri of the faulty service si is defined as the furthest distance
between the faulty service si and other service in the flow
structure pi. Namely,

Max Reg = Max(DistanPi(si,s j)),

where, besides si , s j is one of the rest of services in the
flow structure pi.
Definition 3. All substitution regions of the faulty service
si are denoted as SRi = ri, ...,rn.

4.2. Region Identification Algorithm

In this section, we give the identification algorithm of
substitution region. The algorithm has two key processes
as follows:
-Constructing all substitution region of a faulty service
with the given bound;
-Identifying the closest region using the method in
Section 3.3.

Algorithm SReg Ident shows that how to construct and
identify the substitution region for one service. The input
for the algorithm includes the needed size of region d and
the set S f of all faulty services. For a faulty service si, its
all regions can be found by Step 1 to 5. A region r j can be
built from the faulty service si to some other services that
are connected to si with the size c of regions. In the region
r j, all services are not an end node of a flow structure.
While such a region do not found, all services in the flow
structure with the faulty services si should be added to the
region r j(Step 3 to 5). Next, the substitution factor of all
regions of si will be computed by Formula (2), and then,
a sort set of all regions of si is built by sorting the regions
in descending order of substitution factor. Finally, if there
are the same services in two regions, the algorithm merges
the two into one (Step 13 to 17).

Algorithm 2 SReg Ident
Input: faulty services S f = si, the region size c.
Output: New Regions R for faulty services with bound c.
1: for each si ∈ S f do
2: FIND r j =s j|∀s j ∈ r j, s j is not a end node of a flow

structure and the size of r j = c;
3: if such r j is not found then
4: ADD all nodes in the flow structure with faulty service

si TO r j;
5: end if
6: ADD r j TO R j
7: end for
8: for each r j ∈ R j do
9: Calculate the substitution value of r j using Formula (2);

10: end for
11: R j

′ =Sort all region r j ∈ R j in descending order of
substitution value;

12: ADD R j TO R
13: for ∀r j ∈ R j do
14: if r j

∩
rk ̸=∅ then

15: r j = r j
∩

rk
16: end if
17: end for
18: return R;

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

188 Y. Yin, L. Zhou, X. Lu, Y. Li: A Flexible Approach for Function-Consistent...

4.3. Substitution Factor

Due to no replacement for some faulty services, we need
to construct substitution regions for each of them. For a
faulty service, its regions may not only one. For example,
In Figure 5, S4 is a faulty service, and the size of the
region is 3. As Definition 1, it can get three regions. As a
result, we would like to search for the closest region. In
the region, the invocations between all services occur
more frequently.

In this paper, we propose the notion of substitution
factor to identify the closest region. In order to address
the problem, we propose the method DRRank which is
based on PageRank method[16] to compute substitution
factor.

PageRank computes the ranking of searchable pages
based on a graph of the Web and it is an important
method of the Google search. Google uses it to reflect the
relevance and importance of the web pages. PageRank is
defined as follows: PageRank assumes that a Web user
will eventually stop clicking any link. The probability[15]
is known as a damping factor q ∈ [0,1], which is set to
about 0.85. Suppose a webpage u is pointed by a set of
pages M(u), and u points to a set of pages L(u). The page
rank PR(u) of the page u is given by the following
formula:

PR(u) =
1−q

N
+q× ∑

v∈M(u)

PR(v)
L(v)

(1)

Figure 3 shows a graph of three webpages A, B, and C
which link each other. Based on the Formula (1), we can
get the PageRank result of the three pages PR(A) ≈ 1.27,
PR(B)≈ 1.67, R(C)≈ 1.5.

PR(A) =
1−0.85

3
+0.85× (

PR(C)

1
)

PR(B) =
1−0.85

3
+0.85× (

PR(A)
1

+
PR(C)

2
)

PR(C) =
1−0.85

3
+0.85× (

PR(B)
1

)

Figure 3 Link Analysis

The connections between the component services in a
SBS can be viewed as the links between the web pages.

Because of the similar features between the web services
and the web pages, PageRank has been used in web
services search field[16]. The substitution regions are
composed by some interdependent services. As a result,
we can use the idea of the PageRank to evaluate the close
level between the services in the same region.

The Formula of our proposed method DRRank is as
follows:

DR(WS) =
1−q

N
+q× ∑

v∈M(ws)

DR(v)
L(v)

+
Pout

Pall
(2)

We use ws to represent the region. In Formula (2),
M(ws) means a set of pages point to ws, and ws point to a
set of pages L(ws). Because of many series in a SBS, the
importance of the component services also relates to the
size of the input and output parameters. Pout denotes the
size of the external links of ws. Pall denotes all the links
of ws, including the internal links between the component
services in ws and the external links with other services.
The proportion of the Pout and Pall expresses the
complexity of ws. The bigger the values is, the more
complexity the ws is. The value of substitution factor
means the recovery complexity of the regions. The bigger
the DR value is, the higher the recovery costs are.
Therefore, we should choose the region with the lower
DR value to be recomposed.

From Formula (2), we can see that the equation of
DR(ws) is similar to the PageRank method. Thus, They
have similar convergence and complexity. And the
proportion of the Pout and Pall can be given.

5. Case Study

In this section, an example is given to explain how the
region identification algorithm works.

In the region identification process, the component
services in the same flow structure will be combined
firstly to be a region. As Figure 4, S2 is a faulty service.
When c is set to 2, it can find two regions S2,S3 and
S1,S2. Because S1 and S2 are not in the same flow
structure, the algorithm Reg Iden can only identify the
region S2,S3.

In Figure 5, S4 is a faulty service. When c is set to 3,
we can find three regions S2,S3,S4,S3,S4,S5 and S4,S5,S6.
And we should use the DRRank method to evaluate their
substitution factor.

Value of the revlant parameters of the component
services in Figure 4 are as Table 1. In the table, DR means
the initial DR value of every component services. I means
the size of the input parameters of every component
services. O means the size of the output parameters.

According to Formula (2), we can get the equation of
substitution factor of the three regions as follows:

DR(1) =
1−q

N
+q× (

DR(S1)
2

)+
IS2

+OS4
IOS2

+ IOS3
+ IOS4

=
1−0.85

7
+0.85× (

0.83
2

)+
6

20

DR(2) =
1−q

N
+q× (

DR(S2)
1

)+
IS3

+OS5
IOS3

+ IOS4
+ IOS5

=
1−0.85

7
+0.85× (

0.15
1

)+
6

16

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 7, No. 1L, 185-191 (2013) / www.naturalspublishing.com/Journals.asp 189

S1

S2

S4

S3

S5 S6 S7

①①①①

②②

c =2c =2

Figure 4 Combination Priority

S2

p1

p2 S7 S8

S3 S4

S1
S9

S5 S6

①①①①①①
②②②②

③③③③
c =3c =3

Figure 5 Identification of the region with c = 3

Table 1 The Parameters of The Component Services

S1 S2 S3 S4 S5 S6 S7 S8 S9
DR 0.83 0.15 0.47 0.62 0.38 0.67 0.27 0.55 0.72
I 2 4 4 3 2 2 4 4 5
O 2 4 3 2 2 5 4 5 3

DR(3) =
1−q

N
+q× (

DR(S3)
1

)+
IS4

+OS6
IOS4

+ IOS5
+ IOS6

=
1−0.85

7
+0.85× (

0.47
1

)+
8
19

The DR values of the three regions are as Table 2.
Reg.a represents the region S2,S3,S4. Reg.b represents the
region S3,S4,S5. Reg.c represents the region S4,S5,S6.
The region with the lowest DR value is S2,S3,S4.

Table 2 The DR Value of The Region

region Reg.a Reg.b Reg.c
value 0.318 0.383 0.441

6. Related Work

Service-oriented systems are often executed in dynamic
environments. In the environment, many factors can
interrupt the execution of the applications, such as
unavailability or malfunctioning of services. Therefore,
the recovery of the service-oriented systems is very
important.

For the faulty services in SBSs, many papers have
proposed service substitutability and adaptation strategy.
T. Yu[17] proposes two service substitutability
algorithms. The first one uses an existing backup path.
Once the service is failed, the system can turn to the
backup path quickly. The second one is to recompose a
new path and replace the old one. Khaled Mahbub[18]
analysis the different situation about the failure of the
service-oriented systems, and proposes a service
substitutability strategy to support the dynamic changes
of the systems. The strategy can determine the timing of
the executing, which can be before or after the execution.
Wei Ren[19] proposes adaptive strategy to support the
dynamic service substitutability which is using business
rules. It uses local and global business rules to choose the
candidate services to replace ones. The most of the work
just consider one-to-one substitutability. With the
development of the coarse-grained services, the service
substitutability can be one-to-one, one-to-many and
many-to-one.

Hadi Saboohi etc.[20] propose a failure recovery
method using subgraph replacement of web services
containing a failed web service. They first calculate the
subgraph of the composition service, and then rank the
subgraphy. The best ranked alternative subgraph would be
the replacement selection if the web service of that group
fails. The subgraph calculation considers all combination
patterns of all the component services in the composition
service, so it is time-consuming. Yanlong Zhai etc.[11]
present an approach for repairing failed services and still
meets the user’s specified end-to-end QoS constraints.
The approach is designed to produce reconfiguration
regions that include one or more failed services. Then the
approach uses integer programming to recompose each
region until the reconfiguration is success. Kwei-Jay
Lin[21,22] recompose sub-process by considering more
function replacement models. Services in reconfiguration
regions may be replaced using one-to-one, one-to-many,
or many-to-one service mappings. The paper proposes the
algorithm to recompose sub-process with many-to-one
mappings. In our paper, we consider dynamic
reconfiguration regions. Based on the regions, the
dynamic reconfiguration method uses service
substitutability strategy or recomposition strategy to
reconfigure the system according to the size of the region.

7. Conclusion and Future Work

Since service-oriented systems are executing in highly
dynamic environments, they need to recover from service
faults as soon and efficiently as possible. As a result,
maintaining the high availability of service-oriented
system is listed as the obstacle for the next development
phase of SOA and cloud computing and it has become the
first challenge in the tow areas.

When the faulty services appear in the system, it is
undesirable to recompose the whole system if there are

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

190 Y. Yin, L. Zhou, X. Lu, Y. Li: A Flexible Approach for Function-Consistent...

only a few faulty services. We propose an effective
recovery approach for services based systems. The
approach tries to replace each faulty service firstly. If
some faulty services have not the candidate services with
similar function, we will construct for each faulty service
and tries to replace the region. Algorithm DRRank is
designed to search for a substitution region that have a
small number of replaceable services, some faulty and
some healthy. Using our proposed approach,
services-oriented systems can be recovered by replacing
services in these selected regions rather than the whole
service-oriented systems. As a result, we can reduce the
computational complexity and the recovery overheads.

In the future, our work could also be extended in the
way: the identification process of the substitution region
should be improved. In addition, our approach should be
applied to more real applications.

Acknowledgement

This paper is granted by National Natural Science
Foundation of China under Grant No. 61100043,
Zhejiang Provincial Natural Science Foundation(No.
LY12F02003), and The National Key Technology R&D
Program under Grant (No. 2012BAH24B04).

References

[1] LiangJie Zhang, Jia Zhang, and Hong Cai, Services
Computing, Springer&Tsinghua University Press, 2007.

[2] Zhang DG and Zhang XD. A New Service-Aware Computing
Approach for Mobile Application with Uncertainty.
APPLIED MATHEMATICS & INFORMATION
SCIENCES, 2012, 6(1):9-21.

[3] M. Brian Blake, Wei Tan, Florian Rosenberg, Composition
as a Service. IEEE Internet Computing (INTERNET), 2010,
14(1): 78-82.

[4] M. Aoyama, S. Weerawarana, H. Maruyama, C. Szyperski,
K. Sullivan, and D. Lea, Web Services Engineering: Promises
and Challenges, Proc ICSE 2002, Orlando, 2002, 647-648.

[5] W. Vambenepe,C. Thompson,V.Talwar et.al, Dealing with
Scale and Adaptation of Global Web Services Management.
Int. J. Web Service Res, 2007, (3): 65-84.

[6] Yuhong Yan, Pascal Poizat, Ludeng Zhao, Repair vs.
Recomposition for Broken Service Compositions. ICSOC
2010: 152-166.

[7] Bo Jiang, W. K. Chan, Zhenyu Zhang, T. H. Tse,Where to
adapt dynamic service compositions. WWW 2009: 1123-
1124.

[8] Liu, Xumin, et al. “Ev-LCS: A System for the Evolution
of Long-Term Composed Services.” IEEE Transactions on
Services Computing (2011).

[9] Friedrich, Gerhard, et al. “Exception handling for repair in
service-based processes.” IEEE Transactions on Software
Engineering, 2010, (36)2: 198-215.

[10] Romano D, Pinzger M. “Analyzing the Evolution of Web
Services Using Fine-Grained Changes 2012 IEEE 19th
International” Conference on Web Services (ICWS), 2012:
392-399.

[11] Yanlong Zhai, Jing Zhang, Kwei-Jay Lin.SOA Middleware
Support for Service Process Reconfiguration with End-to-
End QoS Constraints. 2009 IEEE International Conference
on Web Services(ICWS), 2009: 815-822.

[12] Ying Li, Xiaorong Zhang, Yuyu Yin ,Yuanlei Lu.
Towards Functional Dynamic Reconfiguration for
Service-Based Applications. The IEEE World Congress
on Services(Services 2011): 467-473.

[13] Wu J and Jin L. A Linear Logic Representation for
BPEL Process Protocol. APPLIED MATHEMATICS &
INFORMATION SCIENCES, 2011, 5(2): 25-31.

[14] Ying Li, Xiaorong Zhang, Yuyu Yin, Jian Wu. QoS-
Driven Dynamic Reconfiguration of the SOA based Software.
International Conference on Service Sciences (ICSS). 2010.

[15] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. Computer Networks and
ISDN Systems, 1998, 30 (1-7): 107-117.

[16] Li jun Mei, W.K. Chan, T.H. Tse.An Adaptive Service
Selection Approach to Service Composition. 2008 IEEE
International Conference on Web Services.

[17] T. Yu and K.Lin. Adaptive algorithms for Finding
Replacement Services in Autonomic Distributed Business
Processes.In Proceedings of the 7th International Symposium
on Autonomous Decentralized Systems, 2005: 427-434.

[18] Khaled Mahbub, Andrea Zisman. Replacement Policies
for Service-BasedSystems. Service-Oriented Computing,
ICSOC/ServiceWave Workshops 2009: 345-357.

[19] Wei Ren, Gang Chen, Zhonghua Yang, etc. Self-healing
Capable Workflow Execution with Semantic Web Service.
IEEE International Conference on Service Operations and
Logistics and Informatics (IEEE/SOLI 2008): 508-513.

[20] Hadi Saboohi, Amineh Amini, Hassan Abolhassani. Failure
Recovery of Composite Semantic Web Services using
Subgraph Replacement. Proceedings of the International
Conference on Computer and Communication Engineering
(ICCCE 2008): 489-493.

[21] Kwei-Jay Lin, Jing Zhang, Yanlong Zhai. An Efficient
Approach for Service Process Reconfiguration in SOA
with End-to-End QoS Constraints. IEEE Conference on
Commerce and Enterprise Computing (CEC 2009): 146-153.

[22] Kwei-Jay Lin, Jing Zhang ,Yanlong Zhai ,Bin Xu. The
design and implementation of service process reconfiguration
with end-to-end QoS constraints in SOA. Service Oriented
Computing and Applications (SOCA 2010) 4(3): 157-168.

[23] Bin Wu, ShuiGuang Deng, Ying Li, Jian Wu, Jianwei
Yin, “AWSP: An Automatic Web Service Planner Based on
Heuristic State Space Search”. ICWS 2011, (IEEE Press,
2011): 403-410.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 7, No. 1L, 185-191 (2013) / www.naturalspublishing.com/Journals.asp 191

Yuyu Yin received the
Doctor’s degree in computer
science from Zhejiang
University, Hangzhou, China,
in 2010. He is currently
an assistant professor in
Hang-zhou Dianzi University.
His research interests include
service computing, cloud
computing and middleware

techniques.

Ying Li received the
Doctor’s degree in software
technology from Zhejiang
University, Hangzhou, China,
in 2000. He is currently
an associate professor
in Zhejiang University.
His research interests
include software architecture,
software automation,

compiling technology, and middleware techniques.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

