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Abstract: In this paper, the conformable equation for hydrogen-like systems with conformable Coulomb’s potential is constructed.
Then, the conformable eigenfunctions and energy eigenvalues are obtained. The analytic solutions are expressed in terms of
conformable spherical harmonics and conformable Laguerre functions that are appeared and defined in this work. Some aspects of the
results are discussed. For instance, the probability density for the first three levels and different values of o are plotted, and it is
observed that the probability density gradually converts to o = 1 for all levels. The traditional version of this problem is recovered
when the fractional parameter o = 1. The set of conformable eigenfunctions could be useful as a basis for approximation methods
developed for the conformable counterparts that appeared in conformable quantum mechanics.

Keywords: conformable Schrodinger equation, conformable spherical harmonics, conformable Legendre equation, hydrogen atom.

1 Introduction

The Schrodinger equation, which is the quantum equivalent of Newton’s second law in classical mechanics, is an important
conclusion in quantum mechanics for obtaining the wave function. Only a few idealized systems, like the hydrogen
atom, may achieve the exact solutions to the Schrodinger equation. And the method of separating the variables was
applied in order to solve it using three-dimensional spherical coordinates. It produces two equations, the first of which is
aradial equation and the second of which is an angular equation. The radial equation’s solution requires knowledge of the
potential, while the angular equation’s solution utilizes special functions, notably the associated Legendre equation [1].

Recently, the application of fractional calculus has emerged as one of the most exciting topics in a variety of physical
science fields. The concept of a non-integer order of derivatives originally appeared in correspondence between L’ Hospital

and Leibniz in 1695, when L’Hospital inquired as to what was meant by% if n= % [2, 3]. A fractional derivative has
since been described in a few research publications. Most of them gave definitions of the fractional derivative in integral
form. There are several definitions of a fractional derivative such as Hadamard [4], Riemann-Liouville [2, 3], Caputo [5],
Riesz [6, 7], Weyl [8], Griinwald [9], Chen [10], and Riesz-Caputo [11]. Many works on fractional calculus with diverse
definitions have been created in recent years; for example, [12-22].

A novel derivative idea, the conformable derivative, was proposed a few years ago by Khalil et al. [23]. The conformable
derivative of f with order 0 < o < 1 is defined by [23]

Da(f)(t):hm f(t+8t17a)_f(t)7 (1)

£—0 €

where f : [0,00) — R. This definition generally satisfies the standard properties of the traditional derivative, which makes
it attractive for researchers. Some of these properties are [23]
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S

(af +bg) =aD*(f)+bD%(g) for all real constant a,b
-D*(fg) = fD%(g) +gD*(f)

(t7) = ptP~* for all p
_Da([) _ gDa(f)*sza(g)

g
-D%(c¢) = 0 with ¢ is constant.

Using the definitions of conformable derivative, one can show that for a wavefunction y(s) the following relations hold
true

D*[y(s)] =s'""“y(s) )

and

DEDAY(5)] = (1= a)s! 24y (5) 4522y (s). @

For further knowledge about the properties and applications of this type of derivative, we refer you to [24-29] and
references therein. The conformable derivative does not satisfy zero-order, semigroup, or the Generalized Leibniz rule,
but the conformable fractional derivative still contains components of the ordinary derivative. The conformable
derivative is hence called a local operator [30].

The conformable calculus was used to solve the conformable Bohr Hamiltonian appropriate for triaxial nuclei which
involved the Kratzer potential as an analytical solution in [31]. In addition, The conformable calculus was used a new
category of critical point symmetries associated with zeros of conformable Bessel functions to describe spectra of nuclei
around the critical point to obtain the exact eigenvalue and eigenfunction solutions of local fractional Bohr-Mottelson
Hamiltonian (with infinite square well potential) in [32]. In special relativity, the conformable derivative was used to
study the effect of deformation of special relativity studied by conformable derivative [33], and in quantum mechanics to
study its effect on the formation of quantum-mechanical operators [34]. In addition, the annihilation and creation
operators are used to quantize the conformable harmonic oscillator [35], and the Bateman damping system is quantized
with conformable derivative in ref [36]. Recently the conformable operator is used to extend the approximation methods
in quantum mechanics (variational method [37], perturbation theory [38] and WKB approximation [39].

The purpose of this paper is to solve the conformable Schrodinger equation for the hydrogen atom with conformable
Coulomb’s potential.

2 Conformable Schrodinger Equation For Hydrogen Atom

The conformable Schrodinger equation in 3D-spherical coordinates is given by

2 o
(vw g—a(Va(ro‘)Ea)) Vo (r®, 0%, ¢%) = 0. 4)

Applying the separation of variables by assuming that Yy (r%, 0%, %) = R, (r®)Y/2*, we obtain two equations. The first

la
one reads as ! |
la

D%[sin (0*) DY ¥ 4+ ———————
6[ ( ) 2] ] Y;&O‘Sinz (ea) ¢

Lo

This equation is called a conformable angular equation of the Schrédinger equation. The second equation is the
conformable radial equation:

zmoc,,Za

DEIPADERa] + | T (B~ Valr™)) = 024(¢+ 1) | Ry =0. ®)
o

The solution for this equation depends on knowing the conformable potential Vi, (r*).

2.1 Conformable spherical harmonics
Consider the Schrodinger equation of the form [40]

A2
Pa _ (o o
Im® Va(x,t) = (E” = Va(fa)) Walx,1). )
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The coordinate and the momentum operators are defined as
fo=x, p%=—ihdV*. (8

where 7% = — . To read more about conformable quantum mechanics see ref [34, 40]. The conformable Schrodinger

(2m)«
equation in spherical coordinates can be written as

<V2°‘%(Va(r°‘)Ea)) Vo (r%,0%, %) = 0. 9)

where

: D% (10)

1
200~ por2ono
V** = —D¥[r"*D¥| + i (99) 2°

2o

WDS’ [sin (6%)Dg] +

After substituting in eq.(9), we obtain

1

1
— DY[F**DYR — _DY%[sin(6%)D%Y, — D%y,
Rqy Al a]+Yasin(90‘) olsin (6%)Dg a]+Yasin2(9“) ¢
zm(er(x
_77720‘ (Va(ra)—EO‘):O, (11)
o

The first part of this equation that depends on r* and equal to a constant is given as

1 o200 nHo 2m%r i o o 2
This equation is the conformable radial equation and the solution of this equation depends on the potential Vi (r®).
The second part of equation (11) reads as

1 1

. 2 _ 2

Yo sin® (0%) ¢
Using separation of variable Yo (0%, %) = O (0%) Py (9*), we obtain
1 1

D%sin(8%)D%Oy] + —————— D2 dy = — ({4 1), 14
Oy sin (0%) o1sin (6%)Dg O] Dy sin2(0%) © ¢ (£+1) (14)
after multiplied this equation by sin® (%), we obtain
in(6% 1
Sm(; )Dg[sin(ea)pg@a]+aze(£+1)sin2(9“)+31)3paq>a:o. (15)
o o

The part of this equation that depends on ¢* and equal to a constant is given as

1
31)@“% = —a’m?, (16)
o

thus, the solution of this equation reads as,
Dy (%) = Ae™?” 4 B9 (17)
We will adopt the part Ae™?“ because P is a single-valued function where m is an integer. Thus,
Dy (%) = A" (18)
The part of eq.(15) that depends on 6% and equal to a constant is given as

sin (6%)
Oq

DY[sin (0%)DYOq) 4 L (£ +1)sin” (8%) = o’ m?. (19)
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Multiplying this equation by @, we obtain
sin (0%)D§[sin (6%)D§ O] + & [£(£ + 1) sin* (6%) — m*]| Oy = 0. (20)

let Og(0%) = Xq(x%),x* = cos (%) — ax® 'dx = —a0% 'sin(0%) — D¥ = —sin(6%)D?, After substituting in this
eqution, we obtain

—(1=x**)DZ[—(1 —x**)D¥X¢g] + 0 [L(£+ 1)(1 —x*%) —m*| Xo = 0. (1)
after multiplied this equation by m, we obtain
2
m
(1—x**)D*D% Xy, — 20x* DX + 0 | £(0 4 1) — ) Xo =0. (22)

This equation is called conformable associated Legendre differential equation and its solution is given by [41]

mo (71)”1(1 7x2a)%

Xo = P'% = T D(Zer)a(xQ(x _ 1)i' (23)

Thus, the conformable spherical harmonic solution for eq.(13) is given as

anc(eoc’(Pa) :1\7;’»(1106eim(p"‘};.moc(COS(90{))7 (24)

Lo la

where NZ‘XO‘ is normalization constant, can be calculated using normalization condition
[ Wiz @ = NP [ P (cos (0%) Pi (cos (6%))d“ @2 ©3)

where d*Q = sin (0%)d*0d“* .
Using the orthogonality of conformable associated Legendre functions [41], we get

27)% a2 12(0+m)!
Ymoz Zda,Q: Nmoz 2( -1
/' fa | N a 20+1D)(l-m) 7

(2041)(—m)!
a?n=22(0+m)!(2m)%

then, the normalization constant read as N = . Thus the orthonormal conformable spherical

harmonic functions

ymo — (2£+])(ﬂ_m)'
fo =\ a2n=22(0+m)!(2m)®

eme® Pi% (cos (69)). (26)

2.2 The relation between Yo% and Y, é;ma

The relation between Y* and Y,"* is given by

Y, = (1) (27)

lo

Proof. in the first step we will prove the relation between P/i* and P,"* , Define P,;"* using eq.(23) as,

~ —1)M(1-x2%)"7
Piamoc — ( ) ((xpng' ) D(f m)OC(XZOC _ 1)f (28)

But, DUFme (2 _ 1)l = pltme(x@ _ 1)(x* 1 1), now let f = x* — 1,g = x* + 1. Then,

D(€+m)06(fg)€ _ D(€+m)oc(f)€(g)€ — D(€+m)06(fé )aé(gé )OCE
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Where w = fé 2= gé — DETma[(yalyal]
Using Leibniz rule, we obtain

l+m
DM ) ()] = (“/Qm) DU (3ol DR ()
k=0

_ Z (f+m)Dz+mk)a(w)asza(Z)az

k=m
where Dt (Z)M _ (foi') : (Z)(H)a, D(£+m7k)a(w)(x[ _ oc(fl;;;f'e' (W)(kfm)(x‘ Then,

D(Z+m)oc [(W)OCE OCE

0+ a £| B Z+m7k£! .
( m) (Z (¢ k)am W)(k Yo

(+m Oﬂ“'"(f') o) (k-m)a () (E—k)er
() om0

m)2(0+m)! s (=B
!(€+amlg)!)(é(k)!(icm)!(w)(k @Y (29)

Il
>~ >~ >~
09~ [09- [9-

In the same way

r

_ C—m\ & e 2 e
-2 (") e @

l—m (g m)vaffm(ﬁy)Z (r+m)o )\ (0—r)a
A= m—ntreme—i ™

D(me)a[(w)af (Z)(ﬂ] _ —m <£ — m) D([fm—r)a(w)aéDra (Z)OM (30)

N\ ~
™I 1
S o

r=

Since the omitted terms in the sum vanish D**(f)" = 0 if k > r, and change the summation variable to k = r + m and
substituting in eq.(30), we get

l l—m 2 ka l+m—k)a
€ —m) o= (01)2 (w) R () Em=h)
D(f m) al( ol ( 1
(W)™ @)"] k;ﬂ k—m)!(l— k)R +m—Fk)! 3D
. a2m([+m)!(w)ma(z)moc
Multiply eq.(31) by = (Trm) (o e oy > W€ have
_ | mo(\mow L Vo lm( py (k—m)a (\(—k)o
Dl ge) - LU (e mia ) )
(l+m)losm &= m)! (€ — k) (k) (£ +m—k)!
Making use of eq.(29) , we obtain
—m gim!wmazma -
DI )] = (L pma ety 63)
After substitutions, we have
—m (6 m) ( 20671) m
DI = 1)) = e e D[ = )] (34)
Now substituting in eq.(28) , we have
—m (71)»1(67’")! (71)m(17x206)% m
P = (C+m)la2m 20 DM — 1)) (35)
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Using eq.(23), we obtain
e (=D (= m)!

In the second step We define Y, [;ma using eq.(26)

y - me _ \/ (ZE + ])(ﬂ + m)! efimq)“Pmea (COS (Ga))- (37)

la a=2m=22(0 —m)!(2m)®

Substituting P,;"* from eq.(36), we obtain

o 20+1)(l+m)! —imoe (=)l —m)! o
Vo' :\/ az('wz(e)(;)!()zn)a ’ (az’l(ngrm)!) Fla' (cos (6%))

oy [ @D —m)!
=D g myene
= (—1)"yn . (38)

e~ MY PN (cos (0%))

Some of the low-lying conformable spherical harmonic functions are enumerated in the following table

Table 1: The first nine conformable spherical harmonics Y;2%*.
L m Y

2
010 \/ Z(gn)“
B o 1l
1
0 1/ 2(32‘;‘:)0, cos (0%)
1 0,/ gragme? sin (6%)

2 . _ip®
2 \/ 16)1(52‘;;)& sin® (0%)e =29
-1 ] ay/ 4(2'751>ae’5‘pa cos (6%)sin (6%)

2
0 8<52‘;f>a (3cos? (6%) —1)
1 —a,/4(2175r)a 9% cos (%) sin (0%)
2 161(523:)“ sin” (§%)e2¢"

The conformable spherical harmonic density for Yzlo‘z‘ and for different values of  are plotted in 3D and 2D using
Mathematica as follows,
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a=0.2 a=0.3
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©

(b)

Fig. 1: (a) |Y,%|? at different values of & from 0.1 to 0.9 in polar coordinates.; (b) |Y,.#|* with different values of ¢ from 0.1 to 0.9 in

3D.

© 2024 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

144 o M.G. Al-Masaeed et al.: Analytical solution of conformable Schrodinger wave...

(b)

Fig. 2: (a) |Y,.%|> when & = 1 in polar coordinate.; (b) |Y,#|> when & =1 in 3D.

2.3 Application: Conformable Coulomb’s Potential

The conformable Coulomb’s potential reads as [37]

a
a
o
Va(” ) = - r_aa
where a = 4”8 . Inserting this potential in eq.(12), we obtain
o2 o

2m%r

D;x [rZaD,qRa] + |: }‘:L2OC
o

o
Making the substitution Ry (r%) = "“r(of L, we arrive to the following equation

2m%* a®*  a?l(0+1)
B2 e g2 o =0.

lﬂD%m+[—H+

(E*+ ‘r’—a) — o+ 1)] Ry =0.

(39)

(40)

(41)
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where k% = — zngfa . Make the change of variable r% = gk , then D% = 2kD°‘ s0, we obtain
2m* a*2k AP oPl(L+1)
2 2 —
4k Dngua + [—k 0 o a ] ug =0. (42)
o« P p
Thus,
1 la al(0+1)
where Ay = hz" k This equation can be solved in two cases.
The first case: p* — 0, we obtain
P**DEDSug — &L+ 1)ug = 0. (44)
Thus, the solution for this equation is given by
ua(p®) = Ap*HY. (45)
The Second case: p* — oo, which leads to the following equation
DSD%ug — L 0 (46)
pDptta — Juta =0.
So, the solution for this equation is given by
ua(p®) = Cexp [ —P2 ). @7)
2a
Thus, we assume a general solution of the form
[ A o(f+1) o ﬁ o
ua(p®) =Ap exp | —5- Jva(p®). (48)
Where vg (p%) is the analytical function. After substituting in eq.(43), we obtain
p"‘Dngva +[2al+20—p?] Dg‘va +[Aag — €+ 1)]vg =0, (49)

This equation is the conformable associated Laguerre equation. Its solution is given in terms of the conformable associated

Laguerre functions

o x "% exp ()ﬁ) a

vo =LY, (x_) = %Ds“ [x(”m)“exp (—x—)} ) (50)
o oss! o

wherem=20+1, Ay=no, s=n—~{—1.
Thus, the general solution eq.(48) can be written in the following form

a(l+1) PN 2041 pY
ug(p®) = Ap + exp(—ﬁ)L(”’UI)a (—) (51

o

One may calculate the constant A using conformable normalization condition [34]
- daP |A|2 a(l+1) P 20+1 P\
/0 lua(p®) 2—k / p’ exp L(n o\ o d%p,

Making use of the relation given by

(52)

oo X o « am+1 '
‘/0 e*7xma+aL;'&(%) Zna(%)dax:ﬂpstM‘i’l]. (53)
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The constant A is then given as

k(n—¢—1)!
A=, - 7 54
na2£+2 (l’l + E)[ ( )
Thus, % = a2 Where ry called oc— Bohr radius it is equal rjf = %. So, the radial wave function (51) becomes
"p
ay _ (n—L=D! s PN 2041 p*
ua(p™) = \/ et P\ "o e o ) 55)
As a result, the conformable radial wave function is
o
Ro(p®) =247 (56)
2\ (—t-1) P\ a0 pe
= : — |l — .
\/(anr}j‘) 2na24+2(n+€)!p KN Tog ) r—t-na Ty
After re-substituting p% = ;:gn, we obtain
R (%) 2\ (m—e-1r (2] N\ e 2 7
r) = exp| ———4— — .
¢ anrf ) 2ne?*2(n+0)! Larfn P a2rdn ) "=t=Na\ o2r%n

Table 2: The conformable spherical harmonics Ry (r®) for different values.
n| /¢ R (r%)

4 r
O Jamme (~7)
1 r% r%
0 Vit |2 g 0 ()
2
1 r r®
! \ 6aorg@ 2 SXP (_ 20778 )

2
4 2 r® o I
0| \/ T {3 <3a2rg> oy T l} e"p( 3a2rg>

_8 Lalp_ _r% .t
! \ a0 [2 3a2rg} exp ( 3a2rg)
2
1 2r* r*
2 \/ 10a935r3¢ [ar;"3] exXp <7 3a2r§‘>
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a- Probability density (n=1, /=0)

0.15

PYRqa(r%) |2

sk

Fig. 3: The o—probability density r>%|Rq (r®)|? at different values of o.

a- Probability density (n=2, /=0)

— a=1
----- a=0.9 7
----- a=0.8
----- a=0.7
a=0.6
a=0.5

Fig. 4: The o—probability density r?%|Rq (r®)|? at different values of o.

a- Probability density (n=2, /=1)

Fig. 5: The o—probability density r2%|Rq (r®)|? at different values of c.
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a- Probability density (n=3, /=0)

PaR(r) |2

Fig. 6: The a—probability density 2% |Rq (r®)|? at different values of c.

a- Probability density (n=3, /=1)

0.025

0.020

0.015

PaR(r) |2

0.010

0.005

0.000

Fig. 7: The a—probability density r>*|Rq (r®)|? at different values of o.

a- Probability density (n=3, /=2)

0.020

0.015

0.010

PaR(r) |2

0.005

0.000

Fig. 8: The a—probability density r>*|Rq (r®)|? at different values of o.
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Thus, the ot— energy levels are taken from this formula

£ _ (13.66V)a 53
T ol-ag2u2 (58)
2\ a
where 2“}12“ (FSO) = (13.6 eV)“.
o | 3 a ¥
_zo: é ¢ a=1 :
[ * A a=0.9 |
O a=0.8 -
-40 - *  a=0.7
3 3% V  a=0.6 |
6:3 60 < a=0.5
S -60| i
-80 i
0 1 2 3 4

n

Fig. 9: The or—energy levels E% as a function of quantum number n at different values of o.

It is noted that the energy of an excited state varies with o gradually, which could indicate the presence of fractional levels
with the highest sub-level corresponding to ot = 1.
Thus, the solution for the conformable Schrodinger equation for the Hydrogen atom is given by

‘Ifnﬁma( eav(P ) néoc( )Y/rgga, (59)
B 1\ 2—e—11@e+1)(0=—m)t [ 27 1
S\ \anr® ) na?H2n(n+ 0)1(0+m)!(27)* [ordn |

r* 20+1 2r% im@% pma o
exp " o Lo e orn e"? P’ (cos(6%)).

Table 3: The conformable wave function W,g,,¢ (r®, 0%, %) for different values of quantum number.
n £l m Wn/ma(raveavq)a)

1lolo \ oy exp< )
010 \ 16(2n 16(2m) %03 r}* [ ]exp( 2a2rb>
2
110 \ /4(17 5 exp( 2a2 a)cos(ea)
S ;a 5 exp( 2 )e["’a sin(6%)
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Fig. 11: Plot |y |> with different value of & from 0.2 to 1 in 3D
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Fig. 12: Plot | y211¢|? with different value of o from 0.2 to 1 in 3D

3 Conclusion

We have solved the conformable Schrodinger equation for the conformable Coulomb’s potential. We obtained the
conformable spherical harmonic function as the solution of the angular part and the conformable radial wave function in
terms of the conformable associated Laguerre function. We observed that the conformable spherical harmonics goes to
the traditional spherical harmonic function when o goes to 1 as well as the radial wave function. To illustrate our
calculation we have drawn the conformable spherical harmonic function for £ =2 and m = 1 in 3D and 2D, with
different values of a. We observed that in Figure 1 the density function gradually converts to the traditional density
function given in Figure 2. Also, the same thing has been seen for the density function in the polar plot. In addition, we
plot the o— probability density of radial function (n = 1,/ = 0) of different values of a and the same for
n=24=0);(n=2=1);(n=3,=0);(n=3,£=1) and (n = 3,¢ = 2). (See figures 3 to 8). The conformable
Schrodinger equation in 3D-spherical coordinates is solved and wave functions and energy levels for different values of
o are obtained. The conformable wave functions for n = 1 and n = 2 are calculated. It is observed that the traditional
wave function can be recovered when o = 1.Besides, the - probability density for n =1,/ =0, n =2,/ =1 and
n=3,{=0,1,2 are drown for different values of «. It is concluded that the a- probability density gradually converts to
the traditional case.

Note

This paper comprises two manuscripts that were previously submitted and announced by ArXiv: The first manuscript of
this link https://arxiv.org/abs/2203.11615 and the second manuscript of this link https://arxiv.org/abs/2209.02699.
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