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Abstract: This paper presents an optimization algorithm to solve the short-term load forecasting problem more quickly and accurately
in progress of smart grid development. The new approach employs generalized regression neural network (GRNN) to select influence
factors of short-term load, and then a least squares-support vector machine (LS-SVM) based on harmony search algorithm (HS)
optimization algorithm was proposed that improving the computing accuracy and speed through a novel category of bionic algorithm,
and determining the hyper-parameters of LS-SVM through HS optimization algorithm fleetly and reasonably. Simulations have been
made comparing the proposed algorithm with several other algorithms commonly used to solve short-term load forecasting problems.
The actual implementation result proves that the proposed algorithm can achieve higher prediction accuracy and better computational
speed which is more practical for short term load forecasting.

Keywords: Short-term load forecasting, Generalized regression neural network (GRNN), Hyper-parameters selection, Harmony search
algorithm (HS), Least squares-support vector machine (LS-SVM).

1 Introduction

During the Twelfth Five-Year planning period (Five-Year
Plan is the most important government document of
country-regionplaceChina. It is a series of economic
development initiatives, mapping strategies for economic
development, setting growth targets and launching
reforms in relative time frame.), large-scale construction
of smart grid and ensuring the security and stability
operation of smart grid require improving load
forecasting methods and achieve short-term load
forecasting timely and accurately [1,3]. The operation of
smart grid needs more timely and accurate load
forecasting to provide decision support for dispatching
and load managing. To satisfy smart grid operation
requirements about load forecasting speed and accuracy,
timely and accurate load forecasting methods are in great
need of. In general, along with the full-scale smart grid
construction, the power supply mode and consumption
mode of the whole system can be optimized through

accurate short-term load forecasting. The security,
stability and cleanness of the system are also enhanced
further. Therefore, achieving short-term load forecasting
is objective requirement of smart grid construction and
has become the focus of market subjects and is also one
of important issues need to be deepened and broken
through.

Load forecasting has become a crucial issue for the
markets subjects and researchers of electric power
systems. For a long time, most of short-term load
forecasting approaches are based on time series analysis
method and statistical model, such as linear regression
methods [4], time-series modeling [5], general
exponential smoothing [6]. These methods only can
predict the linear load series and lack the ability to
analyze the nonlinear character of load series. With the
rapid development of artificial intelligence algorithm, the
algorithms with strong self-learning ability, such as
artificial neural network [7], BP neural network [8],
simulated annealing algorithm [9], expert system, particle
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swarm optimization [10], fuzzy inference [11], hierarchy
matching [12], have been widely used in load forecasting.
Though, artificial intelligence methods can deal with
nonlinear relationship between the load and its relative
factors, many of them still have some flaws. For example,
expert system can not avoid the wrong expert knowledge,
the shortcoming of ANN lies in over-fitting and long
training time, fuzzy inference method still needs the
expert’ experience to generate. Recently, support vector
machine (SVM), which is especially suitable for solving
problems of small sample size, has also been applied for
load forecasting [13]. Some improved SVMs have also
been put forward to solve the concrete problems [14,15].
LS-SVM method can reduce the complexity of
calculation effectively by converting quadratic program
into linear equality sets, but the parameters of LS-SVM
are mainly determined based on experience. Therefore,
this paper will present a optimization algorithm to
improve the parameters selection progress of LS-SVM.

Harmony search algorithm (HS) optimization
algorithm [16,17], with the characteristic of overall,
celerity and accuracy, has been successfully applied to
solve problems such as performance optimization and
reactive power optimization of power system. The HS
optimization algorithm was introduced in this paper to
solve hyper-parameters selection problem, and actual
implementation result proved that the proposed algorithm
can achieve higher prediction accuracy and better
computational speed than methods in existing literature
above. This paper is organized as follows. In section 2,
GRNN network is used to choose the key factors that
affect load forecasting. The LS-SVM is described in
section 3. Section 4 uses HS optimization algorithm to
quantitative identify the hyper-parameters of LS-SVM
and to achieve its adjustment automatically. In section 5,
through the empirical study, the accuracy and speed of
load forecasting methods, including artificial neural
networks (ANN), least squares support vector machine
(LS-SVM), particle swarm optimization (PSO) and
HS-LS-SVM, were analyzed comparatively. Finally, the
conclusions are presented in section 6.

2 Select the Key Factors of Affecting the
Short-Term Load Forecast Based on GRNN

When doing short-term load forecast, the factors that
affect the electricity consumption should be considered
carefully. According to previous studies, these possible
influencing factors were summarized and divided into two
categories here: economic factors and non-economic
factors. The fluctuation of economic factors would affect
the electricity consumption, even consumers’ electricity
consumption habits, such as salary(in month), power
price, alternative energy price, power utility manners
(electrical equipment and period), and non-economic
factors also play an important role in affecting the

electricity consumption, such as temperature, humidity,
rainfall and holiday. Furthermore, electricity consumption
is also influenced by demand side management measures,
power price control, electric power sales promotion,
national policy(especially the national industrial policy
and energy policy implemented in the month), and so on.

General regression neural network (GRNN) proposed
by Donald F. Specht in 1991 is a neural network
architecture that can solve any function approximation
problem [18]. If the training sample is provided, the
network structure can be determined, and the connection
weights of BP network can be obtained used by GRNN.
Its learning rate is fast. It can approach a discontinuous
function at any accuracy. The network converges to the
optimized regression surface which is accumulated on the
most samples. It also has better learning performance in
the condition that irregular data are used in the network.
Besides, there is only one artificial parameter, which
maximize avoid influence of subjective assumption on the
forecast results.

The network topological structure of GRNN consists
of four layers: input layer, pattern layer, summation layer
and output layer, as shown in Figure 2.1.
A=[a1,a2,. . . ,am]T is the input vector, and
B=[b1,b2,. . . bl]T is the out put vector.

Fig. 2.1 The GRNN network topology of influence factors
choosing in short term load forecasting

Based on GRNN, the steps of selecting the key factors
of short-term load forecasting are described as follow:

It is assumed that the joint probability density function
is g(a, b) with variables a and b. The observed value of a is
A. Then, relative to a, the regression of b can be expressed
as:

B̄ =

∫ +∞
−∞ bg(A,b)db∫+∞
−∞ g(A,b)db

(1)

The unknown probability density function g(a, b) can
be obtained through the observed value of a and b. The
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nonparametric estimation can be expressed as:

gΛ (A,B)
= 1

(2π)
m+1

2 σm+1n
×

∑n
i=1 exp[− (A−Ai)

T (A−Ai)
2σ2 ]exp[− (B−Bi)

2

2σ2 ]

(2)

Where Ai and Bi are the observed values of random
variables a and b respectively. n denotes the number of
samples; m denotes the dimensions of random variable a,
and g(a, b) is replaced by gΛ (A,B).

Based on Eq.(1), the estimation value B(A) can be
obtained by exchanging the sequence of integration and
summation:

B̄(A) =
∑n

i=1 exp[− (A−Ai)
T (A−Ai)

2σ2 ]
∫+∞
−∞ yexp[− (B−Bi)

2

2σ2 ]db

∑n
i=1 exp[− (A−Ai)T (A−Ai)

2σ2 ]
∫+∞
−∞ exp[− (B−Bi)2

2σ2 ]db

(3)

Where B(A) is the weighted mean of whole samples.
The weight of observed value Bi is the exponent of the
squared CityplaceEuclid distance between corresponding
samples Ai and A.

Step 1: The sample data is set as input data. The
number of input neurons is equal to the number of factors
influencing load forecasting, and each neuron presents
data to the second layer directly, namely the pattern layer.

Step 2: The number of pattern neurons is equal to the
number of cases in the training set n. The typical pattern
neuron i attains the data from the input neurons and
computes an output Pi using the transfer function:

Pi = exp[− (A−Ai)
T (A−Ai)

2σ2 ], i = 1,2, · · ·,n (4)

where σ denotes the smoothing parameter, and Pi
denotes the weight of observed value Bi .

Step 3: The summation neurons include two kinds of
neurons. One is simple arithmetic summation, which
sums the outputs of pattern neurons. The weight between
the pattern neurons and the summation is set at 1, and the
transfer function TDcan be expressed as:

TD =
n

∑
i=1

Pi (5)

The other is weighted summation. The weight
between the neuron i of pattern neurons and the neuron j
of summation neurons is the element j of output sample
Bi .The transfer function of summation neurons can be
expressed as:

Tj =
n

∑
i=1

bi jPi, j = 1,2, · · ·, l (6)

Step 4: The number of output neurons is equal to the
dimension of output vector, l. Then, output neuron

performs the following division to obtain the GRNN
regression output b j:

b j = Tj/TD, j = 1,2, · · ·, l (7)

Step 5: The testing samples are chosen by extracting
some continuous samples randomly from training
samples. It is assumed that the smoothness factor is
increased by ∆σ and the range is [σmin, σmax]. In the
learning sample, the other samples are used for training
except one sample. The error between estimation value
and actual value is obtained. The process is repeated until
each sample is excluded once, and the error series could
be obtained. The MSE (mean square error, E) is applied
to evaluate the network performance and expressed as
Eq.(8). The optimized smoothness factor which has the
minimum error is used for the final network training:

E =
1
n

n

∑
i=1

[B̄i(Ai)−Bi]
2 (8)

The factor weight Pi influencing load forecasting is
determined while the smoothness factor is optimized. If
Pi meets the constraint of Eq.(9), the factor i can be
chosen as one of the final influencing factors, which is
used for load forecasting:

Pi ≥
TD

n
, i = 1,2 · ··,n (9)

3 Least Square-Support Vector Machine
(LS-SVM)

The standard LS-SVM algorithm was introduced as
follows [21]. Assume a set of training set is given like {ai,
bi}(i=1,2,...,N), with the input ai∈FN and the output
bi∈FN . The following regression model is constructed by
using nonlinear mapping function f (.), which maps the
input data to higher dimensional feature space.

g(ai)=HT f(ai)+m (10)

Where H and m are parameters needed to be
determined, which can be calculated by minimizing the
following function:

F=0.5||H||2+ζF1 (11)

Where ζ is a regularization parameter and determines
the trade off between minimizing the training error and
minimizing model complexity; F1 is the error term, i.e.
empirical risk in learning theory. The optimization
problem of the LS-SVM regression can be expressed as:{

min J[H,ei] = 0.5∥H∥2 +0.5ζ ∑N
i=1 e2

i
s.t. bi = HT f (ai)+m+ ei, i = 1,2, · · ·,N (12)
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And then, Lagrange function is adopted to solve this
optimization problem.

L(H,λi,m,ei) = J+
N

∑
i=1

λi[bi −HT f (ai)−m− ei] (13)

Where λ i is Lagrange multipliers, λ i≥0; ei is training
errors. According to Karush–Kuhn–Tucker conditions, the
first order partial derivatives of Lagrange function can be
expressed as: 

∂L
∂H = 0
∂L
∂λi

= 0
∂L
∂m = 0
∂L
∂ei

= 0

(14)

And then, Eq.(15) and Eq.(16) can be obtained:

H =
N

∑
i=1

λi f (ai),
N

∑
i=1

λi = 0,λ = ζ ei (15)

bi−HT f(ai)−m−ei=0 (16)

When the variable H and eiare removed, the
optimization problems can be described as a linear
system.


0 1 · · · 1
1 k(a1,a1)+

1
r · · · k(a1,aN)

...
1 k(aN ,a1) · · · k(aN ,aN)+

1
r




m
λ1
...

λN

=


0
b1
...

bN

 (17)

λ i and m can be obtained by solving Eq.(17). The LS-
SVM regression model can be expressed as:

b̂(a) =
N

∑
i=1

λiφ(ai,a)+m (18)

Where φ(ai,a)=f (ai)T f (a) is the kernel function,
which follow Mercer’s theory. The common examples of
kernel function contain: 1) linear function, φ(a,
ak)=ak

T a; 2) polynomial kernel function,
φ(a,ak)=(ak

T a+1)d ; 3) radial basis function (RBF)
kernel function, φ(a,ak)= exp[−||a−ak||2/(2µ2)]; 4)
multi-layer perceptron (MLP) kernel function, φ(a,ak)=
tanh(kak

T a+η).
According to the problems of training LS-SVM,

proper parameter setting plays a crucial role in building a
good LS-SVM regression model with high prediction
accuracy and stability, such as regularization parameter ζ
and the RBF kernel function parameter µ . In this
research, these parameters can be called directly in the
training phase through harmony search algorithm (HS)
algorithm.

4 Short-Term Load Forecasting Based on
HS-LS-SVM Optimization Algorithm

4.1. HS Algorithm. The harmony search algorithm (HS)
is a meta-heuristic algorithm inspired by the
improvisation process of music players[22]. The
musicians in the band or orchestra are represented by the
components of the solution vector. Perfect harmony
occurs when each musician plays the perfect note. In the
same way the perfect solution vector is found when the
value of each component is optimal. A musician
improvises new tones and tests them for harmony with the
rest of the band. If the new improvisation works well the
improvised tone is remembered for future use, otherwise
the musician forgets the tone and tries a different
improvisation. The harmony search algorithm mimics this
behavior by keeping a matrix of the best solution vectors
called the Harmony Memory (HM). The number of
vectors that can be simultaneously remembered in the
memory is known as the Harmony Memory Size (HMS)
and is one of the algorithm’s parameters that is set during
initialization. The memory is organized as a matrix with
each row representing a solution vector and the final
column representing the vector’s fitness. The steps of HS
algorithm are described as follows:

Step (1). Initialize the optimization problem and
algorithm parameters.

Step (2) Initialize the harmony memory (HM).
Step (3). Improvise a new harmony from the HM.
Step (4). Improvise a new harmony from best harmony

(local search).
Step (5). Update the HM.
Step (6). Repeat Steps 3 ,4 , 5 until the termination

criterion is satisfied.
4.2. The Hyper-Parameters Selection Based on HS. It
should be noted that there are two key factors in the
selection of hyper-parameters based on HS: 1) how to
describe the hyper-parameters with HM; which will
directly affect the searching efficiency and convergence
speed; 2) how to define the fitness function.

In the proposed algorithm, HM is required to provide
one potential solution, which is called hyper-parameters
combination. Here, a hyper-parameters combination is
defined as one dimensional combined vector x. For
example, RBF: x=(ζ , µ). In this research, set x=(log2ζ ,
log2µ) for the reason that this method has a higher
searching efficiency and has got more stable optimization
result.

In this problem, through calculating the fitness value
of HM, the fitness function can guide HS algorithm to
move to better solution, which shows that it should be
defined for different problems. The higher the fitness
value is, the better the location is. The fitness function is
defined as follow:

G =− 1
N

N

∑
j=1

∣∣∣c j − c
′
j

∣∣∣
c j

×100 (19)
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Where c’ j and c j denote training results and actual
results respectively.
4.3. Modeling Progress. Before modeling, it needs to
select the load sample data, and preprocess the data with
the following method. Then, the sample data are
normalized to [0, 1], which avoid the large amount of
computation.

x
′
i j =

xi j − xmin
i j

xmax
i j − xmin

i j
(20)

Where x’i jis the non-dimensional value of sample i; xi j
is the initial value; x j

min is the minimum value of property j
of all the samples; x j

max is the maximum value of property
j of all the samples.

Considering the better recognition and attainable of
RBF kernel function, the RBF kernel function is selected
to use in this study. The parameters of the HS algorithm
are: the HMS is 20, the maximum iteration number is
1000, the dimension is 2, the trace back step number is 5,
and the initial HM is distributed within [-5, 15] randomly.

Meanwhile, since the HS algorithm uses a kind of
stochastic search technique, the optimization progress can
ran one hundred iterations by calculating the training
samples. In each iteration, the two-dimensional position
of particle with the biggest value of fitness function is
given to the optimal hyper-parameters combination noted
(ζ ,µ2).

Set the normalized samples as the input data of
LS-SVM model, then, forecast the load. Finally, output
the forecasting result. The flow chart of LS-SVM
hyper-parameters selection algorithm based on HS is
shown in Figure. 4.1.

5 Numerical Example

Data are chosen from power load database of a certain
area in China. The power load datas from 1/12/2010 to
29/12/2010 are selected as training sample and used to
verify the effectiveness and the advancement of the
proposed method. Based on the Matlab 7.0 platform and
simulate analysis of GRNN, the influence of factors on
the error of training results are analyzed. Combining the
error analysis and the weights obtained from GRNN, the
factors which influence the error of training results much
are chosen as the key factors, including ahead-day load
data at period i, ahead-day load forecasting data at period
i, weather data of sample day, weather data of forecasting
day, holiday period, which are also the input variables.
Hourly load of forecasting day is set as output variables.
Input variables can be described as follow:

(1) A={a1,1,a1,2,...,a1,24,a2,1,...a2,24,...an,i} denotes the
ahead-day load data of sample n at period i;

(2) B={b1,b2,...,bi} denotes the ahead-day load
forecasting data at period i;

(3) C={c1, j,c2, j,. . . cn, j} denotes the weather data of
sample day n, j=1,2,3,4. cn,1 denotes the low temperature

Fig. 4.1 Flow chart of LS-SVM hyper-parameters selection
algorithm based on HS

of sample day n. cn,2 denotes the high temperature of
sample day n. cn,3 denotes the average temperature of
sample day n. cn,4 denotes the rainfall of sample day n.

(4) D={d1,d2,d3,d4} denotes the weather data of
forecasting day, including low temperature, high
temperature, average temperature, rainfall.

(5) E={0,1}. E=0 denotes weekdays (Monday to
Friday); E=1 denotes weekends (Saturday and Sunday).

There are 696 samples in 29 days, of which 672
samples from 1/12/2010 to 28/12/2010 are set as training
data. Meanwhile, 24 forecasting results on 29/12/2010 are
obtained to reflect different load.

The optimal hyper-parameter combination
(ζ ,µ2)=(88.3,131.7) can be got by using the proposed
method in this paper. And the forecasting results have
better forecast precision and mean absolute percentage

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



296 M. Zeng, S. Xue, Z. Wang, X. Zhu, G. Zhang: Short-term Load Forecasting of Smart Grid...

Fig. 4.2 Fitting curves of five methods

error (MAPE) with the error is only 1.78%
( 1

72 ∑72
i=1

(∣∣bi − b̂i
∣∣)/bi = 1.78%, where b̂i and bidenote

the testing output value and actual value respectively).
To assess the reasonable of the proposed method, the

comparative analysis of the results from three methods
(BPNN, LS-SVM, PSO and HS-LS-SVM) is made.
Adopt the ”8-17-1” network of Levenberg-Marquardt
(LM), and choose Tansig function(

f (x) = 2/
(
1+ e−2x

)
−1

)
and Purelin function

( f (x) = x) as the transfer functions of pattern layer and
output layer respectively. The training parameters are set
as follows: the learning rate is 0.01, the target error is
0.001, the maximum iteration number is 2000.
Comparing with the HS hyper-parameter selection
algorithm, the network searching algorithm applies the
same parameter, but its hyper-parameters search range is
in the scope of [-5, 15] with the step is 1. The fitting curve
of load forecasting results on 29/12/2010 and the relative
error distributions of different algorithms are shown in
Table 1 and Figure 4.2. The training time in table 1 is the
average training time after operation 100 times.

As shown in Table 1, BPNN algorithm has the highest
MAPE, up to 5.13%. The MAPE of HS-LS-SVM is the
lowest, only 1.76%. The MAPE of LS-SVM and PSO is
respectively 3.55% and 2.53% which are between the
above two values. The training time of HS-LS-SVM is
31.79s, and the training time of LS-SVM and PSO is
respectively 144.68s and 82.36s. Based on results above,
the analysis are as follows: (1) The MAPE of
HS-LS-SVM is 3.37 percentage points lower than BPNN.
It shows that LS-SVM has obvious advantage in solving
small sample set regression problem comparing to the
BPNN algorithm. That is because LS-SVM algorithm can
satisfy the SRM(Structural Risk Minimization) principle
proposed by Vladimir Vapnik and Alexey Chervonenkis
in 1974, has good generalization ability and overcomes
the deficiencies of ANN algorithm which has high
requirement for training sample number and quality. (2)
The MAPE of HS-LS-SVM is 1.79 percentage points
lower than LS-SVM. And the training time of

HS-LS-SVM is only 21.97% of LS-SVM, i.e. the training
speed is 4.55 times higher than the latter. So, it suggests
that in both the solution quality and training speed
HS-LS-SVM algorithm has much higher efficiency than
LS-SVM. (3) The MAPE of HS-LS-SVM is 0.77
percentage lower than PSO algorithm. And the training
time of HS-LS-SVM is only 38.60% of PSO, i.e. the
training speed is 2.59 times higher than the latter. So, it
suggests that compared with traditional advanced
short-time load forecasting algorithm, a significant
advantage of HS-LS-SVM algorithm is the better
computational speed which is more practical for short
term load forecasting. (4) Compared with LS-SVM,
introduction of HS makes error rate dropped by 50.42%,
while introduction of HS makes training time dropped by
78.03%. It indicates that LS-SVM optimized by HS
achieve higher prediction accuracy and better
computational speed. Compared with the prediction
accuracy improvement, the computational speed
improvement is more significant. Unlike other optimal
algorithms, the way to choose search scale for HM in HS
algorithm is based on probability distribution, which can
effectively breakthrough the limitation of local extremum.
At the same time, using the interactive mode of HM can
not only learn from their past way, but also rapidly
approach the optimal value by borrowing the experience
from other HM. So, the example study shows that
comparing with other optimization algorithms, the
LS-SVM optimization algorithm based on HS has
obviously advantages in both the calculation accuracy and
calculation speed.

Conclusions

Considering the economic factors and non-economic
factors which affect the short-term load forecasting, the
key factors are selected by GRNN. Then, the proposed
method–HS-LS-SVM is used to forecast load. From the
results of experiment, we can get the following
conclusions: (1) Through analysis of load influencing
factors with GRNN, the key influencing factors are
selected as the output variable, so the accuracy of
forecasting model can be improved. (2) According to the
problems of LS-SVM parameters, the HS algorithm is
applied to optimize these parameters. The experiments
results show that the proposed method can automatically
extract parameters which have high recognition rate and
fast convergence speed. (3) A new short-term load
forecasting approach based on HS-LS-SVM is proposed
in this paper. The experiments results show that the
proposed method achieves higher precisions and faster
speed than BPNN, LS-SVM and PSO, and its correctness
and effectiveness are also verified. As a heuristic hybrid
algorithm, the proposed method has a bright application
future, and can be applied not only in short-term load
forecasting, but also in forecasting of other areas.
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Table 5.1 Comparison of 24-hour forecasting results among different methods of December 29,2010

BPNN LS-SVM PSO HS HS-LS-SVM Actual
load

Time Fore-
casting
results
(×103

kW)

Rela-
tive
error
(%)

Fore-
casting
results
(×103

kW)

Rela-
tive
error
(%)

Fore-
casting
results
(×103

kW)

Rela-
tive
error
(%)

Fore-
casting
results
(×103

kW)

Rela-
tive
error
(%)

Fore-
casting
results
(×103

kW)

Rela-
tive
error
(%)

(×103

kW)

1:00 10925.97 5.27 9939.97 4.23 10151.7 2.19 10608.36 2.21 10169.34 2.02 10379
2:00 9198.99 5.96 9294.86 4.98 9942.42 1.64 10081.33 3.06 9620.6 1.65 9782
3:00 9741.51 4.31 9633.18 3.15 9624.77 3.06 9191.44 1.58 9478.15 1.49 9339
4:00 9425.28 3.62 9400.72 3.35 9344.32 2.73 9287.93 2.11 8931.36 1.81 9096
5:00 8584.34 5.03 8687.38 3.89 9242.38 2.25 9252.32 2.36 9164.64 1.39 9039
6:00 8674.58 6.17 8951.93 3.17 9130.36 1.24 9405.86 1.74 9110.95 1.45 9245
7:00 9868.66 4.54 10563.37 2.18 10118.83 2.12 10126.07 2.05 10539.59 1.95 10338
8:00 11620.18 4.97 10623.88 4.03 11324.61 2.3 10839.74 2.08 10835.32 2.12 11070
9:00 10790.5 5.28 11754.27 3.18 11605.03 1.87 11667.69 2.42 11554.91 1.43 11392
10:00 10917.15 5.61 11135.74 3.72 12014.76 3.88 11978.91 3.57 11267.6 2.58 11566
11:00 12291.37 4.75 12154.08 3.58 12166.98 3.69 12215.09 4.10 11602.58 1.12 11734
12:00 11226.93 5.25 11338.31 4.31 11499.45 2.95 11450.87 3.36 11486.42 3.06 11849
13:00 10904.75 5.39 11052.28 4.11 11098.39 3.71 11194.05 2.88 11311.62 1.86 11526
14:00 11066.97 5.58 12064.43 2.93 11897.99 1.51 11495.96 1.92 11906.19 1.58 11721
15:00 12221.89 4.99 11284.79 3.06 11881.97 2.07 11939.01 2.56 11798.15 1.35 11641
16:00 10967.27 6.07 11265 3.52 12043.79 3.15 11886.17 1.80 11987.75 2.67 11676
17:00 11070.13 5.73 12129.34 3.29 11536.32 1.76 11988.43 2.09 11584.47 1.35 11743
18:00 11856.33 5.79 12159.63 3.38 12184.8 3.18 12918.50 2.65 12343.37 1.92 12585
19:00 11769.87 4.31 11789.55 4.15 11940.84 2.92 12072.45 1.85 12537.39 1.93 12300
20:00 12284.2 5.88 11998.79 3.42 11770.23 1.45 11327.03 2.37 11431.45 1.47 11602
21:00 10528.18 4.01 10627.99 3.1 11196.13 2.08 11146.78 1.63 10799.09 1.54 10968
22:00 11022.85 4.76 10155.83 3.48 10847.14 3.09 10820.82 2.84 10698.77 1.68 10522
23:00 11641.51 4.53 10753.89 3.44 11420.87 2.55 10812.91 2.91 10973.29 1.47 11137
24:00 11646.23 5.31 11453.81 3.57 10700.62 3.24 11255.85 1.78 10901.96 1.42 11059
Average
relative
error(%)

5.13 3.55 2.53 2.41 1.76 ——

Training
time

—— 144.68 82.36 94.03 31.79 ——
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